JP3410556B2 - Injection molding method for synthetic resin molded products - Google Patents
Injection molding method for synthetic resin molded productsInfo
- Publication number
- JP3410556B2 JP3410556B2 JP20493594A JP20493594A JP3410556B2 JP 3410556 B2 JP3410556 B2 JP 3410556B2 JP 20493594 A JP20493594 A JP 20493594A JP 20493594 A JP20493594 A JP 20493594A JP 3410556 B2 JP3410556 B2 JP 3410556B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- cavity
- resin
- injection molding
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001746 injection moulding Methods 0.000 title claims description 24
- 229920003002 synthetic resin Polymers 0.000 title claims description 9
- 239000000057 synthetic resin Substances 0.000 title claims description 9
- 229920005989 resin Polymers 0.000 claims description 46
- 239000011347 resin Substances 0.000 claims description 46
- 239000012530 fluid Substances 0.000 claims description 24
- 239000007924 injection Substances 0.000 claims description 22
- 238000002347 injection Methods 0.000 claims description 22
- 238000000465 moulding Methods 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 37
- 229910001873 dinitrogen Inorganic materials 0.000 description 37
- 239000007789 gas Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/17—Component parts, details or accessories; Auxiliary operations
- B29C45/1703—Introducing an auxiliary fluid into the mould
- B29C45/174—Applying a pressurised fluid to the outer surface of the injected material inside the mould cavity, e.g. for preventing shrinkage marks
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Injection Moulding Of Plastics Or The Like (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、合成樹脂成形品の射出
成形方法に係り、特にボスやリブを有して成形品表面に
ひけが生じやすい合成樹脂成形品、例えば自動車のダッ
シュボード、ドアハンドルカバー等の内外装品や、家電
製品のケーシング等の成形に利用できる。
【0002】
【背景技術】射出成形による合成樹脂成形品には、固有
の成形収縮があるため、特にボスやリブの中心部や厚肉
部など冷却が遅れた部分の収縮によって成形品の表面に
はひけが生じていた。このため、従来の射出成形では、
金型のキャビティ内に射出した樹脂に、過大な保持圧力
を加えてひけを防止することが行われていたが、ひけを
完全に無くすことは難しく、むしろボス、リブ、厚肉部
以外の面に過大な保持圧力が加わることで反り変形が生
じるという問題があった。
【0003】一方、このような過大な保持圧力を加えず
にひけを防止する方法として、特開昭50−75247
号公報や特開昭59−220337号公報に示すよう
に、圧縮空気等の圧力流体をキャビティ内に圧入して樹
脂をキャビティ内面に押しつけてひけを防止する射出成
形方法が知られている。
【0004】
【発明が解決しようとする課題】しかしながら、特開昭
50−75247号公報のものは、コアーに形成した導
孔に弁棒を設け、弁棒の進退によって開閉される間隙部
から圧力流体(空気)を注入しているため、圧力流体注
入用の弁棒およびその進退を制御する制御装置が必要と
なり、金型構造が複雑化するとともに、射出成形時の制
御要因が増加して制御が難しくなるという問題があっ
た。
【0005】一方、特開昭59−220337号公報に
開示されたものは、金型に複数の貫通孔を有する多孔部
材を埋設し、空気制御手段で貫通孔を通して圧縮空気を
送り込んでいるため、多孔部材を金型表面に埋設する際
の加工や圧縮空気の圧入圧に対抗できる多孔部材の固定
方法等が難しく、金型製作を高精度に行わなければなら
ず、製作が困難であるという問題があった。
【0006】本発明の目的は、金型構造を簡単にできて
金型を容易に製作できるとともに、リブやボス等を有す
る合成樹脂射出成形品のひけを防止でき、成形品の反り
や歪みも無くすことができて高精度に成形することがで
きる合成樹脂成形品の射出成形方法を提供することにあ
る。
【0007】
【課題を解決するための手段】本発明の合成樹脂成形品
の射出成形方法は、金型のキャビティ内に溶融樹脂を充
填させて溶融樹脂が冷却固化しつつ状態にあるときに、
成形品を離型させる突き出しピンのクリアランス(突き
出しピンと突き出しピンが嵌挿されている金型貫通孔と
の隙間)からキャビティ内の成形品の裏面側(キャビテ
ィ面と射出樹脂による成形品との間)に窒素ガス等の圧
縮流体を注入するとともに、前記圧縮流体をキャビティ
