[go: up one dir, main page]

JP3420794B2 - Biodegradable resin composition - Google Patents

Biodegradable resin composition

Info

Publication number
JP3420794B2
JP3420794B2 JP11368393A JP11368393A JP3420794B2 JP 3420794 B2 JP3420794 B2 JP 3420794B2 JP 11368393 A JP11368393 A JP 11368393A JP 11368393 A JP11368393 A JP 11368393A JP 3420794 B2 JP3420794 B2 JP 3420794B2
Authority
JP
Japan
Prior art keywords
biodegradable
thermoplastic resin
resin composition
weight
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11368393A
Other languages
Japanese (ja)
Other versions
JPH06299077A (en
Inventor
修治 高木
秀樹 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14618537&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3420794(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP11368393A priority Critical patent/JP3420794B2/en
Publication of JPH06299077A publication Critical patent/JPH06299077A/en
Application granted granted Critical
Publication of JP3420794B2 publication Critical patent/JP3420794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生分解性樹脂組成物に
関する。更に詳しくは、分解速度の速い生分解性プラス
チックス成型物を製造するための組成物に関する。
FIELD OF THE INVENTION The present invention relates to a biodegradable resin composition. More specifically, it relates to a composition for producing a biodegradable plastics molded product having a high decomposition rate.

【0002】[0002]

【従来の技術・発明が解決しようとする課題】食品の包
装フィルム、包装容器をはじめ農業用フィルム、土木用
シートなど従来使用されている合成プラスチックスは、
自然界で長時間にわたり分解しないため環境に好ましく
ない影響を与えている。近年、これらの合成プラスチッ
クスに代わる新しい生分解性プラスチックスを提供しよ
うとする研究が行なわれている。例えば、ポリヒドロキ
シブチレート/ポリヒドロキシバルレート共重合体等の
いわゆるバイオ合成由来のもの、ポリカプロラクトン、
脂肪族ポリエステル等の合成高分子、熱可塑性樹脂−澱
粉混合物、熱可塑性樹脂−キチンまたはキトサン混合物
等である。
2. Description of the Related Art Conventional synthetic plastics such as food packaging films, packaging containers, agricultural films, civil engineering sheets, etc.
It does not decompose in the natural environment for a long time, which adversely affects the environment. In recent years, research has been conducted to provide new biodegradable plastics that replace these synthetic plastics. For example, those derived from so-called biosynthesis such as polyhydroxybutyrate / polyhydroxyvallate copolymer, polycaprolactone,
Examples thereof include synthetic polymers such as aliphatic polyester, thermoplastic resin-starch mixture, thermoplastic resin-chitin or chitosan mixture.

【0003】しかしながら、これらの生分解性プラスチ
ックスの中には分解に要する時間が数年に亘るものもあ
り、その間には廃棄された未分解のプラスチックスを動
物が食した場合、動物に被害が生じるなど必ずしも分解
速度の点において満足できるものではなく、分解速度の
速い生分解性プラスチックスの開発が望まれていた。ま
た先に、本願発明者らは、特定のエチレン含有量、特定
のメルトインデックスを有するエチレン/ビニルアルコ
ール共重合体と、ゼラチン、コラーゲン、カゼイン等の
天然蛋白質と多官能性アルコールとを反応させて得られ
た蛋白質のエステル化物あるいはエステル化蛋白質誘導
体を混合して得られる生分解性樹脂組成物を特許出願し
た(特願平4−297724号)。しかし、この樹脂組
成物においても得られる成型物の土中における分解速度
にはまだ十分満足できるものではなく、更に改良の余地
が残されている。従って、本発明の目的は、分解速度の
速い生分解性樹脂組成物を提供することにある。
However, some of these biodegradable plastics may take several years to decompose, and during that period, if the animals eat the discarded undegraded plastics, the animals will be damaged. However, it is not always satisfactory in terms of decomposition rate, and the development of biodegradable plastics having a high decomposition rate has been desired. In addition, previously, the inventors of the present invention reacted an ethylene / vinyl alcohol copolymer having a specific ethylene content and a specific melt index with a natural protein such as gelatin, collagen and casein and a polyfunctional alcohol. A patent application was filed for a biodegradable resin composition obtained by mixing an esterified product or an esterified protein derivative of the obtained protein (Japanese Patent Application No. 4-297724). However, even with this resin composition, the rate of decomposition of the molded product obtained in soil is not yet sufficiently satisfactory, and there is room for further improvement. Therefore, an object of the present invention is to provide a biodegradable resin composition having a high decomposition rate.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記した
状況に鑑み前記課題を解決するために、鋭意検討した。
その結果、生分解性プラスチックスとして公知の樹脂
に、さらに水溶性熱可塑性樹脂を混合することにより得
られる組成物が前記の目的に合致したものであることを
見出した。即ち、前記組成物を水中あるいは土壌中に廃
棄した場合に、プラスチックス中の水溶性熱可塑性樹脂
が水に溶解あるいは膨潤し、場合によってはプラスチッ
クスが崩壊し、さらに生分解を起こす細菌類が生息しや
すい雰囲気をつくったり、プラスチックス内に空隙が生
じ細菌が生息する空間を多くすることができ、これによ
りプラスチックスの生分解速度を早くすることができる
ことを見出し、本発明の生分解性樹脂組成物を完成する
に至った。
The inventors of the present invention have made extensive studies in order to solve the above problems in view of the above situation.
As a result, they have found that a composition obtained by further mixing a water-soluble thermoplastic resin with a resin known as biodegradable plastics meets the above-mentioned object. That is, when the composition is discarded in water or soil, the water-soluble thermoplastic resin in the plastics dissolves or swells in water, in some cases the plastics collapse, and further bacteria that cause biodegradation It was found that it is possible to create an atmosphere that is easy to live in, and to increase the space where bacteria are inhabited by forming voids in the plastics, which can accelerate the biodegradation rate of the plastics, and thus the biodegradability of the present invention. The resin composition was completed.

【0005】即ち、本発明の要旨は、生分解性プラスチ
ックス20〜80重量部と水溶性熱可塑性樹脂80〜2
0重量部を混合して得られる生分解性樹脂組成物であ
る。
That is, the gist of the present invention is that 20 to 80 parts by weight of biodegradable plastic and 80 to 2 of water-soluble thermoplastic resin are used.
A biodegradable resin composition obtained by mixing 0 parts by weight.

【0006】本発明で用いる生分解性プラスチックスと
しては、特に限定されるものではなく、例えば前述のバ
イオ合成由来のポリヒドロキシブチレート/ポリヒドロ
キシバルレート共重合体、化学合成由来のポリカプロラ
クトン、脂肪族ポリエステル、熱可塑性樹脂−澱粉混合
物、熱可塑性樹脂−キチンまたはキトサン混合物あるい
は熱可塑性樹脂−エステル化蛋白質混合物などが挙げら
れる。
The biodegradable plastics used in the present invention is not particularly limited, and for example, the above-mentioned biosynthesis-derived polyhydroxybutyrate / polyhydroxyvallate copolymer, chemical synthesis-derived polycaprolactone, Examples include aliphatic polyesters, thermoplastic resin-starch mixtures, thermoplastic resin-chitin or chitosan mixtures, and thermoplastic resin-esterified protein mixtures.

【0007】本発明で用いられるエステル化蛋白質とし
ては、植物由来のグルテン、動物由来のコラーゲン、ゼ
ラチンなどの天然蛋白質と多官能性アルコールとを反応
させて得られる、蛋白質の側鎖のカルボキシル基を鎖延
長した蛋白質のエステル化物、あるいは前記蛋白質のエ
ステル化物側鎖に存在する多官能性アルコール由来の官
能基を更に反応させて得られるエステル化蛋白質誘導体
等が挙げられる。なかでも蛋白質がゼラチンであるエス
テル化ゼラチンおよびその誘導体が好適に使用される。
The esterified protein used in the present invention is a carboxyl group of the side chain of the protein, which is obtained by reacting a natural protein such as plant-derived gluten, animal-derived collagen or gelatin with a polyfunctional alcohol. Examples thereof include an esterified product of a chain-extended protein, or an esterified protein derivative obtained by further reacting a functional group derived from a polyfunctional alcohol present in the side chain of the esterified product of the protein. Of these, esterified gelatin in which the protein is gelatin and derivatives thereof are preferably used.

【0008】本発明におけるエステル化タンパク質誘導
体としては、具体的には次のようなものが例示される
(特願平4−297724号)。 (1)タンパク質の水溶液、微粉末あるいはその懸濁液
と過剰の多官能性アルコールを反応させてエステル化を
行い、タンパク質側鎖のカルボキシル基を鎖延長したタ
ンパク質のエステル化物、(2)多官能性アルコールと
して多価アルコールを用い、鎖延長された側鎖に存在す
る多価アルコール由来の水酸基にイソシアネート基を持
つ化合物を反応させウレタン化したタンパク質誘導体、
(3)多官能性アルコールとして多価アルコールを用
い、鎖延長さた側鎖に存在する多価アルコール由来の水
酸基にエポキシ基を持つ化合物を反応させ、次いで樹脂
化したタンパク質誘導体、並びに、(4)多官能性アル
コールとして不飽和結合を有するアルコールを用い、鎖
延長された側鎖に存在する該アルコール由来の不飽和基
に重合開始剤の存在下、ビニルモノマーを付加重合させ
るか、または合成高分子をグラフト重合させるか、ある
いは合成高分子に該不飽和基を有するタンパク質のエス
テル化物をグラフト重合させたタンパク質誘導体であ
る。
Specific examples of the esterified protein derivative in the present invention include the following (Japanese Patent Application No. 4-297724). (1) A protein aqueous solution, a fine powder or a suspension thereof is reacted with an excess of a polyfunctional alcohol for esterification, and an esterified product of a protein in which a carboxyl group of a protein side chain is extended, (2) a polyfunctional compound Using a polyhydric alcohol as the alcohol, a protein derivative urethanized by reacting a compound having an isocyanate group with a hydroxyl group derived from a polyhydric alcohol present in a chain-extended side chain,
(3) A polyhydric alcohol is used as a polyfunctional alcohol, a compound having an epoxy group is reacted with a hydroxyl group derived from a polyhydric alcohol present in a chain-extended side chain, and then a resin derivative, and (4) ) An alcohol having an unsaturated bond is used as the polyfunctional alcohol, and a vinyl monomer is subjected to addition polymerization in the presence of a polymerization initiator in the unsaturated group derived from the alcohol present in the chain-extended side chain, or a synthetic high It is a protein derivative in which a molecule is graft-polymerized or an esterified product of a protein having the unsaturated group is graft-polymerized in a synthetic polymer.

【0009】このようなエステル化タンパク質を合成す
るには、まず第一段階として、タンパク質を構成するア
ミノ酸の側鎖のカルボキシル基に、多官能性アルコール
を反応させてエステル化により鎖延長させ、タンパク質
側鎖に多官能性アルコール由来の官能基を持つ、タンパ
ク質のエステル化物を調製する。そして、第二段階とし
て、有機溶媒、たとえばトルエン、ジメチルホルムアミ
ド、酢酸エチル、テトラヒドロフラン、シクロヘキサ
ン、ジメチルスルホキシドなど従来、タンパク質自体で
は親和性が乏しく用いられることの少なかった溶媒中
で、第一段階で得られたエステル化物にエポキシ樹脂
や、ウレタン樹脂の原料化合物あるいは他の重合性ビニ
ルモノマーなどを付加重合させ、あるいは合成高分子と
グラフト重合させるなどいわゆる従来の重合技術を組み
合わせて、タンパク質誘導体を製造する。
In order to synthesize such an esterified protein, the first step is to react the carboxyl group of the side chain of the amino acids constituting the protein with a polyfunctional alcohol to extend the chain by esterification to give a protein. An esterified product of a protein having a polyfunctional alcohol-derived functional group in its side chain is prepared. Then, as a second step, an organic solvent such as toluene, dimethylformamide, ethyl acetate, tetrahydrofuran, cyclohexane, dimethylsulfoxide, etc., which has been used in the first step in a solvent which has conventionally been poor in affinity and used in the protein itself, was obtained. The resulting esterified product is combined with so-called conventional polymerization technology such as addition polymerization of raw material compound of epoxy resin or urethane resin or other polymerizable vinyl monomer, or graft polymerization with synthetic polymer to produce a protein derivative. .

【0010】本発明において澱粉、キチンまたはキトサ
ンあるいはエステル化蛋白質と混合して生分解性プラス
チックスとする熱可塑性樹脂としては、ポリエチレンま
たはエチレン/ビニルアルコール共重合体などが挙げら
れるが、好ましくはエチレン/ビニルアルコール共重合
体である。特に、エチレン/ビニルアルコール共重合体
において、エチレン含有量が10〜70モル%であり、
ケン化度は30%以上好ましくは80%以上である。エ
チレン含有量が10モル%未満ではフィルム成形性が悪
くなり、70モル%を越えると生分解性が悪くなる。ケ
ン化度が30%未満では、フィルムに成形した場合ガス
バリヤー性が悪くなり、用途が限られる場合がある。ま
た、230℃、2160g荷重下でのメルトインデック
スが0.2〜30のものが本発明の生分解性樹脂組成物
における熱可塑性樹脂として優れた材料である。メルト
インデックスが0.2未満あるいは30を越えると、フ
ィルム成形性が悪いため好ましくない。これらの熱可塑
性樹脂と澱粉、キチン、キトサン、エステル化蛋白質と
の混合割合は、通常前記熱可塑性樹脂100重量部に対
し、澱粉、キチン、キトサン、エステル化蛋白質1〜3
0重量部である。
In the present invention, examples of the thermoplastic resin which is mixed with starch, chitin or chitosan or esterified protein to form biodegradable plastics include polyethylene and ethylene / vinyl alcohol copolymers, preferably ethylene. / Vinyl alcohol copolymer. Particularly, in the ethylene / vinyl alcohol copolymer, the ethylene content is 10 to 70 mol%,
The saponification degree is 30% or more, preferably 80% or more. If the ethylene content is less than 10 mol%, the film moldability will be poor, and if it exceeds 70 mol%, the biodegradability will be poor. If the degree of saponification is less than 30%, the gas barrier property may be poor when formed into a film, and the application may be limited. Further, a material having a melt index of 0.2 to 30 under a load of 230 ° C. and 2160 g is an excellent material as a thermoplastic resin in the biodegradable resin composition of the present invention. If the melt index is less than 0.2 or exceeds 30, the film moldability is poor, which is not preferable. The mixing ratio of these thermoplastic resins with starch, chitin, chitosan, and esterified protein is usually 1 to 3 parts by weight of the thermoplastic resin, and starch, chitin, chitosan, esterified protein 1 to 3 are added.
0 parts by weight.

【0011】生分解性速度を速くする目的で混合する水
溶性熱可塑性樹脂としては、特に限定されるものではな
いが、ポリエチレンオキシド、ポリビニルピロリドン樹
脂およびアクリル酸系共重合体などが挙げられる。アク
リル酸系共重合体としては、アクリル酸/アクリル酸エ
ステル共重合体、アクリル酸/メタクリル酸エステル共
重合体、メタクリル酸/アクリル酸エステル共重合体、
メタクリル酸/メタクリル酸エステル共重合体等が例示
される。なかでも重量平均分子量が5万〜1000万、
好ましくは10万〜300万のポリエチレンオキシド、
重量平均分子量が1万〜70万のポリビニルピロリドン
樹脂、または重量平均分子量が1万〜150万、好まし
くは2万〜50万の前記アクリル酸系共重合体が好適に
使用される。アクリル酸系共重合体におけるモノマーの
組合せおよびその組成比は、所望する成形品の使用用途
によって異なるため一義的には定まらないが、例えばア
クリル酸/アクリル酸エステル共重合体の場合、その組
成比は1/9〜5/5(モル比)である。
The water-soluble thermoplastic resin mixed for the purpose of increasing the rate of biodegradability is not particularly limited, but examples thereof include polyethylene oxide, polyvinylpyrrolidone resin and acrylic acid copolymer. As the acrylic acid-based copolymer, acrylic acid / acrylic acid ester copolymer, acrylic acid / methacrylic acid ester copolymer, methacrylic acid / acrylic acid ester copolymer,
Examples thereof include methacrylic acid / methacrylic acid ester copolymers. Among them, the weight average molecular weight is 50,000 to 10,000,000,
Preferably 100,000 to 3,000,000 polyethylene oxide,
A polyvinylpyrrolidone resin having a weight average molecular weight of 10,000 to 700,000 or the acrylic acid-based copolymer having a weight average molecular weight of 10,000 to 1,500,000, preferably 20,000 to 500,000 is preferably used. The combination of monomers in the acrylic acid-based copolymer and the composition ratio thereof are not uniquely determined because they differ depending on the intended use of the molded article, but for example, in the case of acrylic acid / acrylic acid ester copolymer, the composition ratio Is 1/9 to 5/5 (molar ratio).

【0012】生分解性プラスチックスと水溶性熱可塑性
樹脂との混合割合は、生分解性プラスチックス20〜8
0重量部と水溶性熱可塑性樹脂80〜20重量部を混合
して100重量部にする。水溶性熱可塑性樹脂が80重
量部を越えると本来の生分解性プラスチックスとしては
機能しないし、また成型品の強度が低下するなど好まし
い結果が得られない。また、水溶性熱可塑性樹脂が20
重量部未満では、生分解性の速度を速くするという本発
明の特徴が明確でなくなる。水溶性熱可塑性樹脂の配合
割合を20〜80重量部にまで適宜調整することによ
り、生分解性速度を数週間〜数ヶ月に速めることができ
る。
The mixing ratio of the biodegradable plastics and the water-soluble thermoplastic resin is such that the biodegradable plastics 20 to 8 are mixed.
0 parts by weight and 80 to 20 parts by weight of the water-soluble thermoplastic resin are mixed to make 100 parts by weight. If the amount of the water-soluble thermoplastic resin exceeds 80 parts by weight, it will not function as the original biodegradable plastics, and the strength of the molded product will be deteriorated, so that favorable results cannot be obtained. In addition, the water-soluble thermoplastic resin is 20
If the amount is less than parts by weight, the feature of the present invention of increasing the rate of biodegradability becomes unclear. By appropriately adjusting the mixing ratio of the water-soluble thermoplastic resin to 20 to 80 parts by weight, the biodegradability rate can be increased to several weeks to several months.

【0013】この機構は、本発明の生分解性樹脂組成物
を成型して得られる生分解性プラスチックスを水中ある
いは土壌中に廃棄した場合に、まずプラスチックス中の
水溶性熱可塑性樹脂が水に溶解あるいは膨潤し、生分解
を起こす細菌類が生息しやすい雰囲気を作ったり、生分
解性プラスチックス内に空隙が生じ、細菌類が生息する
空間を多くすることによるものである。また、プラスチ
ックスの生分解までには至らなくとも本発明組成物を用
いて製造されたフィルム、シート等の成型品中の水溶性
熱可塑性樹脂が水に溶解あるいは膨潤することにより、
フィルム、シート等の成型品が破断、場合によっては粒
状にまで崩壊し、小さくなるため生分解性速度を早める
ことができる。
According to this mechanism, when the biodegradable plastics obtained by molding the biodegradable resin composition of the present invention is discarded in water or soil, first, the water-soluble thermoplastic resin in the plastics becomes water. This is due to the fact that it dissolves or swells in, creates an atmosphere in which biodegradable bacteria are likely to live, and creates voids in the biodegradable plastics, increasing the space in which bacteria live. Further, even if the plastics are not biodegraded, the water-soluble thermoplastic resin in the molded article such as a film or sheet produced using the composition of the present invention dissolves or swells in water,
A molded product such as a film or a sheet is broken, and in some cases, it is disintegrated into granules and becomes smaller, and thus the biodegradability rate can be accelerated.

【0014】本発明において、生分解性プラスチックス
と水溶性熱可塑性樹脂との混合には通常用いられる混合
方法が採用される。例えばバンバリーミキサー、多軸ロ
ール、スクリュー型押出機などの混練機で両者を混合す
ればよい。また生分解性プラスチックスとして熱可塑性
樹脂と澱粉、キチン、キトサンまたはエステル化蛋白質
などの混合物を用いる場合には、これらの熱可塑性樹
脂、澱粉、キチン、キトサン、エステル化蛋白質を混合
する際に水溶性熱可塑性樹脂を混練することもできる。
In the present invention, a mixing method which is usually used is adopted for mixing the biodegradable plastics and the water-soluble thermoplastic resin. For example, both may be mixed with a kneading machine such as a Banbury mixer, a multi-screw roll, and a screw type extruder. When a mixture of a thermoplastic resin and starch, chitin, chitosan or esterified protein is used as the biodegradable plastics, a water-soluble mixture is used when mixing the thermoplastic resin, starch, chitin, chitosan and esterified protein. A thermoplastic resin can also be kneaded.

【0015】本発明の組成物中には、必要によりグリコ
ール類、グリセリン類、尿素類などの可塑剤、熱安定
剤、紫外線吸収剤、顔料さらに水なども適宜混合するこ
とができる。本発明の組成物は、インフレーションなど
の方法によりフィルム、シートに成型したり、インジェ
クションなどの方法により成型品にして各種の用途に使
用される。このような本発明の組成物より得られるフィ
ルム、シート等の成型品は、水中あるいは土壌中などの
自然環境中で従来の生分解性プラスチックスに比べて分
解速度を速くさせることができる。従って、例えば釣り
餌容器、食品包装材料、その他各種の包装材料などに使
用された後に廃棄された場合でも環境に悪影響を与える
ことなく自然に順化させることができる。
In the composition of the present invention, if necessary, a plasticizer such as glycols, glycerins, ureas, a heat stabilizer, an ultraviolet absorber, a pigment and water can be appropriately mixed. The composition of the present invention is molded into a film or sheet by a method such as inflation, or formed into a molded product by a method such as injection and used for various purposes. Molded products such as films and sheets obtained from the composition of the present invention can have a faster decomposition rate in a natural environment such as water or soil than conventional biodegradable plastics. Therefore, for example, even after being used for fishing bait containers, food packaging materials, and other various packaging materials and then discarded, they can be naturally acclimated without adversely affecting the environment.

【0016】[0016]

【実施例】以下、実施例および比較例により本発明をさ
らに詳しく説明するが、本発明はこれらの実施例等によ
りなんら限定されるものではない。なお、実施例等で得
られたフィルムの水中あるいは土壌中における生分解性
の評価は、10cm×10cmに裁断した厚み50ミク
ロンのフィルム3枚を、活性汚泥水中に浸漬するか、あ
るいは土壌中表層下約10cmに埋設したものを所定の
日数毎に取り出し、その外観を目視により観察し、下記
の4段階で評価した。 A.損傷の程度がフィルムの80%以上に亘り、原形を
留めないもの。 B.損傷の程度がフィルムの30〜80%に亘るが、原
形を留めるもの。 C.損傷の程度がフィルムの30未満であるもの。 D.ほとんど損傷が認められないもの。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The biodegradability of the films obtained in Examples and the like in water or soil was evaluated by immersing three 50-micron-thick films cut into 10 cm × 10 cm in activated sludge water, or in the soil surface layer. The one embedded in a lower portion of about 10 cm was taken out every predetermined number of days, and the appearance thereof was visually observed and evaluated according to the following four grades. A. A film whose damage is over 80% of the film and does not retain its original shape. B. The degree of damage is 30 to 80% of the film, but the original shape is retained. C. The degree of damage is less than 30 of the film. D. Almost no damage.

【0017】実施例1 3−ヒドロキシブチレート/3−ヒドロキシバルレート
共重合体(商品名:バイオポール ICI社製)80重
量部とポリエチレンオキシド(重量平均分子量30万)
20重量部をヘンシェルミキサーで混合して本発明の生
分解性樹脂組成物を得た。次いで本組成物をバンバリー
ミキサーにて溶融混合し、インフレーションにより厚み
50ミクロンのフィルムを得た。土壌中におけるフィル
ムの崩壊性、生分解性の評価結果を表1に示す。
Example 1 80 parts by weight of 3-hydroxybutyrate / 3-hydroxyvalerate copolymer (trade name: manufactured by Biopol ICI) and polyethylene oxide (weight average molecular weight 300,000)
20 parts by weight were mixed with a Henschel mixer to obtain a biodegradable resin composition of the present invention. Next, this composition was melt-mixed with a Banbury mixer, and a film having a thickness of 50 μm was obtained by inflation. Table 1 shows the evaluation results of the disintegration property and biodegradability of the film in soil.

【0018】比較例1 実施例1においてポリエチレンオキシドを添加しない以
外は、実施例1と同様にして厚み50ミクロンのフィル
ムを得た。土壌中におけるフィルムの崩壊性、生分解性
の評価結果を表1に示す。
Comparative Example 1 A film having a thickness of 50 μm was obtained in the same manner as in Example 1 except that polyethylene oxide was not added. Table 1 shows the evaluation results of the disintegration property and biodegradability of the film in soil.

【0019】[0019]

【表1】 [Table 1]

【0020】実施例2 エチレン/ビニルアルコール共重合体−澱粉混合物(商
品名:マタビー ノバモント社製)30重量部とポリエ
チレンオキシド(重量平均分子量70万)70重量部を
ヘンシェルミキサーで混合して本発明の生分解性樹脂組
成物を得た。次いで実施例1と同様にして厚み50ミク
ロンのフィルムを得た。土壌中におけるフィルムの崩壊
性、生分解性の評価結果を表2に示す。
Example 2 The present invention was prepared by mixing 30 parts by weight of an ethylene / vinyl alcohol copolymer-starch mixture (trade name: manufactured by Matabi Novamont) with 70 parts by weight of polyethylene oxide (weight average molecular weight 700,000) with a Henschel mixer. A biodegradable resin composition of was obtained. Then, in the same manner as in Example 1, a film having a thickness of 50 μm was obtained. Table 2 shows the evaluation results of the disintegration property and biodegradability of the film in soil.

【0021】比較例2 実施例2においてポリエチレンオキシドを添加しない以
外は、実施例2と同様にして厚み50ミクロンのフィル
ムを得た。土壌中におけるフィルムの崩壊性、生分解性
の評価結果を表2に示す。
Comparative Example 2 A film having a thickness of 50 μm was obtained in the same manner as in Example 2 except that polyethylene oxide was not added. Table 2 shows the evaluation results of the disintegration property and biodegradability of the film in soil.

