[go: up one dir, main page]

JP3440861B2 - Method for manufacturing field effect transistor - Google Patents

Method for manufacturing field effect transistor

Info

Publication number
JP3440861B2
JP3440861B2 JP01013799A JP1013799A JP3440861B2 JP 3440861 B2 JP3440861 B2 JP 3440861B2 JP 01013799 A JP01013799 A JP 01013799A JP 1013799 A JP1013799 A JP 1013799A JP 3440861 B2 JP3440861 B2 JP 3440861B2
Authority
JP
Japan
Prior art keywords
type sic
layer
effect transistor
sic layer
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01013799A
Other languages
Japanese (ja)
Other versions
JP2000208755A (en
Inventor
宏幸 正戸
薫 井上
勝則 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP01013799A priority Critical patent/JP3440861B2/en
Publication of JP2000208755A publication Critical patent/JP2000208755A/en
Application granted granted Critical
Publication of JP3440861B2 publication Critical patent/JP3440861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/85Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
    • H10D62/8503Nitride Group III-V materials, e.g. AlN or GaN

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、電界効果型トラン
ジスタおよびその製造方法に関するものである。 【0002】 【従来の技術】携帯電話等の無線通信技術の進歩ととも
に、ギガヘルツオーダーで動作するパワーデバイスや高
周波デバイスへの期待が高まってきている。従来、無線
通信の用途に用いる固体増幅素子は、Si等の半導体と
比べて低電界での飽和電子ドリフト速度が大きいGaA
s等の材料を用いたMESFETやHEMTが盛んに開
発され、実用化されてきた。 【0003】ところが、近年10Wないし100Wを超
える高周波・高出力デバイスが求められるようになって
きており、これにともなってGaAsデバイスの材料的
な特性に起因する問題が生じてきた。 【0004】まず、GaAsの熱伝導率が0.5W/K
cmと低いため、GaAsデバイスの発熱量が大きい。
したがって、GaAsデバイスを高出力化するとさらに
発熱量が増大するため、十分に放熱が行われなくなり、
GaAsデバイスの温度が上昇してしまう。その結果、
キャリア移動度が減少し、GaAsデバイスの動作速度
が減少するとともに、接合リーク電流が増大するために
電流暴走を引き起こし、ついにはGaAsデバイスが破
壊されてしまう。 【0005】また、GaAs材料の絶縁破壊電界が4×
105(V/cm)と小さいために、ゲート耐圧が小さ
く、GaAsデバイスに数十Vを超える電源電圧をかけ
ると、GaAsデバイスが破壊されてしまう。 【0006】そこで、これらの問題を解決するための半
導体材料としては、SiCやGaN系の材料が知られて
いる。SiC半導体の熱伝導率は4.9W/Kcmであ
り、また、絶縁破壊電界は3.5×106(V/cm)
と、それぞれGaAsに比べて約一桁大きい。さらにS
iCは、高電界での電子の飽和電子ドリフト速度が2×
107(cm/s)と速いことから、GaAsに代わる
次世代の大電力・高周波デバイス用の半導体材料として
期待される。 【0007】また、SiCは非常に安定な材料であるた
め、基板の成長や良好な半導体エピタキシャル膜を得る
ことが難しかったが、最近の研究により、基板成長技術
やエピタキシャル成長技術が進歩し、SiC材料を大電
力・高周波デバイスに用いる研究が行われている。 【0008】次に、SiC材料を用いた従来の電界効果
型トランジスタについて図面を用いて説明する。 【0009】図11は、従来のMES型の電界効果型ト
ランジスタの断面を示す。図11において、高抵抗のS
iC基板1上にn型SiC層2が形成されており、n型
SiC層2上にソース電極3、ドレイン電極4及びゲー
ト電極5が形成されている。 【0010】 【発明が解決しようとする課題】しかしながら、従来の
電界効果型トランジスタのn型SiC層2の表面は、非
常に結晶性が悪い。この理由について次に述べる。 【0011】SiCは、非常に安定な材料であるため、
通常の半導体プロセスに比べて高い温度での熱処理を必
要とする。 【0012】例えば、ゲート電極5にオーミックコンタ
クトをとるためのシンター温度は1000℃以上であ
り、n型SiC層2にイオン注入後に行うキャリアを活
性化させるためのアニール温度は1500℃以上であ
る。これらの熱処理により、n型SiC層2の表面は結
晶性が悪くなる。 【0013】また、電界効果型トランジスタにリセスエ
ッチング処理を行う場合、SiCが非常に安定な材料で
あるために、結晶性を悪化させやすいSF6やCF4等の
ガスにO2を混ぜたドライエッチング法や、溶融KOH
を用いたウエットエッチング法を用いなければならな
い。これらのエッチング処理によっても、n型SiC層
2表面の結晶性が悪くなる。 【0014】また、n型SiC層2の表面には、成長後
の降温過程で、成膜装置配管の残留ガスによる成長と考
えられる結晶性の悪いSiCが成長する。この結晶性の
悪いSiCを取り除くために、このSiC表面を酸化処
理した後、ウエットエッチングにより表面酸化膜ととも
にn型SiC層2の表面を除去して表面を清浄する必要
があった。 【0015】また、一般的に、金属と半導体とのショッ
トキー接合では、半導体が熱によって劣化しやすく、こ
の従来の電界効果型トランジスタにおいても、n型Si
C層2がゲート電極5に直接接しているために、n型S
iC層2が熱によって劣化する。 【0016】このように、n型SiC層2の表面には結
晶欠陥が発生しやすく、この欠陥上にゲート電極5を形
成すると、ゲート耐圧の劣化を引き起こしたり、電界効
果型トランジスタの高周波特性を大幅に劣化させる原因
となる。 【0017】本発明は、高出力・高周波・高温で適正に
動作する電界効果型トランジスタを提供することを目的
とする。 【0018】 【課題を解決するための手段】 本発明の電界効果型ト
ランジスタの製造方法は、基板上にn型SiC層を形成
し、酸化処理により前記n型SiC層上に酸化膜を形成
し、前記酸化膜の一部を除去することにより前記n型S
iC層の表面を露出させ、露出した前記n型SiC層の
表面上にAlGaN層を形成し、前記AlGaN層上に
ゲート電極を形成し、前記AlGaN層近傍の前記酸化
膜の2個所を除去することにより前記n型SiC層の表
面に2個所の露出部を形成し、一方の露出部にソース電
極を形成し、他方の露出部にドレイン電極を形成する
のである。 【0019】本発明の電界効果型トランジスタの製造方
におけるn型SiC層は、AlGaN層に接している
ため、高温処理やエッチング処理を行っても、n型Si
C層表面の結晶性が保たれる。 【0020】 【発明の実施の形態】次に、本発明の実施の形態におけ
る電界効果型トランジスタについて、図1ないし図3を
用いて説明する。 【0021】図1は、実施の形態における電界効果型ト
ランジスタを示すものである。図1において、高抵抗S
iCで構成された基板1上に、n型SiC層2が形成さ
れている。 【0022】n型SiC層2上には、ドレイン電極3、
ソース電極4が形成されており、ドレイン電極3とソー
ス電極4との間には、AlGaN層6が形成されてい
る。さらにAlGaN層6上には、ゲート電極5が形成
されている。 【0023】本発明の実施の形態における電界効果型ト
ランジスタは、従来の電界効果型トランジスタとは異な
り、n型SiC層2の表面は、半導体同士(n型SiC
層2とAlGaN層6)で接合するジャンクション形態
であるため、接合面における熱による劣化が起こりにく
く、高温動作にも特性劣化が起きない。 【0024】なお、本発明の電界効果型トランジスタ
は、他の実施の形態として、図2に示すように、基板1
とn型SiC層2との間にp型SiC層9を有するもの
や、図3に示すように、n型SiC層2とソース電極3
との間およびn型SiC層2とドレイン電極4との間に
n型SiC層2のキャリア密度よりも高いキャリア密度
を有するn型SiCキャップ層10を備たリセス型ゲー
ト構造を有するものや、p型SiC層9およびn型Si
Cキャップ層10の双方を有するものも同様に実施でき
る。これらの場合でも、n型SiC層2の表面はAlG
aN層6によって保護されているため、結晶性が悪化す
ることはない。 【0025】次に、実施の形態における電界効果型トラ
ンジスタの製造方法について図4ないし図10を用いて
説明する。 【0026】まず、図4に示すように、基板1上にエピ
タキシャル成長によりn型SiC層2を形成する。 【0027】次に、図5に示すように、ドライ酸素を用
いてn型SiC層2上に酸化膜7を形成する。そして図
6に示すように、フォトレジスト膜8をマスクとし、弗
化水素と弗化アンモニウムとの混合液をエッチング液と
して、酸化膜7の一部を除去し、n型SiC層2の表面
を露出させる。 【0028】次に、図7に示すように、露出部2a上に
CVD法等の気相成長によりAlGaN層6を選択的に
成長させる。 【0029】次に、図8に示すように、AlGaN層6
近傍の酸化膜7の2個所を、弗化水素及び弗化アンモニ
ウム混合液を用いて除去することによりn型SiC層6
の表面に2個所の露出部2bおよび露出部2cを形成す
る。その後、これらの露出部2b、2cにNi等のオー
ミック金属を蒸着し、リフトオフを行った後、オーミッ
クシンターを行うことにより、図9に示すようにオーミ
ックコンタクトのとれたソース電極3およびドレイン電
極4を形成する。このとき、n型SiC層2の表面はA
lGaN層6によって保護されているため、オーミック
シンター等の加熱処理を加えても、n型SiC層2表面
の結晶性が悪化することはない。 【0030】次に、図10に示すようにAlGaN層6
上にPd等の材料で構成されるゲート電極5を形成す
る。 【0031】最後に、酸化膜7を除去することにより電
界効果型トランジスタが完成する。 【0032】本実施の形態における電界効果型トランジ
スタは、n型SiC層2表面の結晶欠陥が非常に少な
く、結晶欠陥に起因するトラップ等が非常に少ない。こ
のため、良好な高出力・高周波特性を有する。 【0033】 【発明の効果】以上のように、本発明の電界効果型トラ
ンジスタでは、ゲート電極とn型SiC層との間にAl
GaN層が形成されているために、ゲート電極下のn型
SiC層の表面にダメージや結晶欠陥に起因するトラッ
プ等の数が非常に少なくなる。 【0034】また、n型SiC層とAlGaN層とが、
半導体同士の接合で形成されるジャンクション形態を有
するため、熱によるn型SiC層の劣化が起こりにく
く、高温動作時にもトランジスタ特性の劣化が生じな
い。したがって、高出力・高周波・高温で安定して動作
する電界効果型トランジスタを製造することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor and a method for manufacturing the same. 2. Description of the Related Art With the advancement of wireless communication technologies such as mobile phones, expectations for power devices and high-frequency devices operating in the gigahertz order have been increasing. 2. Description of the Related Art Conventionally, a solid-state amplifying element used for wireless communication has a GaAs having a higher saturation electron drift velocity in a low electric field than a semiconductor such as Si.
MESFETs and HEMTs using materials such as s have been actively developed and put into practical use. However, in recent years, high-frequency and high-power devices exceeding 10 W to 100 W have been required, and a problem has arisen due to the material characteristics of GaAs devices. First, GaAs has a thermal conductivity of 0.5 W / K.
cm, the calorific value of the GaAs device is large.
Therefore, when the output power of the GaAs device is increased, the amount of heat generated further increases, so that the heat is not sufficiently released,
The temperature of the GaAs device rises. as a result,
The carrier mobility decreases, the operating speed of the GaAs device decreases, and the junction leakage current increases, causing current runaway and eventually destroying the GaAs device. Further, the breakdown electric field of the GaAs material is 4 ×.
Since it is as small as 10 5 (V / cm), the gate breakdown voltage is small, and if a power supply voltage exceeding several tens of volts is applied to the GaAs device, the GaAs device will be destroyed. Therefore, SiC and GaN-based materials are known as semiconductor materials for solving these problems. The thermal conductivity of the SiC semiconductor is 4.9 W / Kcm, and the dielectric breakdown electric field is 3.5 × 10 6 (V / cm).
Respectively, which is about one digit larger than GaAs. Further S
iC has a saturated electron drift velocity of 2 × in a high electric field.
Since it is as fast as 10 7 (cm / s), it is expected as a semiconductor material for next-generation high-power and high-frequency devices replacing GaAs. Further, since SiC is a very stable material, it has been difficult to grow a substrate or obtain a good semiconductor epitaxial film. Researches have been conducted on high power and high frequency devices. Next, a conventional field effect transistor using a SiC material will be described with reference to the drawings. FIG. 11 shows a cross section of a conventional MES type field effect transistor. In FIG. 11, high resistance S
An n-type SiC layer 2 is formed on an iC substrate 1, and a source electrode 3, a drain electrode 4 and a gate electrode 5 are formed on the n-type SiC layer 2. [0010] However, the surface of the n-type SiC layer 2 of the conventional field-effect transistor has very poor crystallinity. The reason will be described below. Since SiC is a very stable material,
Heat treatment at a higher temperature than in a normal semiconductor process is required. For example, a sintering temperature for making ohmic contact with the gate electrode 5 is 1000 ° C. or more, and an annealing temperature for activating carriers after ion implantation into the n-type SiC layer 2 is 1500 ° C. or more. Due to these heat treatments, the surface of the n-type SiC layer 2 has poor crystallinity. When a recess etching process is performed on a field-effect transistor, SiC is a very stable material. Therefore, dry etching in which O 2 is mixed in a gas such as SF 6 or CF 4, which easily deteriorates crystallinity, is performed. Etching method, molten KOH
Must be used. These etching processes also deteriorate the crystallinity of the surface of the n-type SiC layer 2. On the surface of the n-type SiC layer 2, SiC having poor crystallinity, which is considered to be grown by the residual gas in the film forming apparatus piping, grows during the cooling process after the growth. In order to remove the SiC having poor crystallinity, it is necessary to oxidize the surface of the SiC and then remove the surface of the n-type SiC layer 2 together with the surface oxide film by wet etching to clean the surface. In general, in a Schottky junction between a metal and a semiconductor, the semiconductor is easily deteriorated by heat.
Since the C layer 2 is in direct contact with the gate electrode 5, the n-type S
The iC layer 2 is deteriorated by heat. As described above, crystal defects are likely to occur on the surface of the n-type SiC layer 2, and when the gate electrode 5 is formed on these defects, the gate breakdown voltage is deteriorated and the high-frequency characteristics of the field effect transistor are reduced. It may cause significant deterioration. An object of the present invention is to provide a field effect transistor which operates properly at high output, high frequency and high temperature. According to the method of manufacturing a field effect transistor of the present invention , an n-type SiC layer is formed on a substrate.
Forming an oxide film on the n-type SiC layer by oxidation treatment
By removing a part of the oxide film, the n-type S
The surface of the iC layer is exposed, and the exposed n-type SiC layer
Forming an AlGaN layer on the surface, and forming an AlGaN layer on the AlGaN layer;
Forming a gate electrode and oxidizing near the AlGaN layer;
By removing two portions of the film, the surface of the n-type SiC layer is removed.
Two exposed parts are formed on the surface, and the source
A pole is formed, and a drain electrode is formed on the other exposed portion . Method for manufacturing field effect transistor of the present invention
Since the n-type SiC layer in the method is in contact with the AlGaN layer, the n-type SiC
The crystallinity of the C layer surface is maintained. Next, a field effect transistor according to an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a field effect transistor according to the embodiment. In FIG. 1, the high resistance S
An n-type SiC layer 2 is formed on a substrate 1 made of iC. On the n-type SiC layer 2, a drain electrode 3,
A source electrode 4 is formed, and an AlGaN layer 6 is formed between the drain electrode 3 and the source electrode 4. Further, a gate electrode 5 is formed on the AlGaN layer 6. The field-effect transistor according to the embodiment of the present invention is different from a conventional field-effect transistor in that the surface of the n-type SiC layer 2 is made of a semiconductor (n-type SiC).
Since the junction is formed by joining the layer 2 and the AlGaN layer 6), deterioration due to heat at the joining surface hardly occurs, and the characteristics do not deteriorate even at a high temperature operation. The field-effect transistor according to the present invention, as another embodiment, has a substrate 1 as shown in FIG.
Having a p-type SiC layer 9 between the n-type SiC layer 2 and the n-type SiC layer 2, as shown in FIG.
A recessed gate structure having an n-type SiC cap layer 10 having a higher carrier density than the n-type SiC layer 2 between the n-type SiC layer 2 and the drain electrode 4, p-type SiC layer 9 and n-type Si
Those having both of the C cap layers 10 can be similarly implemented. Even in these cases, the surface of the n-type SiC layer 2 is made of AlG
Since it is protected by the aN layer 6, the crystallinity does not deteriorate. Next, a method of manufacturing the field effect transistor according to the embodiment will be described with reference to FIGS. First, as shown in FIG. 4, an n-type SiC layer 2 is formed on a substrate 1 by epitaxial growth. Next, as shown in FIG. 5, an oxide film 7 is formed on the n-type SiC layer 2 using dry oxygen. Then, as shown in FIG. 6, using the photoresist film 8 as a mask, a mixed solution of hydrogen fluoride and ammonium fluoride as an etching solution, a part of the oxide film 7 is removed, and the surface of the n-type SiC layer 2 is removed. Expose. Next, as shown in FIG. 7, an AlGaN layer 6 is selectively grown on the exposed portion 2a by vapor phase growth such as a CVD method. Next, as shown in FIG.
By removing two portions of the oxide film 7 in the vicinity using a mixed solution of hydrogen fluoride and ammonium fluoride, the n-type SiC layer 6 is removed.
The exposed portion 2b and the exposed portion 2c are formed on the surface of the substrate. Thereafter, an ohmic metal such as Ni is vapor-deposited on these exposed portions 2b and 2c, lift-off is performed, and then ohmic sintering is performed, thereby forming the source electrode 3 and the drain electrode 4 having ohmic contacts as shown in FIG. To form At this time, the surface of the n-type SiC layer 2 is A
Since it is protected by the lGaN layer 6, even if a heat treatment such as an ohmic sinter is applied, the crystallinity of the surface of the n-type SiC layer 2 does not deteriorate. Next, as shown in FIG.
A gate electrode 5 made of a material such as Pd is formed thereon. Finally, the field effect transistor is completed by removing the oxide film 7. The field-effect transistor according to the present embodiment has very few crystal defects on the surface of the n-type SiC layer 2 and very few traps and the like due to the crystal defects. Therefore, it has good high-output and high-frequency characteristics. As described above, in the field-effect transistor of the present invention, the Al is located between the gate electrode and the n-type SiC layer.
Since the GaN layer is formed, the number of traps or the like caused by damage or crystal defects on the surface of the n-type SiC layer below the gate electrode is extremely reduced. Further, the n-type SiC layer and the AlGaN layer are
Since it has a junction mode formed by joining semiconductors, deterioration of the n-type SiC layer due to heat does not easily occur, and deterioration of transistor characteristics does not occur even during high-temperature operation. Therefore, it is possible to manufacture a field-effect transistor that operates stably at high output, high frequency, and high temperature.

【図面の簡単な説明】 【図1】本発明の実施の形態における電界効果型トラン
ジスタの断面図 【図2】本発明の他の実施の形態における電界効果型ト
ランジスタの断面図 【図3】本発明の他の実施の形態における電界効果型ト
ランジスタの断面図 【図4】本発明の実施の形態における電界効果型トラン
ジスタの製造工程を示す図 【図5】同電界効果型トランジスタの製造工程を示す図 【図6】同電界効果型トランジスタの製造工程を示す図 【図7】同電界効果型トランジスタの製造工程を示す図 【図8】同電界効果型トランジスタの製造工程を示す図 【図9】同電界効果型トランジスタの製造工程を示す図 【図10】同電界効果型トランジスタの製造工程を示す
図 【図11】従来の電界効果型トランジスタの断面図 【符号の説明】 1 基板 2 n型SiC層 2a,2b,2c 露出部 3 ソース電極 4 ドレイン電極 5 ゲート電極 6 AlGaN層 7 酸化膜 8 フォトレジスト 9 p型SiC層 10 n型SiCキャップ層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of a field-effect transistor according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a field-effect transistor according to another embodiment of the present invention. FIG. 4 is a cross-sectional view of a field-effect transistor according to another embodiment of the present invention. FIG. 4 is a view illustrating a manufacturing process of the field-effect transistor according to the embodiment of the present invention. FIG. 6 is a diagram showing a manufacturing process of the same field-effect transistor. FIG. 7 is a diagram showing a manufacturing process of the same field-effect transistor. FIG. 8 is a diagram showing a manufacturing process of the same field-effect transistor. FIG. 10 shows a manufacturing process of the same field-effect transistor. FIG. 10 shows a manufacturing process of the same field-effect transistor. FIG. 11 is a cross-sectional view of a conventional field-effect transistor. n-type SiC layers 2a, 2b, 2c exposed portion 3 source electrode 4 drain electrode 5 gate electrode 6 AlGaN layer 7 oxide film 8 photoresist 9 p-type SiC layer 10 n-type SiC cap layer

フロントページの続き (56)参考文献 特開 平10−284507(JP,A) 特開 平1−65870(JP,A) 特開 昭60−142568(JP,A) 特開 昭61−84873(JP,A) 特開2000−150875(JP,A) 特表 平10−510952(JP,A) K.Moore et.al.,Bi as dependence of R F power characteri stics of 4H−SiC ME SFETs,IEEE/Crnell Conference on Adva nced Concepts in H igh Speed Semicond uctor Devices and Circuits,1995年,p.40−46 S.T.Allen et.al., 4H−Sic MESFET’s on High Resistivity Substrates with 30 GHz fmax,Device Re search Conference, 1995.Digest.1995 53rd A nnual,1995年,p.102−103 (58)調査した分野(Int.Cl.7,DB名) H01L 21/338 H01L 29/778 H01L 29/812 Continuation of front page (56) References JP-A-10-284507 (JP, A) JP-A-1-65870 (JP, A) JP-A-60-142568 (JP, A) JP-A-61-84873 (JP, A) JP-A-2000-150875 (JP, A) JP-A-10-510952 (JP, A) Moore et. al. , Bias dependency of RF power characteristics of 4H-SiC ME SFETs, IEEE / Crnell Conference on Advances, Concepts, Recommendations, High Speed Discipline, 40-46 S.R. T. Allen et. al. , 4H-Sic MESFET's on High Resistance Substrates with 30 GHz fmax, Device Research Research, 1995. Digest. 1995 53rd Annual, 1995, p. 102-103 (58) Field surveyed (Int.Cl. 7 , DB name) H01L 21/338 H01L 29/778 H01L 29/812

Claims (1)

(57)【特許請求の範囲】 【請求項1】 基板上にn型SiC層を形成し、酸化処
理により前記n型SiC層上に酸化膜を形成し、前記酸
化膜の一部を除去することにより前記n型SiC層の表
面を露出させ、露出した前記n型SiC層の表面上にA
lGaN層を形成し、前記AlGaN層上にゲート電極
を形成し、前記AlGaN層近傍の前記酸化膜の2個所
を除去することにより前記n型SiC層の表面に2個所
の露出部を形成し、一方の露出部にソース電極を形成
し、他方の露出部にドレイン電極を形成することを特徴
とする電界効果型トランジスタの製造方法。
(57) Claims 1. An n-type SiC layer is formed on a substrate, an oxide film is formed on the n-type SiC layer by an oxidation treatment, and a part of the oxide film is removed. Thus, the surface of the n-type SiC layer is exposed, and A is formed on the exposed surface of the n-type SiC layer.
forming an lGaN layer, forming a gate electrode on the AlGaN layer, and removing two portions of the oxide film near the AlGaN layer to form two exposed portions on the surface of the n-type SiC layer; A method for manufacturing a field effect transistor, comprising: forming a source electrode on one exposed portion; and forming a drain electrode on the other exposed portion.
JP01013799A 1999-01-19 1999-01-19 Method for manufacturing field effect transistor Expired - Fee Related JP3440861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01013799A JP3440861B2 (en) 1999-01-19 1999-01-19 Method for manufacturing field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01013799A JP3440861B2 (en) 1999-01-19 1999-01-19 Method for manufacturing field effect transistor

Publications (2)

Publication Number Publication Date
JP2000208755A JP2000208755A (en) 2000-07-28
JP3440861B2 true JP3440861B2 (en) 2003-08-25

Family

ID=11741905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01013799A Expired - Fee Related JP3440861B2 (en) 1999-01-19 1999-01-19 Method for manufacturing field effect transistor

Country Status (1)

Country Link
JP (1) JP3440861B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4209136B2 (en) * 2002-05-30 2009-01-14 パナソニック株式会社 Semiconductor device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150875A (en) 1998-11-13 2000-05-30 Toshiba Corp Semiconductor device and thin film forming method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142568A (en) * 1983-12-29 1985-07-27 Sharp Corp Method for manufacturing silicon carbide field effect transistor
JPS6184873A (en) * 1984-10-03 1986-04-30 Agency Of Ind Science & Technol Semiconductor device using silicon carbide
JPS6465870A (en) * 1987-09-07 1989-03-13 Sharp Kk Semiconductor element of silicon carbide
SE9404452D0 (en) * 1994-12-22 1994-12-22 Abb Research Ltd Semiconductor device having an insulated gate
JP3047852B2 (en) * 1997-04-04 2000-06-05 松下電器産業株式会社 Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150875A (en) 1998-11-13 2000-05-30 Toshiba Corp Semiconductor device and thin film forming method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K.Moore et.al.,Bias dependence of RF power characteristics of 4H−SiC MESFETs,IEEE/Crnell Conference on Advanced Concepts in High Speed Semiconductor Devices and Circuits,1995年,p.40−46
S.T.Allen et.al.,4H−Sic MESFET’s on High Resistivity Substrates with 30 GHz fmax,Device Research Conference,1995.Digest.1995 53rd Annual,1995年,p.102−103

Also Published As

Publication number Publication date
JP2000208755A (en) 2000-07-28

Similar Documents

Publication Publication Date Title
JP5758796B2 (en) Transistor having p-type buried layer under source region and method for manufacturing the same
KR100761232B1 (en) Semiconductor device using barrier layer
Kim Lee
Adivarahan et al. Submicron gate Si 3 N 4/AlGaN/GaN-metal-insulator-semiconductor heterostructure field-effect transistors
TWI385799B (en) Asymmetric layout structure of transistor and manufacturing method thereof
US6274889B1 (en) Method for forming ohmic electrode, and semiconductor device
JP4134575B2 (en) Semiconductor device and manufacturing method thereof
JP2007149794A (en) Field effect transistor
JP2001230407A (en) Semiconductor device
US20070194295A1 (en) Semiconductor device of Group III nitride semiconductor having oxide protective insulating film formed on part of the active region
CN107240604A (en) Fluorine injection enhanced AlGaN/GaN HEMTs and preparation method thereof
JP3951743B2 (en) Semiconductor device and manufacturing method thereof
JP5202897B2 (en) Field effect transistor and manufacturing method thereof
JP4335283B2 (en) Transistor having buried n-type and p-type regions under source region, and method for manufacturing the same
US20070207626A1 (en) Substrate processing method, semiconductor device and method for fabricating the semiconductor device
JP2013140974A (en) Power element and manufacturing method therefore
JP2004165387A (en) GaN field effect transistor
JP2004311869A (en) Nitride semiconductor field effect transistor and method of manufacturing the same
CN112201689B (en) Field effect transistor based on III-nitride heterojunction and preparation method thereof
CN113823673A (en) Enhancement-mode GaN HEMT device based on superlattice structure and preparation method thereof
JP2004241711A (en) Semiconductor device
JP3440861B2 (en) Method for manufacturing field effect transistor
JP4228250B2 (en) Compound semiconductor device
KR20130008281A (en) Methods for manufacturing power devices
Akoglu et al. The effect of post-metal annealing on DC and RF performance of AlGaN/GaN HEMT

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees