JP3459286B2 - Lens fixing device - Google Patents
Lens fixing deviceInfo
- Publication number
- JP3459286B2 JP3459286B2 JP35143493A JP35143493A JP3459286B2 JP 3459286 B2 JP3459286 B2 JP 3459286B2 JP 35143493 A JP35143493 A JP 35143493A JP 35143493 A JP35143493 A JP 35143493A JP 3459286 B2 JP3459286 B2 JP 3459286B2
- Authority
- JP
- Japan
- Prior art keywords
- holding member
- lens
- laser
- semiconductor laser
- abutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 claims description 47
- 239000000758 substrate Substances 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 20
- 230000003287 optical effect Effects 0.000 description 23
- 238000003466 welding Methods 0.000 description 12
- 239000013307 optical fiber Substances 0.000 description 10
- 230000008878 coupling Effects 0.000 description 9
- 238000010168 coupling process Methods 0.000 description 9
- 238000005859 coupling reaction Methods 0.000 description 9
- 229910000679 solder Inorganic materials 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910015363 Au—Sn Inorganic materials 0.000 description 2
- 229910020220 Pb—Sn Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- SBYXRAKIOMOBFF-UHFFFAOYSA-N copper tungsten Chemical compound [Cu].[W] SBYXRAKIOMOBFF-UHFFFAOYSA-N 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- JVPLOXQKFGYFMN-UHFFFAOYSA-N gold tin Chemical compound [Sn].[Au] JVPLOXQKFGYFMN-UHFFFAOYSA-N 0.000 description 2
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Landscapes
- Mounting And Adjusting Of Optical Elements (AREA)
- Lens Barrels (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、光通信または光計測に
使用されるレンズ固定装置に関する。
【0002】
【従来の技術】実用化レベルでの光通信および光計測に
おいて、その中枢となる光源部分を小型にして、かつ組
立を簡素化することは、システムの信頼性を向上させる
ためにも必要である。そのためには、光学系の構成部品
をサブアセンブリ化して、高精度な位置決めが可能にな
るようにしたレンズ固定装置は重要な役割を担うことと
なる。
【0003】光半導体モジュールでは、光を出射する半
導体レーザと、その光を集光するレンズと、集光された
光が入射される光ファイバとが高い結合効率で光学的に
結合されていることが要求される。この要求を満たすた
めには、半導体レーザからの出射光が、レンズ通過によ
って像変換された後のスポットサイズと、光ファイバの
スポットサイズとが一致することが必要である。特に、
半導体レーザからの出射光を効率良く光ファイバに集光
するためには、レンズの位置決めを精度良く行わねばな
らない。
【0004】シングルモード光ファイバへの結像におい
て、半導体レーザの出射端面から出射される光ビームの
スポットサイズは1μm程度であり、一方光ファイバの
入射端面に形成されるスポットサイズは5μm程度のた
め、光ファイバの位置ずれ許容量は、半導体レーザとレ
ンズとの間の位置ずれ許容量に比べて大きい。
【0005】図4は、半導体レーザと光ファイバとの結
合特性の例を示した図であり、横軸に位置ずれ量(μ
m)を、縦軸に相対結合効率(dB)を示している。
(1)はレンズの光軸に垂直方向の位置ずれ許容量であ
り、(2)は光ファイバの光軸に垂直な方向に対する位
置ずれ許容量である。図4(2)からわかるように、光
ファイバの位置が組立時もしくは組立後に多少ずれて
も、相対的な結合効率の低下は緩慢であるが、それに比
べて半導体レーザとレンズとの位置関係のずれは図4
(1)に示すように相対的な結合効率を著しく悪化させ
る。したがって、光半導体モジュールを組み立てる場合
に、半導体レーザとレンズとの位置関係のずれを最小限
にして、結合効率を低下させないようにしなければなら
ない。すなわち、半導体レーザとレンズ間の位置ずれを
極力低減させることが可能なレンズ固定装置を提供する
ことは、光半導体モジュールを製作する上で最も重要な
課題である。
【0006】そのため、従来のレンズ固定装置では、半
導体レーザとレンズとの結合効率を向上させるために、
図5に示すような構成を採用している。
(1)まず、基板1上にはんだ付けによって所定の間隔
であらかじめ二つの突き当て部材6を載置する。この突
き当て部材6の形状は、立方体、直方体など相互に反対
側に位置する面A、Bが平行であり、かつ、半導体レー
ザ2の出射方向Zに対して垂直な面を有するものであ
る。この二つの突き当て部材6のそれぞれ所定の面A同
士が同一平面上にあり、かつ半導体レーザ2の出射方向
Zに対して垂直な面を形成するように基板1上に載置す
る。
(2)基板1に固定された二つの突き当て部材6のこの
所定の面Aとは反対側の面Bに半導体レーザを保持した
保持部材4(以下、レーザ保持部材という。)を突き当
てて、基板1に対してはんだ付けでレーザ保持部材4を
固定する。
(3)また、この二つの突き当て部材6のレーザ保持部
材4が固定された面Bとは反対側に位置する面Aにレン
ズを保持した保持部材5(以下、レンズ保持部材とい
う。)を突き当てて、所定の溶接個所をYAGレーザで
溶接固定する。
【0007】レーザ保持部材4は、銅などの熱伝導率の
優れた材料であることが放熱効果の点から必要である。
なお、一般に半導体レーザのレーザ保持部材4への搭載
は、半導体レーザへの熱応力を緩和させるために、シリ
コン(Si)や炭化ケイ素(SiC)等のサブマウント
材を介して行われている。また、レンズ保持部材5は、
レンズ3およびレンズホルダ7の熱膨張係数と同等の熱
膨張係数を有する材料であることが望ましく、さらに、
溶接性、耐食性を有しメッキ処理等が不要なことも要求
される。したがって、ステンレス鋼が最適である。さら
に、突き当て部材6は、レンズ保持部材5と溶接固定さ
れるためレンズ保持部材5と同種のステンレス鋼である
ことが望ましい。この場合、突き当て部材6とレーザ保
持部材4とは、それぞれが基板1と固定されており、突
き当て部材6とレーザ保持部材4とは位置的に密着して
いるだけである。
【0008】突き当て部材6の相互に反対側に位置す
る、相互に同一平面でかつ、出射方向に対しては、垂直
な面B及びAにレーザ保持部材4とレンズ保持部材5と
をそれぞれ突き当てると、原理上はレーザ保持部材4と
レンズ保持部材5とは、突き当て部材の大きさで一定間
隔を維持して平行に基板1上に載置される。このように
載置すれば、出射方向をZとすると、突き当て部材6の
大きさによりZ軸方向の距離は一義的に決定されるの
で、半導体レーザとレンズとの距離に関しては調整が不
要であり、上下方向(X)、横方向(Y)にレンズ保持
部材5を動かして、最大出力になる点で固定すればよい
ことになる。
【0009】
【発明が解決しようとする課題】しかし、二つの突き当
て部材6を一定間隔をもって基板1上に載置するとき、
二つの突き当て部材6のそれぞれ所定の面Aが相互に同
一平面でかつ、出射方向に対して、垂直な面を形成する
ように載置することは組立作業上非常な困難をともな
う。これを図6を用いて説明する。図6(a)は上面
図、図6(b)はイ−ロによる断面図である。
【0010】突き当て部材6の載置には、基板1の上面
に突き当て部材6を所定の位置に固定するための治具を
置き、それに対して、突き当て部材6を押しつけて固定
している。しかし、二つの突き当て部材6を相互に平行
にし、かつレーザ保持部材4上の半導体レーザ2の出射
方向に対して垂直な面を維持するには、治具の加工精度
および突き当て部材6を基板1にはんだ固定する際の加
熱による治具の伸び等を考慮しなければならない。ま
た、作業者の経験および注意力、さらには位置決め固定
に要する作業時間の超過にともなうはんだ材の酸化等の
問題も生じる。
【0011】上記課題を解決するため、本発明は以下の
構成を採用している。すなわち、基板1と、半導体レー
ザを保持するレーザ保持部材4と、前記半導体レーザか
ら出射された光を集光するレンズを保持するレンズ保持
部材5と、該レンズ保持部材を突き当てて固定する複数
の突き当て部材6とを備えたレンズ固定装置において、
前記レーザ保持部材と前記複数の突き当て部材とが一体
成形されており、前記複数の突き当て部材と同一材料か
らなる前記レンズ保持部材に接する面のおのおのが、半
導体レーザの出射端面と同一距離となり、出射方向と垂
直となっているように形成されていることを特徴とする
レンズ固定装置、を発明した。
【0012】
【作用】図1を用いて説明する。図1は本発明の構成を
示した図である。半導体レーザ2を保持するレーザ保持
部材4の所定の位置に突き当て部材6がロー付け等であ
らかじめ固定されている。なお、突き当て部材6を固定
するレーザ保持部材の突き当て面Cは、全面を研磨する
ことにより半導体レーザを載置する面との垂直度は維持
されている。そして、この突き当て部材6のレンズ保持
部材5との接合面Aを研磨し、レーザ保持部材4の上の
半導体レーザ2の出射方向と垂直になるような面を形成
する。すなわち、レーザ保持部材の研磨された突き当て
面Cと平行になるようにする。このときの平行度は10
μm程度であることが望ましい。これはレーザ溶接で固
定するとき、すきまがあると位置ずれを生じるからであ
る。その後、その接合面Aに突き当て面Eとレンズの出
射方向との垂直度が十分に得られているレンズ保持部材
5を溶接固定する。このようにすれば、レンズ保持部材
5とレーザ保持部材4とは常に、一定の間隔で平行に固
定される。その結果、出射方向の距離に関する位置決め
に関する調整は不要となる。
【0013】
【実施例】以下、本発明の実施例を説明する。基板1上
にレーザ保持部材4とレンズ保持部材5が一体となった
レンズ固定部を形成するには以下の2つの方法が考えら
れる。
【0014】第1の方法は、レーザ保持部材4とレンズ
保持部材5との出射方向を合わせ、突き当て部材6を介
在させてあらかじめ一体に溶接固定した後に基板1に搭
載する方法である。この場合、基板1への接合には半導
体レーザ2とサブマウント材(図示せず。)およびサブ
マウント材とレーザ保持部材4との間の接合に用いられ
ているはんだ材(図示せず。)との溶融温度よりも低い
温度のはんだ材を用いる必要がある。通常は、半導体レ
ーザ2とサブマウント材およびサブマウント材とレーザ
保持部材4との間の接合には金−スズ(Au−Sn)系
はんだ材が用いられ、レーザ保持部材4と基板1との接
合には、鉛−スズ(Pb−Sn)系はんだ材を使用す
る。両はんだ材は、共に共晶点系であり、共晶点温度
は、それぞれ553K、456Kであり、97Kの温度
差がある。基板1への接合には、レンズへの熱影響を考
慮して短時間の作業が要求される。
【0015】第2の方法は、レーザ保持部材4と突き当
て部材6とを一体化したものをあらかじめはんだ付け固
定などにより基板1に搭載し、その後、レンズ保持部材
5を突き当て部材6に突き当てて光軸合わせを行い、Y
AGレーザで溶接固定してもよい。
【0016】本発明のレンズ固定装置の作製手順を図
2、図3を用いて説明する。図2、図3は本発明の一実
施例を示した図である。
(1)放熱性が良好な銅や銅タングステン等からなるレ
ーザ保持部材4に、半導体レーザ1をシリコン(Si)
や炭化ケイ素(SiC)などのサブマウント材を介し
て、金−スズ(Au−Sn)系はんだで所定の位置に固
定する。形状は、基板に載置し、また上部に半導体レー
ザを載置し、突き当て部材を固定する点から相互に垂直
な面を有することが望ましい。半導体レーザは出射方向
が、突き当て部材6が固定される面Cと垂直になるよう
に載置する(図2(a)参照)。
【0017】(2)次に、そのレーザ保持部材4の所定
の面Cに一個または複数個の突き当て部材6をローで固
定する。一般にはレーザ保持部材4の半導体レーザ2の
出射方向に対して垂直な面Cに突き当て部材を固定す
る。一般には、図2(c)に示すように側面に突き当て
部材を固定すればよいが、図3(b)に示すように、レ
ーザ保持部材4の上面に突き当て部材6を固定してもよ
い。図3(b)の場合であっても、突き当て部材6のレ
ンズ保持部材5に対する接合面Aが半導体レーザの出射
方向に対して垂直であればよい。また、突き当て部材6
の形状は、一般に立方体、直方体のような相互に垂直な
面を有するものが組立上便利であるが、図3(a)に示
すように半導体レーザ2の出射方向に対して垂直な面を
維持でき、かつレンズ保持部材5と基板1との間も垂直
が維持できる形状であればよい。また、材質は良好な溶
接性を得るためにステンレス鋼であることが望ましい。
さらに、炭酸ガス(CO2 )レーザで溶接固定する場合
は、突き当て部材およびレンズ保持部材はガラス等の炭
酸ガス(CO2 )レーザを吸収する材料であることが望
ましい。突き当て部材6とレーザ保持部材4との結合に
おいては突き当て部材6を結合した後、半導体レーザの
出射方向に対して垂直な面が面一になるようにしてもよ
い(図3(c)参照)。この場合、レンズ保持部材の形
状を図3(c)に示すような形状にする必要がある。
【0018】(3)そして、レーザ保持部材4に固定さ
れた突き当て部材6のレンズ保持部材5との接合面であ
るA面をそれぞれを研磨して、相互に同一平面上にある
ようにし、かつ半導体レーザ2の出射方向と垂直にす
る。
【0019】(4)続いて、基板1に、レンズ保持部材
5との接合面であるA面が研磨された一個または複数個
の突き当て部材6が固定されたレーザ保持部材4を基板
1に鉛−スズ(Pb−Sn)はんだにより固定する。突
き当て部材6は、単数であっても、レーザ保持部材4と
レンズ保持部材5との間隔を維持できるものであればよ
い。基板1は放熱性を良好にするために、銅や銅タング
ステン等の材質であることが望ましく、位置決めを正確
にして、熱抵抗を少なくするためはレーザ保持部材4を
搭載する部分の平坦度が十分出ていることが望ましい。
また、本実施例では、基板1上に半導体レーザ2の出射
方向に対して垂直方向に段差を設けており、レーザ保持
部材4を所定方向に精度良く固定できる(図2(c)、
図3(b)参照)。
【0020】(5)一方、レンズ保持部材5は、レンズ
3が内蔵されているレンズホルダ7を半導体レーザ2の
出射方向(Z方向)に最適な光学結合が得られる位置関
係を形成するようにレンズ保持部材5へ治具を用いて挿
入し、レンズ保持部材5とレンズホルダ7とをYAGレ
ーザ溶接により固定する。レンズ保持部材5の形状は、
図2(b)に示すように凸形状にし、特開平5−243
688号公報に述べているように光軸に平行な位置を溶
接する構造になっているが、これは溶接時に発生する溶
接部の収縮による位置ずれ、特に溶接部を支点とするレ
ンズの回転によるビームの角度ずれを最小限度に抑制で
きるので望ましい(図2(b)参照)。
【0021】(6)その後、レンズ保持部材5を、先に
基板1に固定されたレーザ保持部材4に対向させて、以
下の手順で光軸合わせを行う。まず、半導体レーザ1に
電流を注入して発光させる。光軸上に配置されている光
パワーセンサにより、光パワーを確認しながら最大光パ
ワーが得られるようにレンズ保持部材5を治具でつかみ
光軸合わせを行う。XY方向の光軸合わせが行なわれた
後、レーザ保持部材4に所定の面Aで固定された突き当
て部材6のA面にレンズ保持部材5のE面を固定する
(図2(c)、図3(b)参照)。
【0022】本発明は、光通信用半導体レーザモジュー
ルに応用され、電子冷却素子上に基板を搭載すること
で、安定した光出力を得ることができる。
【0023】本発明のレンズ固定装置では、レーザ保持
部材4と一体成形された複数の突き当て部材6のレンズ
保持部材5に接合する面を簡単に研磨することができ
る。その結果、レンズ保持部5に接する面を半導体レー
ザの出射端面と平行に作製でき、半導体レーザの出射方
向の位置決めが容易にできる。また、突き当て部材6と
レンズ保持部材5とは同一材料であるため、溶接固定し
たときの面の接合精度と溶接後の強度的な信頼性が向上
する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lens fixing device used for optical communication or optical measurement. 2. Description of the Related Art In optical communication and optical measurement at a practical level, reducing the size of a light source portion, which is the center of the optical communication device, and simplifying the assembly is also necessary to improve the reliability of the system. is necessary. For this purpose, a lens fixing device in which the components of the optical system are subassembled to enable high-precision positioning will play an important role. In an optical semiconductor module, a semiconductor laser for emitting light, a lens for condensing the light, and an optical fiber on which the condensed light is incident are optically coupled with high coupling efficiency. Is required. In order to satisfy this requirement, it is necessary that the spot size of the light emitted from the semiconductor laser after image conversion by passing through the lens matches the spot size of the optical fiber. In particular,
In order to efficiently collect the light emitted from the semiconductor laser on the optical fiber, the lens must be positioned accurately. In image formation on a single mode optical fiber, the spot size of a light beam emitted from the emission end face of the semiconductor laser is about 1 μm, while the spot size formed on the incidence end face of the optical fiber is about 5 μm. The allowable displacement of the optical fiber is larger than the allowable displacement between the semiconductor laser and the lens. FIG. 4 is a diagram showing an example of a coupling characteristic between a semiconductor laser and an optical fiber.
m), and the vertical axis indicates the relative coupling efficiency (dB).
(1) is the allowable amount of positional deviation in the direction perpendicular to the optical axis of the lens, and (2) is the allowable amount of positional deviation in the direction perpendicular to the optical axis of the optical fiber. As can be seen from FIG. 4 (2), even if the position of the optical fiber is slightly shifted during or after assembly, the relative decrease in the coupling efficiency is slow, but the relative positional relationship between the semiconductor laser and the lens is relatively small. Fig. 4
As shown in (1), the relative coupling efficiency is significantly deteriorated. Therefore, when assembling the optical semiconductor module, it is necessary to minimize the displacement of the positional relationship between the semiconductor laser and the lens so as not to lower the coupling efficiency. That is, providing a lens fixing device capable of minimizing the displacement between the semiconductor laser and the lens is the most important issue in manufacturing an optical semiconductor module. Therefore, in the conventional lens fixing device, in order to improve the coupling efficiency between the semiconductor laser and the lens,
The configuration as shown in FIG. 5 is employed. (1) First, two abutting members 6 are mounted on the substrate 1 at a predetermined interval by soldering. The shape of the abutting member 6 is such that surfaces A and B located on mutually opposite sides such as a cube and a rectangular parallelepiped are parallel to each other and have a surface perpendicular to the emission direction Z of the semiconductor laser 2. The two abutting members 6 are placed on the substrate 1 such that the predetermined surfaces A are on the same plane and form a surface perpendicular to the emission direction Z of the semiconductor laser 2. (2) A holding member 4 holding a semiconductor laser (hereinafter, referred to as a laser holding member) is brought into contact with a surface B of the two abutting members 6 fixed to the substrate 1 on a surface B opposite to the predetermined surface A. Then, the laser holding member 4 is fixed to the substrate 1 by soldering. (3) Further, a holding member 5 (hereinafter, referred to as a lens holding member) holding the lens on a surface A of the two abutting members 6 opposite to the surface B on which the laser holding member 4 is fixed is located. Abutting, and a predetermined welding location is fixed by welding with a YAG laser. The laser holding member 4 needs to be made of a material having excellent thermal conductivity, such as copper, from the viewpoint of a heat radiation effect.
In general, the semiconductor laser is mounted on the laser holding member 4 via a submount material such as silicon (Si) or silicon carbide (SiC) in order to reduce thermal stress on the semiconductor laser. The lens holding member 5 is
Desirably, the material has a thermal expansion coefficient equivalent to that of the lens 3 and the lens holder 7.
It is also required that it has weldability and corrosion resistance and does not require plating or the like. Therefore, stainless steel is optimal. Further, the abutting member 6 is desirably made of the same kind of stainless steel as the lens holding member 5 because it is fixed by welding to the lens holding member 5. In this case, the butting member 6 and the laser holding member 4 are each fixed to the substrate 1, and the butting member 6 and the laser holding member 4 are only in close contact with each other in position. The laser holding member 4 and the lens holding member 5 are respectively abutted on planes B and A, which are located on opposite sides of the abutting member 6 and are flush with each other and perpendicular to the emission direction. When applied, in principle, the laser holding member 4 and the lens holding member 5 are placed on the substrate 1 in parallel while maintaining a constant interval according to the size of the abutting member. With this mounting, assuming that the emission direction is Z, the distance in the Z-axis direction is uniquely determined by the size of the abutting member 6, so that there is no need to adjust the distance between the semiconductor laser and the lens. Yes, the lens holding member 5 may be moved in the vertical direction (X) and the horizontal direction (Y) and fixed at a point where the maximum output is obtained. However, when the two abutting members 6 are placed on the substrate 1 at a constant interval,
It is very difficult in terms of assembly work to mount the two abutting members 6 so that the predetermined surfaces A are mutually flush with each other and form a surface perpendicular to the emission direction. This will be described with reference to FIG. FIG. 6A is a top view, and FIG. For mounting the abutting member 6, a jig for fixing the abutting member 6 at a predetermined position is placed on the upper surface of the substrate 1, and the abutting member 6 is pressed against the jig and fixed. I have. However, in order to make the two butting members 6 parallel to each other and to maintain a surface perpendicular to the emission direction of the semiconductor laser 2 on the laser holding member 4, the processing accuracy of the jig and the butting member 6 must be adjusted. Consideration must be given to elongation of the jig due to heating when the solder is fixed to the substrate 1. In addition, there arise problems such as oxidation of the solder material due to the excessive work time required for the operator's experience and attention and positioning and fixing. In order to solve the above problems, the present invention employs the following configuration. That is, a substrate 1, a laser holding member 4 for holding a semiconductor laser, a lens holding member 5 for holding a lens for condensing light emitted from the semiconductor laser, and a plurality of abutting and fixing the lens holding member. A lens fixing device provided with an abutting member 6 of
The laser holding member and the plurality of abutting members are integrally formed, and each of the surfaces in contact with the lens holding member made of the same material as the plurality of abutting members has the same distance as the emission end face of the semiconductor laser. And a lens fixing device which is formed so as to be perpendicular to the emission direction. The operation will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of the present invention. An abutment member 6 is fixed in advance to a predetermined position of a laser holding member 4 for holding the semiconductor laser 2 by brazing or the like. Here, the abutment surface C of the laser holding member for fixing the abutment member 6 is maintained at a perpendicularity to the surface on which the semiconductor laser is mounted by polishing the entire surface. Then, the joining surface A of the abutting member 6 with the lens holding member 5 is polished to form a surface on the laser holding member 4 which is perpendicular to the emission direction of the semiconductor laser 2. That is, it is set to be parallel to the polished butting surface C of the laser holding member. The parallelism at this time is 10
It is desirable that it is about μm. This is because, when fixing by laser welding, a gap occurs if there is a gap. Thereafter, the lens holding member 5 having a sufficient degree of perpendicularity between the abutting surface E and the exit direction of the lens is fixed to the joint surface A by welding. In this way, the lens holding member 5 and the laser holding member 4 are always fixed in parallel at a constant interval. As a result, there is no need to adjust the positioning with respect to the distance in the emission direction. An embodiment of the present invention will be described below. The following two methods are conceivable for forming a lens fixing portion in which the laser holding member 4 and the lens holding member 5 are integrated on the substrate 1. The first method is a method in which the emission directions of the laser holding member 4 and the lens holding member 5 are matched, and the laser holding member 4 is integrally welded and fixed in advance with the butting member 6 interposed, and then mounted on the substrate 1. In this case, for bonding to the substrate 1, the semiconductor laser 2 and the submount material (not shown) and the solder material (not shown) used for bonding between the submount material and the laser holding member 4. It is necessary to use a solder material having a lower temperature than the melting temperature. Normally, a gold-tin (Au-Sn) -based solder material is used for bonding between the semiconductor laser 2 and the submount material and between the submount material and the laser holding member 4. For joining, a lead-tin (Pb-Sn) -based solder material is used. Both solder materials are eutectic point systems, and the eutectic point temperatures are 553K and 456K, respectively, with a temperature difference of 97K. The bonding to the substrate 1 requires a short operation in consideration of the thermal effect on the lens. In the second method, the integrated laser holding member 4 and butting member 6 are mounted on the substrate 1 in advance by soldering or the like, and then the lens holding member 5 is pushed into the butting member 6. And adjust the optical axis
It may be fixed by welding with an AG laser. The procedure for manufacturing the lens fixing device of the present invention will be described with reference to FIGS. 2 and 3 are views showing one embodiment of the present invention. (1) The semiconductor laser 1 is mounted on the laser holding member 4 made of copper, copper tungsten, or the like having good heat dissipation properties by using silicon (Si).
And gold-tin (Au-Sn) -based solder at a predetermined position via a submount material such as silicon carbide (SiC) or the like. It is desirable that the shape be perpendicular to each other in terms of mounting on a substrate, mounting a semiconductor laser on top, and fixing an abutment member. The semiconductor laser is mounted so that the emission direction is perpendicular to the surface C to which the abutment member 6 is fixed (see FIG. 2A). (2) Next, one or a plurality of abutting members 6 are fixed to a predetermined surface C of the laser holding member 4 with a low. Generally, an abutment member is fixed to a surface C of the laser holding member 4 perpendicular to the emission direction of the semiconductor laser 2. Generally, it is sufficient to fix the butting member to the side surface as shown in FIG. 2C, but it is also possible to fix the butting member 6 to the upper surface of the laser holding member 4 as shown in FIG. Good. Even in the case of FIG. 3B, it is sufficient that the joining surface A of the butting member 6 to the lens holding member 5 is perpendicular to the emission direction of the semiconductor laser. Also, the butting member 6
In general, a shape having mutually perpendicular surfaces such as a cube and a rectangular parallelepiped is convenient for assembling, but as shown in FIG. Any shape can be used as long as the shape can maintain the vertical between the lens holding member 5 and the substrate 1. The material is preferably stainless steel in order to obtain good weldability.
Moreover, carbon dioxide (CO 2) when welding fixed laser, the abutment member and the lens holding member is preferably a material which absorbs carbon dioxide gas (CO 2) laser, such as glass. In the connection between the butting member 6 and the laser holding member 4, after the butting member 6 is connected, the surface perpendicular to the emission direction of the semiconductor laser may be flush (FIG. 3C). reference). In this case, the shape of the lens holding member needs to be a shape as shown in FIG. (3) The abutting members 6 fixed to the laser holding member 4 are polished on their respective A surfaces, which are bonding surfaces with the lens holding member 5, so that they are on the same plane. At the same time, it is perpendicular to the emission direction of the semiconductor laser 2. (4) Subsequently, the substrate 1 is provided with a laser holding member 4 to which one or a plurality of abutting members 6 whose A side, which is a bonding surface with the lens holding member 5, is polished are fixed. It is fixed with lead-tin (Pb-Sn) solder. The abutting member 6 may be a single member as long as it can maintain the distance between the laser holding member 4 and the lens holding member 5. The substrate 1 is desirably made of a material such as copper or copper tungsten in order to improve the heat radiation, and in order to make the positioning accurate and reduce the thermal resistance, the flatness of the portion on which the laser holding member 4 is mounted has a flatness. It is desirable to have enough output.
Further, in the present embodiment, a step is provided on the substrate 1 in a direction perpendicular to the emission direction of the semiconductor laser 2, so that the laser holding member 4 can be fixed in a predetermined direction with high accuracy (FIG. 2C,
FIG. 3 (b)). (5) On the other hand, the lens holding member 5 is arranged so that the lens holder 7 in which the lens 3 is built has a positional relationship in which the optimum optical coupling is obtained in the emission direction (Z direction) of the semiconductor laser 2. The lens holder 5 is inserted into the lens holder 5 using a jig, and the lens holder 5 and the lens holder 7 are fixed by YAG laser welding. The shape of the lens holding member 5 is
As shown in FIG.
As described in Japanese Patent Publication No. 688, a structure for welding a position parallel to the optical axis is used, but this is caused by a displacement due to contraction of the welded portion generated at the time of welding, particularly, rotation of the lens with the welded portion as a fulcrum. This is desirable because the angular deviation of the beam can be minimized (see FIG. 2B). (6) Thereafter, the lens holding member 5 is opposed to the laser holding member 4 previously fixed to the substrate 1, and the optical axis is aligned in the following procedure. First, a current is injected into the semiconductor laser 1 to emit light. The optical power sensor arranged on the optical axis checks the optical power while holding the lens holding member 5 with a jig so as to obtain the maximum optical power, and performs optical axis alignment. After the optical axis alignment in the X and Y directions is performed, the E surface of the lens holding member 5 is fixed to the A surface of the abutting member 6 fixed to the laser holding member 4 at a predetermined surface A (FIG. 2C, FIG. 3 (b)). The present invention is applied to a semiconductor laser module for optical communication, and a stable optical output can be obtained by mounting a substrate on an electronic cooling element. In the lens fixing device of the present invention, the surfaces of the plurality of abutting members 6 integrally formed with the laser holding member 4 to be joined to the lens holding member 5 can be easily polished. As a result, the surface in contact with the lens holding portion 5 can be manufactured in parallel with the emission end face of the semiconductor laser, and positioning of the semiconductor laser in the emission direction can be easily performed. Further, since the butting member 6 and the lens holding member 5 are made of the same material, the joining accuracy of the surfaces when welding and fixing and the strength reliability after welding are improved.
【図面の簡単な説明】
【図1】本発明の構成を示した図である。
【図2】本発明の一実施例を示した図である。
【図3】本発明の別の実施例を示した図である。
【図4】半導体レーザと光ファイバとの結合特性を示し
た図である。
【図5】従来の技術を示した図である。
【図6】従来の技術の問題点を示した図である。
【符号の説明】
1 基板
2 半導体レーザ
3 レンズ
4 レーザ保持部材
5 レンズ保持部材
6 突き当て部材
7 レンズホルダ。
A 突き当て部材6のレンズ保持部材5との接合面。
B 突き当て部材6のレーザ保持部材4との接合面。
C レーザ保持部材4の突き当て部材6との接合面。
D レーザ保持部材に載置された半導体レーザの出射
方向と垂直な面。
E レンズ保持部材5の突き当て部材6との接合面。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a configuration of the present invention. FIG. 2 is a diagram showing one embodiment of the present invention. FIG. 3 is a diagram showing another embodiment of the present invention. FIG. 4 is a diagram showing coupling characteristics between a semiconductor laser and an optical fiber. FIG. 5 is a diagram showing a conventional technique. FIG. 6 is a diagram showing a problem of the related art. [Description of Signs] 1 Substrate 2 Semiconductor laser 3 Lens 4 Laser holding member 5 Lens holding member 6 Abutment member 7 Lens holder. A Abutting surface of the butting member 6 with the lens holding member 5. B: The joining surface of the butting member 6 with the laser holding member 4. C Bonding surface of the laser holding member 4 with the butting member 6. D Surface perpendicular to the emission direction of the semiconductor laser mounted on the laser holding member. E Joint surface of the lens holding member 5 with the butting member 6.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G02B 7/00 G02B 7/02 H01S 5/02 H01L 31/0232 H01L 33/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) G02B 7/00 G02B 7/02 H01S 5/02 H01L 31/0232 H01L 33/00
Claims (1)
ーザ保持部材(4)と、前記半導体レーザから出射され
た光を集光するレンズを保持するレンズ保持部材(5)
と、該レンズ保持部材を突き当てて固定する複数の突き
当て部材(6)とを備えたレンズ固定装置において、前記レーザ保持部材と前記複数の突き当て部材とが一体
成形されており、前記複数の突き当て部材と同一材料か
らなる前記レンズ保持部材に接する面のおのおのが、半
導体レーザの出射端面と同一距離となり、出射方向と垂
直となっているように形成されている ことを特徴とする
レンズ固定装置。(57) Claims 1. A substrate (1), a laser holding member (4) for holding a semiconductor laser, and a lens for holding a lens for condensing light emitted from the semiconductor laser. Holding member (5)
And a plurality of abutting members (6) for abutting and fixing the lens holding member, wherein the laser holding member and the plurality of abutting members are integrated.
Is the same material as the plurality of butting members
Each of the surfaces in contact with the lens holding member
The distance is the same as the emission end face of the semiconductor laser, and
A lens fixing device, which is formed so as to be straight .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP35143493A JP3459286B2 (en) | 1993-12-27 | 1993-12-27 | Lens fixing device |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP35143493A JP3459286B2 (en) | 1993-12-27 | 1993-12-27 | Lens fixing device |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH07199018A JPH07199018A (en) | 1995-08-04 |
| JP3459286B2 true JP3459286B2 (en) | 2003-10-20 |
Family
ID=18417263
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP35143493A Expired - Lifetime JP3459286B2 (en) | 1993-12-27 | 1993-12-27 | Lens fixing device |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3459286B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002314182A (en) * | 2001-04-13 | 2002-10-25 | Hamamatsu Photonics Kk | Semiconductor laser device |
| JP5346692B2 (en) * | 2009-05-28 | 2013-11-20 | アンリツ株式会社 | Optical semiconductor element module |
| JP4786761B1 (en) * | 2010-08-23 | 2011-10-05 | パナソニック株式会社 | Laser light source device |
-
1993
- 1993-12-27 JP JP35143493A patent/JP3459286B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH07199018A (en) | 1995-08-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6758610B2 (en) | Optical component attachment to optoelectronic packages | |
| US6709169B2 (en) | Thermally and mechanically stable low-cost high thermal conductivity structure for single-mode fiber coupling to laser diode | |
| US6271049B1 (en) | Method for producing an optoelectronic component | |
| EP1196969B1 (en) | A solid-state laser crystal assembly | |
| JPH03102305A (en) | Multiple fiber alignment type package for inclined surface type optoelectronics part | |
| US6053640A (en) | Composite module for optical fiber amplifier | |
| JPH07202350A (en) | Optoelectronic device and manufacturing method thereof | |
| JP2003262766A (en) | Optical coupler | |
| JP3731754B2 (en) | Method and apparatus for coupling a waveguide to a component | |
| US6178188B1 (en) | Laser assembly platform with silicon base | |
| JP2000277843A (en) | Semiconductor laser module and manufacture thereof | |
| JP2002267891A (en) | Semiconductor laser module and method of aligning the semiconductor laser module | |
| KR101667464B1 (en) | Semiconductor laser-excitation solid-state laser | |
| JP3459286B2 (en) | Lens fixing device | |
| JP2001215372A (en) | Laser diode module | |
| JP2002333554A (en) | Semiconductor laser module | |
| JP3160159B2 (en) | Semiconductor laser module | |
| JPH06201921A (en) | Optical parts and its fixing method | |
| JPH05323158A (en) | Laser diode coupling device and method for assembling the same | |
| JP3027649B2 (en) | Optical semiconductor device module | |
| JPH11109188A (en) | Substrate for mounting semiconductor elements and optical fibers | |
| TW200530555A (en) | Etalon positioning using solder balls | |
| JPH03100506A (en) | Optical coupling devices and optical components | |
| JP2001281506A (en) | Optical head | |
| JP2002042374A (en) | Module for integrated optical pickup, mounting jig thereof and mounting method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080808 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20090808 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090808 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100808 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20110808 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20110808 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20120808 |
|
| FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 10 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| EXPY | Cancellation because of completion of term |