内に注入する際に、その注入圧力を注入初期は低圧力に
制御し、その後高圧力に制御することを特徴とする。
【0008】
【0009】
【作用】このような本発明においては、キャビティ内に
射出された溶融樹脂が冷却固化しつつ状態にあるとき
に、突き出しピンのクリアランスから成形品の裏面側に
圧縮流体を注入しているため、キャビティ内の溶融樹脂
(成形品)は、その表面側がキャビティ内面に押圧され
た状態で冷却固化されて、リブやボスを有する場合であ
っても成形品表面側のひけが防止される。また、圧縮流
体は、金型に設けられている突き出しピンのクリアラン
スを利用して注入されているため、弁棒や多孔部材を設
ける場合に比べて金型構造が簡素化され、その製作も容
易となる。
【0010】さらに、圧縮流体の注入によってひけを防
止しているため、キャビティ内に射出される溶融樹脂に
過大な保持圧力を加える必要が無く、低圧力の射出成形
が行えて成形品の反りや歪みも防止されるとともに、生
産性も向上される。
【0011】
【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1には、本実施例の射出成形装置1の概略構
成図が示されている。射出成形装置1は、スクリュー2
を有して樹脂を溶融混練する射出装置3と、固定金型4
および可動金型5が取り付けられた型締装置6とを備え
ている。可動金型5には、突き出し板7を介して押され
てその先端がキャビティ8内に突出することで成形品を
取り出す突き出しピン9が、可動金型5の貫通孔10を
通して設けられている。
【0012】可動金型5には、前記貫通孔10にそれぞ
れ連通されたガス供給路11が形成され、このガス供給
路11はガス注入制御装置12に接続されている。ガス
注入制御装置12は、コンプレッサからの駆動エアによ
って駆動されて注入用の窒素ガスを増圧して圧縮流体と
する増圧器13と、射出装置3からの信号によって、つ
まり射出タイミングによって、ガス供給路11への窒素
ガス供給を制御する開閉バルブ14や増圧器13の動作
を制御する制御装置15を備えている。従って、これら
ガス供給路11およびガス注入制御装置12によって圧
縮流体供給手段が構成されている。
【0013】開閉バルブ14は、窒素ガスの供給を制御
する供給用電磁バルブ16と、注入した窒素ガスを排気
するための排気用電磁バルブ17と、供給する窒素ガス
の圧力制御用電磁バルブ18との3つのバルブを備えて
おり、これらの各バルブ16,17,18は、前記制御
装置15によって個別に開閉制御されている。
【0014】なお、本実施例のキャビティ8は、図2に
示すように、2本のリブ91を備える板状の成形品90
を形成するものであり、可動金型5にはリブ形成用の2
条の凹溝19が形成されている。また、図3に示すよう
に、可動金型5のキャビティ8内面における凹溝19の
外側には成形品90に防壁92を形成するための断面三
角形状の溝20が凹溝19に沿って形成されている。な
お、溝20の形状としては、断面三角形状のみでなく、
たとえば薄肉リブと同様な断面長方形であってもよい。
溝20の深さ寸法(防壁92の高さ寸法)は、後述する
窒素ガスの保持能力および使用樹脂の増加量を考慮して
約2〜10mm程度に設定されている。
【0015】可動金型5の貫通孔10は、前記凹溝19
間と凹溝19および溝20間とに形成され、図2および
図3に示すように、キャビティ8側先端部は小径とされ
て突き出しピン9とのクリアランスAが1/100 〜8/100
mm(10〜80μm)となるように設定されている。また、
貫通孔10の突き出し板7側(キャビティ8とは反対
側)には、突き出しピン9との隙間をシールするOリン
グ等のシール材21が設けられている。
【0016】次に、本実施例における射出成形の手順に
ついて説明する。まず、型締装置6を利用して金型4,
5を閉じ、射出装置3により溶融樹脂をキャビティ8内
に所定量射出する。この際、樹脂充填に従って突き出し
ピン9に加わる樹脂圧力は上昇するが、貫通孔10のキ
ャビティ8側先端部のクリアランスAが1/100 〜8/100
mmと狭くされているので、貫通孔10内への樹脂流入は
防止され、クリアランスに詰まることなく樹脂充填が行
われる。
【0017】溶融樹脂が所定量充填され、充填終了を知
らせる信号が射出装置3からガス注入制御装置12に送
られると、増圧器13が作動されるとともに、供給用バ
ルブ16が開かれてガス供給路11を通して貫通孔10
に窒素ガスが注入される。この際、溶融樹脂は冷却固化
されつつあってキャビティ8との間に隙間が生じている
とともに、貫通孔10の突き出し板7側はシール材21
でシールされているため、貫通孔10に注入された窒素
ガスは、突き出しピン9のクリアランスを通してキャビ
ティ8内に注入される。
【0018】この際、窒素ガス(圧縮流体)の注入初期
は、圧力制御用バルブ18を開いて窒素ガスの一部を排
気することで圧力が下げられて低圧(例えば増圧器13
における圧力が0.5〜3MPa)とされた窒素ガスを
所定時間(例えば0.2〜3秒)注入し、その後にバル
ブ18を閉じて高圧(例えば3.5〜20MPa)とさ
れた窒素ガスを所定時間(例えば2秒以上)注入するよ
うに、制御装置15で開閉バルブ14が制御されてい
る。
【0019】キャビティ8内に低圧の窒素ガスを注入す
ると、可動金型5のキャビティ8内面とこれに接してい
る成形品90の裏面側との間に窒素ガスが注入され、成
形品90と可動金型5との間に空間が形成される。さら
に、高圧の窒素ガスを注入すると、この空間に高圧窒素
ガスが充填されて成形品90に十分な保持圧力が加わ
り、成形品90の表面側が固定金型4のキャビティ8内
面に押圧され、ひけ発生が防止される。
【0020】この時、窒素ガスは、図2,3に示すよう
に、凹溝19間(成形品90のリブ91間)や、凹溝1
9および溝20間(成形品90のリブ91および防壁9
2間)に注入されるため、ひけが生じやすいリブ91部
分から窒素ガスが漏れ出すことが無く、リブ91部分へ
の十分な保持圧力が維持される。
【0021】そして、溶融樹脂が冷却固化したら、排気
用バルブ17を開いてキャビティ8内のガスを抜き、金
型4,5を離型するとともに、突き出しピン9を突出さ
せて成形品90を取り出し、射出成形の1つのサイクル
を終了する。以上の成形サイクルを繰り返し、成形品9
0を順次製造する。
【0022】このような本実施例によれば、次のような
効果がある。キャビティ8内に窒素ガスを注入してガス
保圧を行って溶融樹脂をキャビティ8内面に押圧してい
るので、溶融樹脂が冷却固化するまで樹脂表面側とキャ
ビティ8内面との密着状態を維持することができ、リブ
91やボス等を有する成形品90を成形する場合でもひ
けを防止することができる。
【0023】そして、キャビティ8内に窒素ガスを注入
することで成形品90のひけを防止することができるの
で、従来のようにひけ防止のために高圧射出成形を行う
必要が無く、ひけの生じない低圧射出成形を実現するこ
とができる。このため、低圧成形が可能であり、成形サ
イクルも早くできるため、成形品90の品質を低下させ
ることなく生産性を向上することができる。また、低圧
射出成形を行えるため、成形品90に過大な保持圧力が
加わることがなく、反りや歪みなどの成形歪みの分布を
減少でき、成形品90の精度を向上することができ、高
品質の成形品90を成形することができる。
【0024】さらに、可動金型5に凹溝19のほかに溝
20を形成し、成形品90にリブ91のほかに防壁92
を形成したので、注入したガスをリブ91等のひけが発
生しやすい部分に保持しておくことができ、所定の保持
圧力を樹脂が冷却固化するまで維持することができ、成
形品90のひけを確実に防止することができる。
【0025】金型5に通常設けられている突き出しピン
9の貫通孔10とのクリアランスを通してキャビティ8
内に窒素ガスを注入しているため、ガス注入用の導孔を
形成して弁棒を設けたり、多孔部材を配置する場合に比
べて、金型5の構造を簡素化することができて安価に提
供することができる。この際、突き出しピン9周囲のク
リアランスAを1/100 〜8/100 mmとしているので、溶融
樹脂が貫通孔10内に流入することを防止できるととも
に、窒素ガスのキャビティ8への流入を妨げることが無
く、十分なガスをスムーズに供給することができ、窒素
ガスによる保持圧力を高めて成形品90のひけを確実に
防止することができる。
【0026】さらに、溶融樹脂を射出した直後の冷却固
化の初期段階つまり窒素ガスの注入初期段階では、圧力
制御用バルブ18を開いて窒素ガスの圧力を低圧として
いるので、冷却初期の樹脂表面の固化した層が薄い状態
のときに、窒素ガスの圧力で固化層が破れてガスが樹脂
内部に潜ってしまうことがなく、ガスが樹脂内部に侵入
することによる強度の低下がない高品質な成形品90を
製造することができる。
【0027】また、圧縮流体として不燃性の窒素ガスを
用いているので、キャビティ8内への注入によって膨張
したり加熱されても爆発のおそれがなく、射出成形の安
全性を確保することができる。
【0028】さらに、成形品90の裏面側と可動金型5
間に窒素ガスが注入されて隙間が形成されるため、成形
品90を容易に離型することができ、離型不良によるト
ラブル発生を防止でき、効率のよい射出成形を行うこと
ができる。
【0029】次に、本発明の効果を確認するために行っ
た実験例について説明する。本実験例は、図4に示され
るような、リブ91を有する正方形状の薄い平面材95
を形成し、表1に示すように、各種条件を変えて成形状
態(平面材95でのひけなどの発生状態や、射出成形が
トラブル無く行えるか)を調べ、突き出しピン9のクリ
アランスからキャビティ8内に圧縮流体を注入すること
でひけを防止できるかを評価したものである。
【0030】平面材95を成形するにあたって、射出成
形機として東芝機械製IS-200を用い、樹脂としてMFR
(メルトフローレシオ)[230℃,2.16kgf]=10g/10min
のブロックPP(ポリプロピレン)を用いた。平面材9
5は、一辺の長さLが250mmとされ、2本の平行リ
ブ91が形成され、リブ91以外の一般肉厚dは2.5
mmに、リブ91の基部厚み(幅)bは2mmに設定さ
れている。なお、図4は理解しやすいように、リブ91
および平面材95の肉厚が実際の寸法比に比べて大きく
されている。
【0031】また、型締圧は200tに設定し、樹脂温
度および金型温度は表1のように設定した。そして、ピ
ンクリアランスAの寸法や、ガス圧力を変更して実験例
1〜6を行い、平面材95のひけ状態を表面粗さ計(小
坂研究所製サーフコーダSE−30D)を用いて検出し
た。一方、参考例1〜6として、ピンクリアランスAを
実験例よりも小さく(参考例1,2)したり、大きくし
たり(参考例5,6)、ガス圧を2段制御せずに最初か
ら最後まで同じ圧力で窒素ガスを注入した場合(参考例
1〜6)についても実験した。
【0032】
【表1】
【0033】表1に示すように、突き出しピン9のクリ
アランスから窒素ガスを注入した場合、ピンクリアラン
スAを樹脂種類、成形品形状、成形品の大きさ、成形条
件等に応じて適切に設定すれば(実験例では1/100 〜8/
100mm )、樹脂の貫通孔10内への流入もなく、窒素ガ
スのキャビティ8内への流入も阻害されず、かつひけ量
もきわめて小さくて肉眼では確認することが困難な程度
に防止することができた。さらに、初期ガス圧を低く
し、その後の保圧ガスを高めにするガス圧力の2段制御
を行えば、ガスが成形品90内に侵入する(潜る)こと
がなく、高品質でかつ十分な強度を有する成形品90
(平面材95)を生産することができた。
【0034】一方、参考例1,2のように突き出しピン
9のクリアランスAが小さすぎると窒素ガスの流入が阻
害され、十分なガスをキャビティ8内に供給できず、ひ
け量も大きくなった。また、参考例5,6のようにクリ
アランスAが大きすぎると、溶融樹脂がクリアランス部
分(貫通孔10)内に流入して詰まってしまいガスを供
給できず、やはりひけ量が大きくなった。また、注入ガ
スの2段圧力制御を行っていないと、ガスが成形品90
内に侵入した形跡があり、品質低下および強度不足が発
生した。
【0035】以上のことから、突き出しピン9のクリア
ランスを介してキャビティ8内に窒素ガス(圧縮流体)
を注入することでリブ91を有する成形品90のひけを
防止することができることがわかる。さらに、この際、
クリアランス寸法やガス圧力を樹脂の種類などに応じて
適宜設定すれば、高品質、高精度、高強度の成形品90
が成形できることがわかり、本発明の有用性が確認でき
た。
【0036】以上、本発明について好適な実施例をあげ
て説明したが、本発明は、この実施例に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲において種々
の改良並びに設計の変更が可能である。例えば、前記実
施例では、突き出しピン9のクリアランスから圧縮流体
(窒素ガス)を注入していたが、図5に示すように、突
き出しピン9に加えて圧縮流体の注入用の固定ピン30
を設けてもよい。すなわち、可動金型5に貫通孔22を
形成し、この貫通孔22にガス供給路11を連結し、貫
通孔22内に固定ピン30を配置してそのピン30周囲
のクリアランスから圧縮流体を注入してもよい。このよ
うにすれば、リブ91等が多数形成されており、リブ9
1で区画されて突き出しピン9部分のみからでは圧縮流
体を供給することが困難な箇所にも、固定ピン30を設
けることで圧縮流体を注入でき、ひけを確実に防止する
ことができる利点がある。
【0037】また、本発明はリブ91を有する成形品9
0の射出成形に限らず、図6に示すように、ボス93を
有する成形品90を射出成形する場合にも用いることが
できる。この際、ボス93部分に所定圧のガスが保圧さ
れるように、ボス93の周囲に円周状や四角周状等の防
壁92を形成することが望ましい。さらに、本発明は、
リブ91、ボス93の両方が形成された成形品、リブ9
1、ボス93が無い成形品等の各種成形品の製造にも利
用することができる。
【0038】防壁92は必ずしも設ける必要はないが、
設けた方が注入した圧縮流体が漏れることがなく、特に
リブ91がない部分においても保圧効果を長期間維持す
ることができるという利点がある。さらに、圧縮流体と
しては窒素ガスに限らず、圧縮空気等の他のガスを用い
てもよい。但し、圧縮流体は溶融樹脂に接して温度が高
くなるため、窒素ガスのような不燃性のガスを用いた方
が安全性が高いという利点がある。
【0039】注入する圧縮流体の圧力は、前記実施例の
ように2段階制御する場合に限らず、3段階以上あるい
は圧力値が連続的に変化するように制御してもよい。こ
の際の圧力値は、使用する樹脂の種類等に応じて適宜設
定すればよい。さらに、圧力制御の方法としては、前記
実施例のように圧力制御用バルブ18を設けて行う方式
に限らず、減圧弁等を用いた公知の適宜な圧力制御方法
を利用してもよい。
【0040】突き出しピン9のクリアランスに、耐熱性
のある金属やセラミックスなどからなる多孔質部材を配
置してもよい。この多孔質部材を配置しても、貫通孔1
0に供給された圧縮流体をキャビティ8内に注入するこ
とができるとともに、キャビティ8内の溶融樹脂が貫通
孔10内に流入することを防止することができる。この
ため、特に既存の金型5などにおいて突き出しピン9の
クリアランスが最適範囲に比べて大きくなっている場合
にも、多孔質部材をそのクリアランス部分に配置するこ
とでガス注入に適しかつ樹脂流入も防止できて本発明を
適用することができる。なお、多孔質部材の孔径は用い
る樹脂種類等に応じて適宜設定すればよいが、例えば前
記実施例と同じ1/100 〜8/100mm 等に設定すればよい。
【0041】リブ91やボス93が形成される場合に
は、図7に示すように、金型5のリブ91用の凹溝19
などの先端部を一部切り欠いて、樹脂を射出充填した際
に、成形品90におけるリブ91やボス93の基部に加
肉部96が形成されるようにしてもよい。本発明におい
ては、表面側のひけが防止される分だけ成形品90の裏
面側がひけて凹むが、加肉部96を形成すればひけた欠
肉分が加肉部96で補充されて強度低下も防止できる。
この際、加肉部96の樹脂量は、リブ91やボス93な
どが形成された部分の中心部に発生する冷却遅れ部97
の容積の約20〜70%にすれば、樹脂量を著しく増加
させることなく、必要な強度を確保することができる。
また、加肉部96は、欠肉分に補充されて無くなるた
め、成形品90において加肉部96が目立つことはな
い。
【0042】また、本発明は、前記実施例の成形品90
や実験例の平面材95を製造する場合に限らず、例えば
コピー装置の紙供給部品等に利用される格子状の多数の
リブが形成された板部材や、自動車のドアハンドルカバ
ー等の各種の樹脂成形品に利用することができる。
【0043】
【発明の効果】このような本発明によれば、金型構造を
簡単にできて金型を容易に製作できるとともに、リブや
ボス等を有する合成樹脂射出成形品のひけを防止でき、
成形品の反りや歪みも無くすことができて高精度に成形
することができるという効果がある。BACKGROUND OF THE INVENTION [0001] Field of the Invention The present invention, synthetic resin molded article relates to an injection molding how, especially prone to shrinkage synthetic surface of a molded article having a boss or rib It can be used for molding resin molded products, for example, interior and exterior products such as dashboards and door handle covers of automobiles, and casings of home electric appliances. 2. Description of the Related Art A synthetic resin molded product obtained by injection molding has an inherent molding shrinkage. She was sinking. For this reason, in the conventional injection molding,
Excessive holding pressure was applied to the resin injected into the mold cavity to prevent sink marks, but it was difficult to completely eliminate sink marks. Rather, surfaces other than bosses, ribs, and thick parts were used. However, there is a problem that warping deformation occurs when an excessive holding pressure is applied to the substrate. On the other hand, Japanese Patent Application Laid-Open No. 50-75247 discloses a method for preventing sink marks without applying such an excessive holding pressure.
As disclosed in Japanese Patent Application Laid-Open No. 59-220337, there is known an injection molding method in which a pressurized fluid such as compressed air is pressed into a cavity and a resin is pressed against the inner surface of the cavity to prevent sink marks. [0004] However, in Japanese Patent Application Laid-Open No. 50-75247, a valve stem is provided in a guide hole formed in a core, and a pressure is applied from a gap which is opened and closed by the advance and retreat of the valve stem. Since the fluid (air) is injected, a valve rod for injecting the pressure fluid and a control device for controlling the advance / retreat are required, which complicates the mold structure and increases control factors during injection molding. There was a problem that became difficult. On the other hand, the one disclosed in JP-A-59-220337 embeds a porous member having a plurality of through holes in a mold and sends compressed air through the through holes by air control means. The process of embedding the porous member on the surface of the mold and the method of fixing the porous member against the press-fitting pressure of compressed air are difficult, and the mold must be manufactured with high precision. was there. SUMMARY OF THE INVENTION It is an object of the present invention to simplify a mold structure and to easily manufacture a mold, to prevent sinking of a synthetic resin injection molded product having ribs and bosses, and to reduce warpage and distortion of the molded product. it is to provide an injection molding how the synthetic resin molded article can be formed into can be highly accurately eliminated. [0007] injection molding method of a synthetic resin molded article of the present invention SUMMARY OF], when the molten resin by filling a molten resin into the mold cavity is in the state being cooled and solidified,
Projecting pin clearance to release the molded product from (ejector pins and ejector pins are fitted interpolated by which the gap between the mold through holes) moldings back side of the cavity (the molded product by injection resin with the cavity surface while injecting compressed fluid such as nitrogen gas in between), the cavity of the compressed fluid
When injecting into
Controlled, it shall be the said to control the subsequent high pressure. According to the present invention, when the molten resin injected into the cavity is in a state of being cooled and solidified, the compressed fluid flows from the clearance of the protruding pin to the back side of the molded product. Because of the injection, the molten resin (molded product) in the cavity is solidified by cooling while the surface side is pressed against the inner surface of the cavity. Is prevented. Also, since the compressed fluid is injected using the clearance of the protruding pins provided in the mold, the mold structure is simplified and its manufacture is easier than in the case where a valve stem or a porous member is provided. Becomes Further, since the sink is prevented by injecting the compressed fluid, it is not necessary to apply an excessive holding pressure to the molten resin injected into the cavity. Distortion is prevented and productivity is improved. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a schematic configuration diagram of an injection molding apparatus 1 of the present embodiment. The injection molding device 1 includes a screw 2
Injection device 3 that has resin and melts and kneads the resin, and fixed mold 4
And a mold clamping device 6 to which the movable mold 5 is attached. The movable die 5 is provided with a push-out pin 9 which is pushed through the protrusion plate 7 and whose tip projects into the cavity 8 to take out a molded product through the through hole 10 of the movable die 5. A gas supply path 11 is formed in the movable mold 5 so as to communicate with the through hole 10. The gas supply path 11 is connected to a gas injection controller 12. The gas injection control device 12 is driven by driving air from the compressor to increase the pressure of the nitrogen gas for injection to increase the pressure of the nitrogen gas into a compressed fluid. An opening / closing valve 14 for controlling the supply of nitrogen gas to 11 and a control device 15 for controlling the operation of the pressure intensifier 13 are provided. Therefore, the gas supply path 11 and the gas injection control device 12 constitute a compressed fluid supply unit. The opening / closing valve 14 includes a supply electromagnetic valve 16 for controlling the supply of nitrogen gas, an exhaust electromagnetic valve 17 for exhausting the injected nitrogen gas, and an electromagnetic valve 18 for controlling the pressure of the supplied nitrogen gas. These valves 16, 17, and 18 are individually controlled to open and close by the control device 15. As shown in FIG. 2, the cavity 8 of this embodiment is a plate-like molded product 90 having two ribs 91.
The movable mold 5 has two ribs for forming ribs.
A groove 19 is formed. As shown in FIG. 3, a groove 20 having a triangular cross section for forming a barrier 92 in the molded product 90 is formed along the groove 19 outside the groove 19 on the inner surface of the cavity 8 of the movable mold 5. Have been. The shape of the groove 20 is not limited to a triangular cross section,
For example, it may have a rectangular cross section similar to a thin rib.
The depth dimension of the groove 20 (the height dimension of the barrier wall 92) is set to about 2 to 10 mm in consideration of a nitrogen gas holding capacity and an increase in the amount of resin used, which will be described later. The through hole 10 of the movable mold 5 is
2 and 3, the front end of the cavity 8 has a small diameter and the clearance A with the protruding pin 9 is 1/100 to 8/100, as shown in FIGS.
mm (10 to 80 μm). Also,
On the protruding plate 7 side (the side opposite to the cavity 8) of the through hole 10, a sealing material 21 such as an O-ring for sealing a gap with the protruding pin 9 is provided. Next, the procedure of injection molding in this embodiment will be described. First, using the mold clamping device 6, the mold 4,
5 is closed, and the injection device 3 injects a predetermined amount of the molten resin into the cavity 8. At this time, the resin pressure applied to the protruding pin 9 increases with the resin filling, but the clearance A at the tip of the through hole 10 on the cavity 8 side becomes 1/100 to 8/100.
Since the width is reduced to mm, the resin is prevented from flowing into the through-hole 10, and the resin is filled without clogging the clearance. When a predetermined amount of the molten resin is charged and a signal indicating the end of the charging is sent from the injection device 3 to the gas injection control device 12, the pressure intensifier 13 is operated and the supply valve 16 is opened to supply the gas. Through hole 10 through road 11
Is injected with nitrogen gas. At this time, the molten resin is being cooled and solidified, so that a gap is formed between the molten resin and the cavity 8.
Therefore, the nitrogen gas injected into the through-hole 10 is injected into the cavity 8 through the clearance of the protruding pin 9. At this time, in the initial stage of the injection of the nitrogen gas (compressed fluid), the pressure is reduced by opening the pressure control valve 18 and partially evacuating the nitrogen gas to reduce the pressure (for example, the pressure intensifier 13
Is injected for a predetermined time (for example, 0.2 to 3 seconds), and thereafter, the valve 18 is closed and the nitrogen gas is set to a high pressure (for example, 3.5 to 20 MPa). The opening and closing valve 14 is controlled by the control device 15 so as to inject for a predetermined time (for example, 2 seconds or more). When a low-pressure nitrogen gas is injected into the cavity 8, the nitrogen gas is injected between the inner surface of the cavity 8 of the movable mold 5 and the back surface of the molded product 90 in contact with the cavity 8. A space is formed between the mold 5. Further, when a high-pressure nitrogen gas is injected, the space is filled with the high-pressure nitrogen gas, and a sufficient holding pressure is applied to the molded product 90, and the surface side of the molded product 90 is pressed against the inner surface of the cavity 8 of the fixed mold 4, and the sink The occurrence is prevented. At this time, as shown in FIGS. 2 and 3, nitrogen gas is supplied between the concave grooves 19 (between the ribs 91 of the molded product 90) and the concave grooves 1
9 and the groove 20 (the rib 91 of the molded product 90 and the barrier 9
2), the nitrogen gas does not leak from the rib 91 where the sink is likely to occur, and a sufficient holding pressure on the rib 91 is maintained. When the molten resin has cooled and solidified, the exhaust valve 17 is opened to release the gas in the cavity 8, the molds 4 and 5 are released, and the protruding pins 9 are protruded to take out the molded product 90. One cycle of injection molding is completed. By repeating the above molding cycle, molded article 9
0 are sequentially manufactured. According to this embodiment, the following effects can be obtained. Since the molten resin is pressed against the inner surface of the cavity 8 by injecting a nitrogen gas into the cavity 8 to perform gas holding pressure, the close contact state between the resin surface side and the inner surface of the cavity 8 is maintained until the molten resin is cooled and solidified. Thus, sinkage can be prevented even when molding a molded article 90 having ribs 91, bosses, and the like. Since injection of nitrogen gas into the cavity 8 can prevent sinking of the molded article 90, there is no need to perform high-pressure injection molding to prevent sinking as in the prior art, and sinks occur. No low pressure injection molding can be realized. For this reason, low-pressure molding is possible and the molding cycle can be shortened, so that the productivity can be improved without lowering the quality of the molded article 90. In addition, since low-pressure injection molding can be performed, an excessive holding pressure is not applied to the molded product 90, the distribution of molding distortion such as warpage and distortion can be reduced, and the accuracy of the molded product 90 can be improved. Can be formed. Further, a groove 20 is formed in the movable mold 5 in addition to the concave groove 19, and a molded product 90 is provided with a rib 91 in addition to the rib 91.
Is formed, the injected gas can be held in a portion where the sink is likely to occur, such as the rib 91, and a predetermined holding pressure can be maintained until the resin is cooled and solidified. Can be reliably prevented. The cavity 8 is formed through the clearance between the through-hole 10 of the push-out pin 9 normally provided in the mold 5.
Since the nitrogen gas is injected into the inside, the structure of the mold 5 can be simplified as compared with the case where a gas injection hole is formed to provide a valve stem or a porous member is arranged. It can be provided at low cost. At this time, since the clearance A around the protruding pin 9 is 1/100 to 8/100 mm, it is possible to prevent the molten resin from flowing into the through hole 10 and to prevent the nitrogen gas from flowing into the cavity 8. Therefore, a sufficient gas can be supplied smoothly, and the holding pressure by the nitrogen gas can be increased to reliably prevent the molded product 90 from sinking. Furthermore, in the initial stage of cooling and solidification immediately after the injection of the molten resin, that is, in the initial stage of nitrogen gas injection, the pressure control valve 18 is opened to reduce the pressure of the nitrogen gas to a low pressure. When the solidified layer is thin, the solidified layer is not broken by the pressure of nitrogen gas, and the gas does not dive into the resin. Article 90 can be manufactured. Further, since noncombustible nitrogen gas is used as the compressed fluid, there is no danger of explosion even if it is expanded or heated by injection into the cavity 8, and the safety of injection molding can be ensured. . Further, the back side of the molded article 90 and the movable mold 5
Since a gap is formed by injecting a nitrogen gas into the gap, the molded product 90 can be easily released from the mold, troubles due to defective release can be prevented, and efficient injection molding can be performed. Next, a description will be given of an experimental example conducted to confirm the effects of the present invention. In this experimental example, as shown in FIG.
Then, as shown in Table 1, the molding conditions (the occurrence of sink marks and the like in the flat material 95 and whether the injection molding can be performed without trouble) are examined under various conditions, and the cavity 8 is removed from the clearance of the protruding pin 9. It is evaluated whether sinking can be prevented by injecting a compressed fluid into the inside. In molding the flat material 95, Toshiba Machine's IS-200 is used as an injection molding machine, and MFR is used as a resin.
(Melt flow ratio) [230 ℃, 2.16kgf] = 10g / 10min
Block PP (polypropylene) was used. Flat material 9
5 has a side length L of 250 mm, two parallel ribs 91 formed thereon, and a general thickness d other than the ribs 91 of 2.5
mm, and the base thickness (width) b of the rib 91 is set to 2 mm. FIG. 4 shows ribs 91 for easy understanding.
In addition, the thickness of the flat member 95 is made larger than the actual dimensional ratio. The mold clamping pressure was set to 200 t, and the resin temperature and the mold temperature were set as shown in Table 1. Then, Experimental Examples 1 to 6 were performed by changing the dimensions of the pin clearance A and the gas pressure, and the sink condition of the flat material 95 was detected by using a surface roughness meter (Surfcoder SE-30D manufactured by Kosaka Laboratories). . On the other hand, as Reference Examples 1 to 6, the pin clearance A was made smaller (Reference Examples 1 and 2) or increased (Reference Examples 5 and 6) than the experimental example, and the gas pressure was not controlled in two steps from the beginning. Experiments were also conducted when nitrogen gas was injected at the same pressure until the end (Reference Examples 1 to 6). [Table 1] As shown in Table 1, when nitrogen gas is injected from the clearance of the protruding pin 9, the pin clearance A is appropriately set according to the type of resin, the shape of the molded product, the size of the molded product, the molding conditions, and the like. (In the experimental example, 1/100 to 8 /
100 mm), the resin does not flow into the through-hole 10, the flow of nitrogen gas into the cavity 8 is not hindered, and the shrinkage is extremely small. did it. Further, by performing two-stage control of the gas pressure for lowering the initial gas pressure and subsequently increasing the holding pressure gas, the gas does not intrude (submerge) into the molded article 90 and is of high quality and sufficient. Molded product 90 having strength
(Flat material 95) was able to be produced. On the other hand, if the clearance A of the protruding pin 9 is too small as in Reference Examples 1 and 2, the inflow of nitrogen gas was hindered, and a sufficient amount of gas could not be supplied into the cavity 8, resulting in a large sink mark. Further, when the clearance A was too large as in Reference Examples 5 and 6, the molten resin flowed into the clearance portion (the through-hole 10) and was clogged, so that gas could not be supplied, and the sinking amount also increased. If the two-stage pressure control of the injected gas is not performed, the gas will
There was evidence of infiltration into the interior, resulting in reduced quality and insufficient strength. From the above, nitrogen gas (compressed fluid) is introduced into the cavity 8 through the clearance of the push-out pin 9.
It can be seen that by injecting, the sink of the molded article 90 having the rib 91 can be prevented. In this case,
If the clearance size and gas pressure are appropriately set according to the type of resin, etc., a high-quality, high-precision, high-strength molded product 90
Was found to be able to be molded, confirming the usefulness of the present invention. Although the present invention has been described with reference to preferred embodiments, the present invention is not limited to these embodiments, and various modifications and changes in design can be made without departing from the gist of the present invention. Is possible. For example, in the above-described embodiment, the compressed fluid (nitrogen gas) is injected from the clearance of the protruding pin 9, but as shown in FIG.
May be provided. That is, the through hole 22 is formed in the movable mold 5, the gas supply path 11 is connected to the through hole 22, the fixed pin 30 is disposed in the through hole 22, and the compressed fluid is injected from the clearance around the pin 30. May be. In this way, a large number of ribs 91 and the like are formed, and the ribs 9 are formed.
Providing the fixing pin 30 also allows the compressed fluid to be injected into a section defined by 1 and where it is difficult to supply the compressed fluid only from the protruding pin 9 portion, and has the advantage that sinking can be reliably prevented. . The present invention also relates to a molded article 9 having a rib 91.
The present invention can be used not only for injection molding of No. 0 but also for injection molding a molded product 90 having a boss 93 as shown in FIG. At this time, it is desirable to form a circumferential or square circumferential barrier wall 92 around the boss 93 so that a gas of a predetermined pressure is maintained at the boss 93 portion. Further, the present invention provides
A molded product in which both the rib 91 and the boss 93 are formed, the rib 9
1. It can also be used for manufacturing various molded products such as molded products without the boss 93. Although it is not always necessary to provide the barrier 92,
The arrangement is advantageous in that the injected compressed fluid does not leak, and the pressure-holding effect can be maintained for a long time even in a portion where the rib 91 is not provided. Further, the compressed fluid is not limited to nitrogen gas, and other gases such as compressed air may be used. However, since the temperature of the compressed fluid in contact with the molten resin increases, there is an advantage that the use of a nonflammable gas such as nitrogen gas provides higher safety. The pressure of the compressed fluid to be injected is not limited to the case of two-stage control as in Example, three or more steps or pressure value but it may also be controlled to continuously change. The pressure value at this time may be appropriately set according to the type of the resin used and the like. Further, the pressure control method is not limited to the method in which the pressure control valve 18 is provided as in the above embodiment, and a known appropriate pressure control method using a pressure reducing valve or the like may be used. A porous member made of heat-resistant metal or ceramic may be arranged in the clearance of the protruding pin 9. Even if this porous member is arranged, the through hole 1
0 can be injected into the cavity 8 and the molten resin in the cavity 8 can be prevented from flowing into the through hole 10. For this reason, even when the clearance of the protruding pin 9 is larger than the optimum range particularly in the existing mold 5 or the like, the porous member is disposed in the clearance so that the porous member is suitable for gas injection and resin inflow. Thus, the present invention can be applied. The pore diameter of the porous member may be appropriately set according to the type of resin used, and may be set, for example, to 1/100 to 8/100 mm, which is the same as in the above embodiment. When the ribs 91 and the bosses 93 are formed, as shown in FIG.
When the resin is injected and filled by partially cutting out the front end portion of the molded product 90, the thickened portion 96 may be formed at the base of the rib 91 or the boss 93 in the molded product 90. In the present invention, the back side of the molded product 90 is recessed and recessed by an amount corresponding to the prevention of sink on the front side. However, if the thickened portion 96 is formed, the cutout missing portion is replenished by the thickened portion 96 and the strength is reduced. Can also be prevented.
At this time, the amount of resin in the thickened portion 96 is reduced by the cooling delay portion 97 generated at the center of the portion where the rib 91 and the boss 93 are formed.
If the volume is about 20 to 70% of the volume of the resin, the required strength can be secured without significantly increasing the amount of resin.
In addition, the fillet 96 is replenished with the missing portion and is lost, so that the fillet 96 does not stand out in the molded product 90. The present invention also relates to the molded article 90 of the above embodiment.
Not only in the case of manufacturing the flat material 95 of the experimental example, but also various plate members having a large number of grid-like ribs used for paper supply parts of a copying apparatus and the like, and door handle covers of automobiles and the like. It can be used for resin molded products. According to the present invention as described above, the mold structure can be simplified, the mold can be easily manufactured, and sink of a synthetic resin injection molded article having ribs, bosses, etc. can be prevented. ,
There is an effect that warpage and distortion of a molded article can be eliminated and molding can be performed with high accuracy.
【図面の簡単な説明】
【図1】本発明の一実施例を示す概略構成図である。
【図2】前記実施例の金型中央部を示す拡大断面図であ
る。
【図3】前記実施例の金型上端部を示す拡大断面図であ
る。
【図4】実験例における成形品を示す二面図である。
【図5】本発明の変形例の要部を示す拡大断面図であ
る。
【図6】本発明をボスを有する成形品の成形に適用した
変形例を示す断面図である。
【図7】本発明の他の変形例の要部を示す拡大断面図で
ある。
【符号の説明】
1 射出成形装置
4 固定金型
5 可動金型
8 キャビティ
9 突き出しピン
10 貫通孔
11 ガス供給路
12 ガス注入制御装置
13 増圧器
14 開閉バルブ
15 制御装置
19 凹溝
20 溝
22 貫通孔
30 固定ピン
90 成形品
91 リブ
92 防壁
93 ボスBRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention. FIG. 2 is an enlarged sectional view showing a central portion of a mold according to the embodiment. FIG. 3 is an enlarged sectional view showing an upper end portion of a mold according to the embodiment. FIG. 4 is a two side view showing a molded product in an experimental example. FIG. 5 is an enlarged sectional view showing a main part of a modification of the present invention. FIG. 6 is a sectional view showing a modification in which the present invention is applied to molding of a molded article having a boss. FIG. 7 is an enlarged sectional view showing a main part of another modification of the present invention. [Description of Signs] 1 Injection molding device 4 Fixed mold 5 Movable mold 8 Cavity 9 Protruding pin 10 Through hole 11 Gas supply path 12 Gas injection control device 13 Pressure intensifier 14 Open / close valve 15 Control device 19 Concave groove 20 Groove 22 Penetration Hole 30 Fixing pin 90 Molded product 91 Rib 92 Barrier wall 93 Boss
フロントページの続き (56)参考文献 特開 昭60−8028(JP,A) 特開 昭57−43846(JP,A) 特開 平6−198681(JP,A) 特開 平6−254924(JP,A) 特開 平6−254912(JP,A) 特開 昭53−47457(JP,A) 特開 昭57−23846(JP,A) 特表 平4−501090(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29C 45/43 B29C 45/40 Continuation of the front page (56) References JP-A-60-8028 (JP, A) JP-A-57-43846 (JP, A) JP-A-6-198681 (JP, A) JP-A-6-254924 (JP) JP-A-6-254912 (JP, A) JP-A-53-47457 (JP, A) JP-A-57-23846 (JP, A) Japanese Translation of PCT Application No. Hei 4-501090 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) B29C 45/43 B29C 45/40
Claims (1)
において、金型のキャビティ内に溶融樹脂を充填させて
溶融樹脂が冷却固化しつつ状態にあるときに、成形品を
離型させる突き出しピンのクリアランスからキャビティ
内の成形品の裏面側に圧縮流体を注入するとともに、前
記圧縮流体をキャビティ内に注入する際に、その注入圧
力を注入初期は低圧力に制御し、その後高圧力に制御す
ることを特徴とする合成樹脂成形品の射出成形方法。(57) in an injection molding method for molding the Patent Claims 1. A synthetic resin molded article, by filling a molten resin into the mold cavity when the molten resin is in a state while cooling and solidifying , Moldings
While injecting compressed fluid to the rear surface side of the molded product in the cavity from the protrusion pin clearance to release, before
When the compressed fluid is injected into the cavity, the injection pressure
Control the force to low pressure at the beginning of injection and then to high pressure.
Injection molding method of a synthetic resin molded article, characterized in that that.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20493594A JP3410556B2 (en) | 1994-08-30 | 1994-08-30 | Injection molding method for synthetic resin molded products |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP20493594A JP3410556B2 (en) | 1994-08-30 | 1994-08-30 | Injection molding method for synthetic resin molded products |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0866932A JPH0866932A (en) | 1996-03-12 |
| JP3410556B2 true JP3410556B2 (en) | 2003-05-26 |
Family
ID=16498797
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP20493594A Expired - Fee Related JP3410556B2 (en) | 1994-08-30 | 1994-08-30 | Injection molding method for synthetic resin molded products |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3410556B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4476673B2 (en) * | 2004-04-05 | 2010-06-09 | トヨタ紡織株式会社 | Mold for foam molding |
| JP6557545B2 (en) * | 2015-08-05 | 2019-08-07 | 本田技研工業株式会社 | Press molding apparatus and press molding method |
| EP3326778B1 (en) * | 2016-01-06 | 2023-06-07 | Yasuhiro Suzuki | Mold device, injection molding system and method for manufacturing molded article |
-
1994
- 1994-08-30 JP JP20493594A patent/JP3410556B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0866932A (en) | 1996-03-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR0174805B1 (en) | Non-resin fluid assisted injection molding method of resin | |
| EP0495614B1 (en) | Method of injection molding a thermoplastic resin and a mold for injection molding | |
| WO1997016296A1 (en) | Valve gate type injection molding method and apparatus therefor | |
| WO2001096096A1 (en) | Fluid compression of injection molded plastic materials | |
| HK1006210B (en) | Method of injection molding a thermoplastic resin and a mold for injection molding | |
| CN1328031C (en) | Metal mold for in-mold coating molding and method for in-mold coating molding | |
| WO2004048067A1 (en) | In-mold coat-forming method and in-mold-coated mold product | |
| JP3469647B2 (en) | Injection molding method and injection molding apparatus for synthetic resin molded products | |
| JP3238830B2 (en) | Injection molding method of flat plate with lattice rib | |
| JP3410556B2 (en) | Injection molding method for synthetic resin molded products | |
| JP3469644B2 (en) | Injection molding method for synthetic resin molded products | |
| JP3423426B2 (en) | Injection molding equipment for synthetic resin molded products | |
| JP3300540B2 (en) | Injection molding apparatus and injection molding method for synthetic resin molded products | |
| JPH01168425A (en) | Manufacture of hollow molded article | |
| JP3469643B2 (en) | Injection molding method for synthetic resin molded products | |
| JP3423427B2 (en) | Injection molding method for automotive door handle cover | |
| JP3300531B2 (en) | Injection molding method and its mold | |
| JPH0615681A (en) | Injection molding equipment | |
| JP3478392B2 (en) | Injection molding method for plastic products | |
| JPH10180809A (en) | Die for gas jointly using injection molding | |
| JP2002187160A (en) | Molds and moldings for molding | |
| US6187251B1 (en) | Process for producing thermoplastic resin hollow molded article | |
| JPH0478510A (en) | Manufacturing method for hollow resin products | |
| US11305340B1 (en) | Modular mold design for casting a vehicle frame and components | |
| JP3368328B2 (en) | Mold for injection compression molding of thermoplastic resin and injection compression molding method using the mold |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20020806 |
|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030218 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| LAPS | Cancellation because of no payment of annual fees |