【0022】[0022]

【表2】 [Table 2]

【0023】実施例3 脂肪族ポリエステル(商品名:ビオノーレ 昭和高分子
社製)40重量部とポリエチレンオキシド(重量平均分
子量150万)60重量部をヘンシェルミキサーで混合
して本発明の生分解性樹脂組成物を得た。次いで実施例
1と同様にして厚み50ミクロンのフィルムを得た。活
性汚泥水中でのフィルムの崩壊性、生分解性の評価結果
を表3に示す。
Example 3 40 parts by weight of an aliphatic polyester (trade name: Bionole Showa High Polymer Co., Ltd.) and 60 parts by weight of polyethylene oxide (weight average molecular weight of 1.5 million) were mixed in a Henschel mixer to obtain the biodegradable resin of the present invention. A composition was obtained. Then, in the same manner as in Example 1, a film having a thickness of 50 μm was obtained. Table 3 shows the evaluation results of the disintegration property and biodegradability of the film in the activated sludge water.

【0024】比較例3 実施例3においてポリエチレンオキシドを添加しない以
外は、実施例3と同様にして厚み50ミクロンのフィル
ムを得た。活性汚泥水中でのフィルムの崩壊性、生分解
性の評価結果を表3に示す。
Comparative Example 3 A film having a thickness of 50 μm was obtained in the same manner as in Example 3 except that polyethylene oxide was not added. Table 3 shows the evaluation results of the disintegration property and biodegradability of the film in the activated sludge water.

【0025】[0025]

【表3】 [Table 3]

【0026】実施例4〜8 生分解性プラスチックスと水溶性熱可塑性樹脂とを表4
に示す割合で混合して本発明の生分解性樹脂組成物を得
た。次いで、実施例1と同様にして厚み50ミクロンの
フィルムを得た。土壌中でのフィルムの崩壊性、生分解
性の評価結果を表4に示す。
Examples 4 to 8 Table 4 shows biodegradable plastics and water-soluble thermoplastic resins.
The biodegradable resin composition of the present invention was obtained by mixing in the proportions shown in. Then, in the same manner as in Example 1, a film having a thickness of 50 μm was obtained. Table 4 shows the evaluation results of the disintegration property and biodegradability of the film in soil.

【0027】[0027]

【表4】 [Table 4]

【0028】実施例9 (エステル化ゼラチンの製造)攪拌機付きの反応器にア
ルカリ処理ゼラチン(コニカゼラチン(株)製、分子量
約10万のαゼラチン)45重量部(乾物量)を入れ、
これを蒸留水100重量部に溶解した。次に50重量部
のアリルアルコールを加え、50℃で24時間反応させ
た。このエステル化物を回収するため、溶媒である水
と、反応にあずからなかった過剰のアリルアルコールを
50℃減圧下で蒸発させた後、引き続き、80℃で24
時間減圧下で完全に乾燥除去した。得られたエステル化
物を再び蒸留水100重量部で溶解し、上記と同様の操
作を3回繰り返した結果、48重量部のゼラチンのカル
ボキシル基の約91%がエステル化されたゼラチン/ア
リルアルコールエステル化物(エステル化ゼラチン)を
得た。
Example 9 (Production of esterified gelatin) 45 parts by weight (dry weight) of alkali-treated gelatin (Konica Gelatin Co., Ltd., α gelatin having a molecular weight of about 100,000) was placed in a reactor equipped with a stirrer.
This was dissolved in 100 parts by weight of distilled water. Next, 50 parts by weight of allyl alcohol was added and reacted at 50 ° C. for 24 hours. In order to recover the esterified product, water as a solvent and excess allyl alcohol which did not participate in the reaction were evaporated under reduced pressure at 50 ° C., and subsequently, at 24 ° C. at 24 ° C.
It was completely dried and removed under reduced pressure for an hour. The obtained esterified product was again dissolved in 100 parts by weight of distilled water, and the same operation as above was repeated 3 times. As a result, about 91% of the carboxyl groups of 48 parts by weight of gelatin were gelatinized / allyl alcohol ester. A compound (esterified gelatin) was obtained.

【0029】(熱可塑性樹脂−エステル化ゼラチン混合
物の製造)エチレン/ビニルアルコール共重合体(エチ
レン含有量25モル%、ケン化度99%、メルトインデ
ックス(230℃、2160g荷重)1.5g/10
分)100重量部と上記で得たエステル化ゼラチン20
重量部とをヘンシェルミキサーでよく混合した後、尿素
3重量部、水5重量部を添加して、二度目の混合を行い
熱可塑性樹脂−エステル化ゼラチン混合物からなる生分
解性プラスチックスを得た。
(Production of Thermoplastic Resin-Esterified Gelatin Mixture) Ethylene / vinyl alcohol copolymer (ethylene content 25 mol%, saponification degree 99%, melt index (230 ° C., 2160 g load) 1.5 g / 10
Min) 100 parts by weight and esterified gelatin 20 obtained above
3 parts by weight of urea and 5 parts by weight of water were added, and the mixture was mixed a second time to obtain a biodegradable plastics composed of a thermoplastic resin-esterified gelatin mixture. .

【0030】(生分解性プラスチックスフィルムの製
造)上記の生分解性プラスチックス60重量部とポリエ
チレンオキシド(重量平均分子量30万)40重量部を
ヘンシェルミキサーで混合して本発明の生分解性樹脂組
成物を得た。次いで本組成物をバンバリーミキサーにて
溶融混合し、インフレーションにより厚み50ミクロン
のフィルムを得た。土壌中におけるフィルムの崩壊性、
生分解性の評価結果を表5に示す。
(Production of Biodegradable Plastics Film) 60 parts by weight of the above biodegradable plastics and 40 parts by weight of polyethylene oxide (weight average molecular weight 300,000) are mixed in a Henschel mixer to obtain the biodegradable resin of the present invention. A composition was obtained. Next, this composition was melt-mixed with a Banbury mixer, and a film having a thickness of 50 μm was obtained by inflation. Disintegration of film in soil,
The results of evaluation of biodegradability are shown in Table 5.

【0031】比較例4 実施例9の生分解性プラスチックスフィルムの製造にお
いてポリエチレンオキシドを添加しない以外は、実施例
9と同様にして厚み50ミクロンのフィルムを得た。土
壌中におけるフィルムの崩壊性、生分解性の評価結果を
表5に示す。
Comparative Example 4 A film having a thickness of 50 μm was obtained in the same manner as in Example 9 except that polyethylene oxide was not added in the production of the biodegradable plastics film of Example 9. Table 5 shows the evaluation results of the disintegration property and biodegradability of the film in soil.

【0032】[0032]

【表5】 [Table 5]

【0033】実施例10 実施例9で得た熱可塑性樹脂−エステル化ゼラチン混合
物50重量部とポリエチレンオキシド(重量平均分子量
30万)50重量部をヘンシェルミキサーで混合して本
発明の生分解性樹脂組成物を得た。次いで実施例1と同
様にして厚み50ミクロンのフィルムを得た。活性汚泥
水中でのフィルムの崩壊性、生分解性の評価結果を表6
に示す。
Example 10 The biodegradable resin of the present invention was prepared by mixing 50 parts by weight of the thermoplastic resin-esterified gelatin mixture obtained in Example 9 and 50 parts by weight of polyethylene oxide (weight average molecular weight 300,000) with a Henschel mixer. A composition was obtained. Then, in the same manner as in Example 1, a film having a thickness of 50 μm was obtained. Table 6 shows the evaluation results of the disintegration property and biodegradability of the film in the activated sludge water.
Shown in.

【0034】比較例5 実施例10においてポリエチレンオキシドを添加しない
以外は、実施例10と同様にして厚み50ミクロンのフ
ィルムを得た。活性汚泥水中でのフィルムの崩壊性、生
分解性の評価結果を表6に示す。
Comparative Example 5 A film having a thickness of 50 μm was obtained in the same manner as in Example 10 except that polyethylene oxide was not added. Table 6 shows the evaluation results of the disintegration property and biodegradability of the film in the activated sludge water.

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【発明の効果】本発明の生分解性樹脂組成物を用いて得
られるフィルム、シート等の成型品は、水中あるいは土
壌中などの自然環境中で従来の生分解性プラスチックス
に比べて分解速度を速くさせることができる。そのた
め、例えば釣り餌容器、食品包装材料、その他各種の包
装材料などに使用された後に廃棄された場合でも環境に
悪影響を与えることなく自然に早く順化させることがで
きる。
EFFECTS OF THE INVENTION Molded products such as films and sheets obtained by using the biodegradable resin composition of the present invention have a decomposition rate higher than that of conventional biodegradable plastics in a natural environment such as water or soil. Can be made faster. Therefore, for example, even after being used for fishing bait containers, food packaging materials, and various other packaging materials and then discarded, they can be naturally and quickly acclimated without adversely affecting the environment.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C08L 1/00 - 101/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) C08L 1/00-101/16

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 生分解性プラスチックス20〜80重量
部と水溶性熱可塑性樹脂80〜20重量部を混合して得
られる生分解性樹脂組成物。
1. A biodegradable resin composition obtained by mixing 20 to 80 parts by weight of biodegradable plastic and 80 to 20 parts by weight of a water-soluble thermoplastic resin.
【請求項2】 水溶性熱可塑性樹脂が重量平均分子量5
万〜1000万のポリエチレンオキシドである請求項1
記載の生分解性樹脂組成物。
2. The water-soluble thermoplastic resin has a weight average molecular weight of 5.
1 to 10 million polyethylene oxide.
The biodegradable resin composition described.
【請求項3】 水溶性熱可塑性樹脂がポリビニルピロリ
ドン樹脂である請求項1記載の生分解性樹脂組成物。
3. The biodegradable resin composition according to claim 1, wherein the water-soluble thermoplastic resin is a polyvinylpyrrolidone resin.
【請求項4】 水溶性熱可塑性樹脂がアクリル酸/アク
リル酸エステル共重合体又はアクリル酸/メタクリル酸
エステル共重合体である請求項1記載の生分解性樹脂組
成物。
4. The biodegradable resin composition according to claim 1, wherein the water-soluble thermoplastic resin is an acrylic acid / acrylic acid ester copolymer or an acrylic acid / methacrylic acid ester copolymer.
【請求項5】 生分解性プラスチックスがポリヒドロキ
シブチレート/ポリヒドロキシバルレート共重合体また
はポリカプロラクトンである請求項1記載の生分解性樹
脂組成物。
5. The biodegradable resin composition according to claim 1, wherein the biodegradable plastic is a polyhydroxybutyrate / polyhydroxyvallate copolymer or polycaprolactone.
【請求項6】 生分解性プラスチックスが脂肪族ポリエ
ステルである請求項1記載の生分解性樹脂組成物。
6. The biodegradable resin composition according to claim 1, wherein the biodegradable plastic is an aliphatic polyester.
【請求項7】 生分解性プラスチックスが、熱可塑性樹
脂−澱粉混合物または熱可塑性樹脂−エステル化蛋白質
混合物である請求項1記載の生分解性樹脂組成物。
7. The biodegradable resin composition according to claim 1, wherein the biodegradable plastic is a thermoplastic resin-starch mixture or a thermoplastic resin-esterified protein mixture.
【請求項8】 熱可塑性樹脂がエチレン含有量10〜7
0モル%であり、230℃、2160g荷重でのメルト
インデックスが0.2〜30の範囲にあるエチレン/ビ
ニルアルコール共重合体である請求項7記載の生分解性
樹脂組成物。
8. The thermoplastic resin has an ethylene content of 10 to 7
The biodegradable resin composition according to claim 7, which is an ethylene / vinyl alcohol copolymer having a melt index of 0 mol% and a melt index under a load of 2160 g at 230 ° C.
JP11368393A 1993-04-15 1993-04-15 Biodegradable resin composition Expired - Fee Related JP3420794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11368393A JP3420794B2 (en) 1993-04-15 1993-04-15 Biodegradable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11368393A JP3420794B2 (en) 1993-04-15 1993-04-15 Biodegradable resin composition

Publications (2)

Publication Number Publication Date
JPH06299077A JPH06299077A (en) 1994-10-25
JP3420794B2 true JP3420794B2 (en) 2003-06-30

Family

ID=14618537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11368393A Expired - Fee Related JP3420794B2 (en) 1993-04-15 1993-04-15 Biodegradable resin composition

Country Status (1)

Country Link
JP (1) JP3420794B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU731358B2 (en) * 1994-10-28 2001-03-29 Alza Corporation Injection-molded dosage form
US7132490B2 (en) 2002-03-29 2006-11-07 Mitshi Chemicals, Inc. Lactic acid-based resin composition
WO2006121011A1 (en) * 2005-05-09 2006-11-16 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
US7973101B2 (en) * 2005-05-13 2011-07-05 Kaneka Corporation Biodegradable resin composition and molded article produced from the same
EP1897901B1 (en) 2005-06-30 2015-03-11 Mitsui Chemicals, Inc. Biodegradable polymer, production method thereof, molded product thereof, and use thereof
WO2009041017A1 (en) * 2007-09-26 2009-04-02 Kaneka Corporation Resin composition
JP5353768B2 (en) * 2009-03-06 2013-11-27 国立大学法人東京工業大学 Resin composition
NZ598372A (en) * 2009-09-03 2014-01-31 Co2Starch Pty Ltd Polymer/thermoplastic starch compositions
CN103044715B (en) * 2012-09-07 2015-10-14 象山商博电子商务有限公司 A kind of Biodegradable film and preparation method thereof
CN103497360A (en) * 2013-09-25 2014-01-08 吴江市董鑫塑料包装厂 Biodegradable plastic
CN104497511B (en) * 2014-12-28 2016-04-27 张小芳 The preparation method of modification polycaprolactone biodegradable plastic
JP6951064B2 (en) * 2016-09-30 2021-10-20 三国紙工株式会社 Packaging material using aliphatic polyester resin composition
CN107118375A (en) * 2017-06-20 2017-09-01 青岛金典生化器材有限公司 A kind of vinyl modified fish scale protein film and preparation method thereof
WO2024204121A1 (en) * 2023-03-30 2024-10-03 三菱ケミカル株式会社 Water-soluble film, medicine packaging body using same, and methods for producing these

Also Published As

Publication number Publication date
JPH06299077A (en) 1994-10-25

Similar Documents

Publication Publication Date Title
JP3420794B2 (en) Biodegradable resin composition
US5444107A (en) Degradable polymer composition
US6730724B1 (en) Biodegradable compositions comprising starch and polysaccharide esters
AU724397B2 (en) Biodegradable polymeric compositions comprising starch and thermoplastic polymer
JP2001123055A (en) Polylactic acid resin composition
JP5124687B2 (en) Mixtures for producing biodegradable moldings based on aliphatic polyesters and water redispersible polymer powders
KR20130002591A (en) Biodegradable mulching film
KR20170075052A (en) Resin composition for mulching film and biodegradable mulching film using the same
CA2217541A1 (en) Biologically degradable polymer mixture
JP2007269995A (en) Polylactic acid-containing resin composition, polylactic acid-containing resin film, and polylactic acid-containing resin fiber
JPH06322182A (en) Melt-processable and biodegradable composition and its article
JP2002523598A5 (en)
WO2007073109A1 (en) Biodegradable resin composition and plastic product made thereof
WO2002094935A1 (en) Biodegradable resin composition with controlled biodegradation rate, film, and agricultural mulch film
JPH11241009A (en) Polylactate resin composition
JP2002047402A (en) Biodegradable agricultural multi-film
JP2025072458A (en) Composite materials and their uses
JP3773335B2 (en) Biodegradable aliphatic polyester resin-starch composition
JP2000327847A (en) Resin composition
JPH0794576B2 (en) Flexible biodegradable film or sheet, and method for producing the same
JP3368944B2 (en) Biodegradable resin composition
JP2004010842A (en) Polylactic acid resin composition
JP2004010843A (en) Polylactic acid resin composition
JP2002371172A (en) Lactic acid-based polymer composition and method for producing the same
JPH09137069A (en) Biodegradable composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees