[go: up one dir, main page]

JP3543934B2 - How to recycle waste concrete - Google Patents

How to recycle waste concrete Download PDF

Info

Publication number
JP3543934B2
JP3543934B2 JP3827199A JP3827199A JP3543934B2 JP 3543934 B2 JP3543934 B2 JP 3543934B2 JP 3827199 A JP3827199 A JP 3827199A JP 3827199 A JP3827199 A JP 3827199A JP 3543934 B2 JP3543934 B2 JP 3543934B2
Authority
JP
Japan
Prior art keywords
waste concrete
carbon
gas
combustible gas
caco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3827199A
Other languages
Japanese (ja)
Other versions
JP2000239670A (en
Inventor
正利 半沢
和明 太田
伸一 長谷川
皓 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP3827199A priority Critical patent/JP3543934B2/en
Publication of JP2000239670A publication Critical patent/JP2000239670A/en
Application granted granted Critical
Publication of JP3543934B2 publication Critical patent/JP3543934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/167Recycled materials, i.e. waste materials reused in the production of the same materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は廃コンクリートを粉砕して骨材を除去した粉粒体と、石炭、コークス、重油等の炭素資源又は炭化水素資源と、水とを反応させて、廃コンクリートを化学的に安定なCaCOに転換してセメント原料等に再利用する方法に関する。更に詳しくは、上記反応で副産物として生成した水素等の可燃性ガスをガスタービン複合発電装置等の燃料として利用し得る方法に関するものである。
【0002】
【従来の技術】
老朽化した建築物、構築物等から発生する廃コンクリートは現在年間数千トン以上発生する。しかしながら、これまで廃コンクリートは破砕して路盤材料に利用するか、或いは新規なセメントと混合するための骨材の一部として利用されているに過ぎず、その大部分が産業廃棄物として廃棄処分されているのが現状である。
一方、図2に示すように、セメント工場1では国内外の鉱山から採掘された主原料の石灰石(CaCO)2aを副原料の粘土質原料2bを調合工程2cで調合した後、焼成してCaOを含むセメント3を製造している。この際、二酸化炭素(CO)4が副生するが、セメント工場に認可された二酸化炭素排出権により、COの削減対象から除外され、大気中への放出が許容されている。
【0003】
また、石炭を燃料として用いた火力発電では、天然ガス、石油を用いた火力発電に比較して単位発電量当りの二酸化炭素の排出量が多いため、この二酸化炭素の削減が課題となっている。このため、図3に示すように石炭5をガス化工程6で石炭ガス7にし、このガス7で複合発電装置8を駆動して電気エネルギを取り出している。この複合発電装置8ではガスタービン8aを駆動することにより第1発電機8bで発電し、更にこのガスタービンの排ガスをボイラ8cに供給して、そこで発生する蒸気圧で蒸気タービン8dを駆動することにより第2発電機8eで発電し、従来の微粉炭による火力発電より高効率化を図ろうとしている。この複合発電装置では石炭による火力発電よりも少ないが、なおボイラ8cから二酸化炭素9を排出する。
【0004】
【発明が解決しようとする課題】
廃コンクリートに関しては、その増加に伴って、この廃棄処分量は今後更に増大することが予想され、廃コンクリートの有効利用は緊急の課題となっている。また石炭を用いた発電に関しては、天然ガス、石油を用いた発電に比較し、単位発電量当りの二酸化炭素の排出量が多いため、発電効率の向上が課題となっている。そのため、高効率発電方法として石炭をガス化して複合発電する方式が開発されている。これまでのガス化方法では石炭中の灰分の除去が大きな開発課題となっている。また石炭以外のコークス、重質油等の炭素資源又は炭化水素資源も将来の資源と位置づけられるが、燃焼時に二酸化炭素が多量に発生するため、地球温暖化防止の観点からその利用が困難になってきている。
【0005】
本発明の目的は、廃コンクリートをリサイクル可能な資源として処理する廃コンクリートの再利用方法を提供することにある。
本発明の別の目的は、廃コンクリートと炭素資源又は炭化水素資源とを反応させて、二酸化炭素を大気中に放出させずに、副生する水素等の可燃性ガスを燃料に有効利用する廃コンクリートの再利用方法を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように粉砕した廃コンクリート17から骨材を除去して粉粒体を得る工程と、炭素資源12又は炭化水素資源と前記粉粒体と水16を含むスラリー又はエマルジョンを調製する工程と、このスラリー又はエマルジョンを水の亜臨界又は超臨界状態の温度及び圧力である380〜850℃で10〜35MPに維持して、CaCOを主成分とする固形分28と水素、メタン、一酸化炭素を含む可燃性ガス32を生成する工程と、固形分28及び可燃性ガス32を分離する分離工程とを含む廃コンクリートの再利用方法である。亜臨界又は超臨界状態の水は流体密度が高く反応媒体として作用し、炭素資源12又は炭化水素資源と反応して水素ガス、メタンガス、一酸化炭素ガス等の可燃性ガス32及び二酸化炭素(CO)を生成する。廃コンクリートの主成分は(CaO)(SiO(HO)、Ca(OH)等であり、これらの化合物には多量のCaが含まれている。このCaは上記ガス化反応の際に、触媒として作用して上記可燃性ガスの生成を著しく促進する。また炭素資源又は炭化水素資源の分解時に生成した二酸化炭素(CO)はこのCa成分と反応してCaCOを生成する。この方法では、資源として有用なCaCOが得られ、かつ地球温暖化現象の原因となる二酸化炭素の大気中への放出が抑制される。
【0007】
請求項2に係る発明は、請求項1に係る発明であって、スラリー又はエマルジョンに石炭灰18を金属化合物として更に添加する廃コンクリートの再利用方法である。
石炭灰13はNaO、NaCO、KCO等のCa以外の金属化合物を豊富に含み、触媒として炭素資源又は炭化水素資源の分解を更に促進するとともに資源中の硫黄、重金属等の不純物を除去する効果を高める。
【0008】
請求項3に係る発明は、請求項1又は2に係る発明であって、分離工程で得られた固形分28をセメント製造用の原料の一部に用いる廃コンクリートの再利用方法である。
分離工程で得られた固形分は、CaCOを主成分とするため、従来の石灰石鉱山から採掘される石灰石の代替となり得る。
【0009】
請求項4に係る発明は、請求項1ないし3いずれかに係る発明であて、分離工程で得られた可燃性ガス32をガスタービン複合発電装置36又は高効率発電装置の燃料とする廃コンクリートの再利用方法である。
炭素資源又は炭化水素資源の分解中に生じた二酸化炭素はCaCOの形態で殆ど除去されるため、この分解により得られた可燃性ガスは地球温暖化の要因となる二酸化炭素を殆ど含まないガスであり、可燃性ガスをガスタービン複合発電装置の燃料に用いた場合、この装置から放出される二酸化炭素の量を大幅に低減する。
【0010】
【発明の実施の形態】
本発明における原料としては、石炭、石炭コークス、石油コークス、チャー等の固体の炭素資源、及び石油蒸留残渣、天然タール等の重質油からなる炭化水素資源が挙げられる。石炭としては、草炭、褐炭、亜歴青炭、歴青炭、無煙炭等が例示される。また廃コンクリートの粉粒体は建築物、構築物等の廃コンクリートを粉砕した後、石、砂利、砂等の骨材を取り除いたものである。この粉砕は廃コンクリートが500μm以下の粒径、好ましくは100μm以下の粒径になるまで行われる。細粒の粉粒体を得る場合には、骨材を除去した後においても粉砕が行われる。取り除かれた骨材は新規なセメント製造用の骨材の一部に、また路盤材料などに再利用される。
【0011】
本発明では、炭素資源又は炭化水素資源(以下、炭素資源等という。)と廃コンクリートの粉粒体と水を含むスラリー又はエマルジョンは、水の亜臨界又は超臨界状態の温度及び圧力である380〜850℃で10〜35MPに維持されて、CaCOを主成分とする固形分と水素、メタン、一酸化炭素を含む可燃性ガスを生成する。温度が380℃未満、圧力が25MPa未満では、分解反応速度が遅く、温度が850℃を超え、圧力が35MPaを超えると、反応器に負荷がかかり過ぎ、効率的でない。特に850℃を超える温度はCaCOの分解温度であるため、所望のCaCOが生成されない。好ましい温度は500〜700℃であり、好ましい圧力は10〜25MPaである。反応器に外部から熱エネルギを供給して上記温度にする以外に、反応時に酸素源を供給することにより反応熱を反応器の昇温に利用する。反応熱を利用した場合、その反応は促進する。
炭素資源等が石炭のような固体の場合、スラリーに調製され、炭素資源等が重質油のような液体の場合、エマルジョンに調製される。スラリー中の水に対する炭素資源等の濃度が5〜60重量%、好ましくは20〜40重量%になるように調製される。5重量%未満では炭素資源等の分解効率に劣り、60重量%を超えるとスラリーが流動性に欠け取扱いにくくなる。
【0012】
炭素資源等は水の亜臨界又は超臨界状態において、それ自体が熱分解するとともに加水分解などの反応により、水素ガス、メタンガス、一酸化炭素ガス等の可燃性ガス及び二酸化炭素(CO)を生成する。その反応式(1)〜(6)を以下に示す。
→ C + HO + H + CO + CH …… (1)
+ HO → CO + H + CO …… (2)
C + HO → CO + H …… (3)
CO + HO → CO + H …… (4)
C + 2H → CH …… (5)
CO + 3HO → CH + HO …… (6)
上記式(1)及び(2)の反応は炭素資源等の分解初期に同時に起こり、式(3)〜(6)は分解反応の中・後期に各式の反応が単独でなく複合して起こる。
【0013】
廃コンクリートの主成分は(CaO)(SiO(HO)、Ca(OH)等であり、これらの化合物には多量のCaが含まれている。廃コンクリートの粉粒体は水の亜臨界又は超臨界状態において分解し、反応器内で粉末状のCaOやCa(OH)になる。これらの化合物中のCaは上記ガス化反応の際に、触媒として作用して上記可燃性ガスの生成を著しく促進する。またCaO、Ca(OH)などの粉末が式(1)、(2)及び(4)で生成した二酸化炭素(CO)と反応して石灰石と同等のCaCO粉末になる。これらの反応を式(7)〜(10)に示す。
【0014】
【化1】

Figure 0003543934
【0015】
Ca(OH) + CO → CaCO + HO …… (9)
CaO + CO → CaCO …… (10)
式(9)及び(10)の反応は速やかに進行し、反応器を出た時点では、廃コンクリートの粉粒体のほぼ全量がCaCOの状態で安定化する。また式(10)で示す反応は発熱反応であるため、他の反応に必要な熱量のかなりの部分をこの化学反応熱でまかなうことができる。
【0016】
更に廃コンクリートの成分であるCaOは炭素資源等中の硫黄や重金属等の不純物とも反応し、これらの不純物は化学的かつ熱的に安定した化合物になる。このため、生成した可燃性ガスは高度に清浄化される。特にスラリー又はエマルジョンに石炭灰を添加し混合すると、石炭灰はNaO、NaCO、KCO等のCa以外の金属化合物を豊富に含むため、触媒として炭素資源等の分解を更に促進するとともに炭素資源等中の硫黄、重金属等の不純物をより一層除去する。得られたCaCOは二酸化炭素を吸収して生成されているため、CaCO粒子自体の強度が増大する特長がある。このためセメント原料として用いる以外にCaCOは、路盤材以外にも廃液処理材等への用途も考えられ、新たな分野での利用も可能である。
【0017】
本発明の実施の形態の廃コンクリートの再利用方法について図面に基づいて説明する。図1に示すように、炭素資源等の原料である石炭10は乾留工程11で乾留されて石炭コークス12と石炭ガス13を生成する。コークス12は粉砕工程14で500μm以下の粒径に微粉砕された後、混合工程15に送られ、そこで水16と廃コンクリート17の粉粒体と混合されてスラリーを生成する。混合工程15において石炭灰18を更に添加し混合することが望ましい。廃コンクリート17は混合工程15に供給される前にクラッシャー等を用いた粉砕工程19で500μm以下の粒径に粉砕された後、脱骨材工程21に送られて石、砂利、砂等の骨材22が取り除かれ、粉粒体になる。水16は予熱器23で加熱されて混合工程15に送られる。
廃コンクリートの粉粒体と炭素資源等と水を含むスラリーは混合工程15の混合機から取出された後、ポンプ24により圧送され、予熱器26で加熱されて分解反応工程27に供給される。そこで更に昇圧・昇温されて、水の亜臨界状態又は超臨界状態に維持される。その結果、分解反応工程27では、上述した式(1)〜(10)に基づいてCaCOを主成分とする固形分と水素、メタン、一酸化炭素を含む可燃性ガスが生成する。
【0018】
分解反応工程27で得られたCaCOを主成分とする固形分28は熱回収器29を経て反応器から粉末状で取出される。また分解反応工程27で得られた可燃性ガス及び水分は熱回収器29で熱を回収されるとともにそれ自体が冷却された後、分離工程31に送られる。分離工程31では水素、メタン、一酸化炭素を含む可燃性ガス32が水33と分離される。水33は上述した熱回収器29で昇温した後、上述した分離工程15に送られ、再利用される。
一方、可燃性ガス32は石炭10の乾留工程11で生成した石炭ガス13とともにガスタービン複合発電装置36のガスタービン37に送られ、そこで燃焼され、その燃焼エネルギによりガスタービン37を駆動する。ガスタービン37の回転エネルギによりガスタービンと回転軸が直結している第1発電機38が発電するようになる。ガスタービン37の排ガスはボイラ39に供給され、この排ガスの熱エネルギでボイラ39から蒸気エネルギが発生する。この熱エネルギは蒸気タービン41を駆動し、蒸気タービンと回転軸が直結している第2発電機42が発電するようになる。符号43は熱交換器である。これにより高い効率で発電が行われる。ボイラ39から水蒸気及び二酸化炭素を主成分とする排ガス44が排出される。
【0019】
分解反応工程27の反応器から取出されたCaCOを主成分とする固形分28は、セメントの主原料である石灰石(CaCO)47の代りに又はその一部として使用される。即ち、固形分28は副原料の粘土質原料48と調合工程49で調合された後、セメント工場50に供給されて、セメント51を生成し、副生物の二酸化炭素52を排出する。その結果、石灰石の鉱山から採掘する新規な石灰石の使用量を削減できる。
【0020】
【発明の効果】
以上述べたように、本発明によれば、廃コンクリートの粉粒体と炭素資源等と水を含むスラリー又はエマルジョンを調製し、このスラリー又はエマルジョンを水の亜臨界又は超臨界状態の温度及び圧力である380〜850℃で10〜35MPに維持して、CaCOを主成分とする固形分と水素、メタン、一酸化炭素を含む可燃性ガスを生成し、上記固形分及び可燃性ガスを分離することにより、次の優れた効果を有する。
(1) 廃コンクリートを構成する化合物は多量のCaを含有するため、このCaが触媒として作用して上記可燃性ガスの生成を著しく促進する。またこの可燃性ガスの生成の際に生成した二酸化炭素(CO)は廃コンクリートと反応してセメント原料となる石灰石(CaCO)を生成するため、地球温暖化現象の原因となる二酸化炭素の大気中への放出を抑制するとともに、この石灰石をセメント工場にセメント原料としてリサイクルでき、石灰石の鉱山から採掘する新規な石灰石の使用量を削減できる。これにより新規に鉱山から導入する石灰石中のCO分だけ二酸化炭素の排出が抑制される。従来のセメント工場は原料である石灰石の鉱山の山元近辺に立地することがあり、長期間の操業により原料資源の確保が困難な場合も多かったが、本発明の方法によればセメント工場の立地条件を緩和することにも寄与し、それに応じてセメント原料の運搬コストを低減することもできる。
(2) 炭素資源等に含まれる硫黄、重金属等の不純物は上記二酸化炭素と廃コンクリートとの反応により生成した石灰石(CaCO)又は石炭灰に含まれる金属化合物に吸収されるため、上記可燃性ガスは硫黄、重金属等の不純物を含まない清浄な可燃性ガスとなり、この可燃性ガスはガスタービン複合発電装置又は高効率発電装置に適した燃料ガスとなる。
【図面の簡単な説明】
【図1】本発明の廃コンクリートの再利用方法を示すブロック図。
【図2】従来のセメント製造方法を示すブロック図。
【図3】従来のガスタービン複合発電方法を示すブロック図。
【符号の説明】
10 石炭
11 乾留工程
12 石炭コークス(炭素資源)
13 石炭ガス
14,19 粉砕工程
15 混合工程
16,33 水
17 廃コンクリート
18 石炭灰
21 脱骨材工程
22 骨材
27 分解反応工程
28 CaCOを主成分とする固形分
31 分離工程
32 可燃性ガス
36 ガスタービン複合発電装置
44,52 二酸化炭素
47 石灰石(CaCO
50 セメント工場
51 セメント[0001]
BACKGROUND OF THE INVENTION
The present invention reacts a granular material obtained by pulverizing waste concrete to remove aggregates, a carbon resource or hydrocarbon resource such as coal, coke, heavy oil, and water, and chemically reacts the waste concrete with CaCO. It relates to a method of converting to 3 and reusing it as a cement raw material. More specifically, the present invention relates to a method in which a combustible gas such as hydrogen generated as a by-product in the above reaction can be used as a fuel for a gas turbine combined power generation apparatus or the like.
[0002]
[Prior art]
More than a thousand tons of waste concrete is generated annually from aging buildings and structures. However, until now, waste concrete has been used for roadbed materials after being crushed, or only as part of aggregate for mixing with new cement, and most of it is disposed of as industrial waste. This is the current situation.
On the other hand, as shown in FIG. 2, in the cement factory 1, the main raw material limestone (CaCO 3 ) 2 a mined from domestic and overseas mines is mixed with the auxiliary raw clayey raw material 2 b in the preparation step 2 c and then fired. Cement 3 containing CaO is manufactured. At this time, carbon dioxide (CO 2 ) 4 is produced as a by-product, but is excluded from the reduction target of CO 2 by the carbon dioxide emission right approved by the cement factory and allowed to be released into the atmosphere.
[0003]
In addition, in thermal power generation using coal as fuel, carbon dioxide emissions per unit power generation are larger than thermal power generation using natural gas and oil. . Therefore, as shown in FIG. 3, the coal 5 is converted into a coal gas 7 in the gasification step 6, and the combined power generation device 8 is driven by the gas 7 to extract electric energy. In the combined power generator 8, the gas turbine 8a is driven to generate power by the first generator 8b, and the exhaust gas of the gas turbine is supplied to the boiler 8c, and the steam turbine 8d is driven by the steam pressure generated there. Thus, power is generated by the second generator 8e, and the efficiency is higher than that of the conventional thermal power generation using pulverized coal. Although this combined power generation device is less than thermal power generation using coal, carbon dioxide 9 is discharged from the boiler 8c.
[0004]
[Problems to be solved by the invention]
With regard to waste concrete, the amount of waste disposal is expected to increase further in the future, and the effective use of waste concrete is an urgent issue. As for power generation using coal, compared to power generation using natural gas and oil, the amount of carbon dioxide emission per unit power generation is large, so improvement in power generation efficiency is a problem. Therefore, a method for combined power generation by gasifying coal has been developed as a highly efficient power generation method. In conventional gasification methods, removal of ash in coal has become a major development issue. Carbon resources and hydrocarbon resources such as coke other than coal and heavy oil are also considered as future resources, but because of the large amount of carbon dioxide generated during combustion, it becomes difficult to use from the viewpoint of preventing global warming. It is coming.
[0005]
An object of the present invention is to provide a method for reusing waste concrete that treats waste concrete as a recyclable resource.
Another object of the present invention is to use waste combustible gas such as hydrogen as a fuel effectively by reacting waste concrete with carbon resources or hydrocarbon resources without releasing carbon dioxide into the atmosphere. It is to provide a method for reusing concrete.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a process of obtaining aggregates by removing aggregates from crushed waste concrete 17 as shown in FIG. 1, carbon resources 12 or hydrocarbon resources, said granules and water 16. A step of preparing a slurry or emulsion containing the slurry, and maintaining the slurry or emulsion at 10 to 35 MP at 380 to 850 ° C. which is a temperature and pressure in a subcritical or supercritical state of water to form a solid containing CaCO 3 as a main component. This is a method for reusing waste concrete including a step of generating a combustible gas 32 containing hydrogen 28, methane, and carbon monoxide, and a separation step of separating the solid content 28 and the combustible gas 32. Subcritical or supercritical water has a high fluid density and acts as a reaction medium, reacts with the carbon resource 12 or hydrocarbon resource, and combustible gas 32 such as hydrogen gas, methane gas, carbon monoxide gas, and carbon dioxide (CO 2 ) is generated. The main components of waste concrete are (CaO) 3 (SiO 2 ) 2 (H 2 O) 3 , Ca (OH) 2, etc., and these compounds contain a large amount of Ca. This Ca acts as a catalyst during the gasification reaction and significantly promotes the generation of the combustible gas. Further, carbon dioxide (CO 2 ) generated during decomposition of the carbon resource or hydrocarbon resource reacts with the Ca component to generate CaCO 3 . In this method, CaCO 3 useful as a resource is obtained, and the release of carbon dioxide, which causes a global warming phenomenon, is suppressed.
[0007]
The invention according to claim 2 is the invention according to claim 1, which is a method for reusing waste concrete in which coal ash 18 is further added as a metal compound to a slurry or emulsion.
Coal ash 13 contains abundant metal compounds other than Ca such as Na 2 O, Na 2 CO 3 , K 2 CO 3, and further promotes decomposition of carbon resources or hydrocarbon resources as a catalyst, and sulfur and heavy metals in the resources The effect of removing impurities such as is enhanced.
[0008]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the solid content 28 obtained in the separation step is used as a part of the raw material for cement production.
Since the solid content obtained in the separation step is mainly composed of CaCO 3 , it can be a substitute for limestone mined from a conventional limestone mine.
[0009]
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the waste concrete obtained by using the combustible gas 32 obtained in the separation step as a fuel for the gas turbine combined power generator 36 or the high-efficiency power generator is provided. It is a reuse method.
Since carbon dioxide generated during the decomposition of carbon resources or hydrocarbon resources is almost removed in the form of CaCO 3 , the combustible gas obtained by this decomposition is a gas that hardly contains carbon dioxide that causes global warming. When the combustible gas is used as the fuel of the gas turbine combined power generation apparatus, the amount of carbon dioxide released from this apparatus is greatly reduced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the raw material in the present invention include solid carbon resources such as coal, coal coke, petroleum coke, and char, and hydrocarbon resources composed of heavy oil such as petroleum distillation residue and natural tar. Examples of the coal include grass charcoal, lignite, subbituminous coal, bituminous coal, anthracite. Moreover, the waste granule is obtained by pulverizing waste concrete such as buildings and structures, and then removing aggregates such as stone, gravel and sand. This pulverization is performed until the waste concrete has a particle size of 500 μm or less, preferably 100 μm or less. When obtaining a fine granular material, grinding is performed even after the aggregate is removed. The removed aggregate is reused as a part of aggregate for new cement production and as a roadbed material.
[0011]
In the present invention, the slurry or emulsion containing a carbon resource or hydrocarbon resource (hereinafter referred to as carbon resource or the like), waste concrete granule, and water has a subcritical or supercritical temperature and pressure of 380 of water. It is maintained at 10 to 35 MP at ˜850 ° C. to generate a combustible gas containing a solid content mainly composed of CaCO 3 and hydrogen, methane, and carbon monoxide. When the temperature is less than 380 ° C. and the pressure is less than 25 MPa, the decomposition reaction rate is slow, and when the temperature exceeds 850 ° C. and the pressure exceeds 35 MPa, the reactor is overloaded and is not efficient. Especially because temperatures above 850 ° C. is a decomposition temperature of CaCO 3, the desired CaCO 3 is not generated. A preferable temperature is 500 to 700 ° C., and a preferable pressure is 10 to 25 MPa. In addition to supplying the reactor with heat energy from the outside to obtain the above temperature, the reaction heat is used to raise the temperature of the reactor by supplying an oxygen source during the reaction. When reaction heat is used, the reaction is accelerated.
When the carbon resource or the like is a solid such as coal, it is prepared into a slurry, and when the carbon resource or the like is a liquid such as heavy oil, it is prepared into an emulsion. It is prepared so that the concentration of carbon resources and the like with respect to water in the slurry is 5 to 60% by weight, preferably 20 to 40% by weight. If it is less than 5% by weight, the decomposition efficiency of carbon resources and the like is poor, and if it exceeds 60% by weight, the slurry lacks fluidity and becomes difficult to handle.
[0012]
Carbon resources, etc., in the subcritical or supercritical state of water, themselves are thermally decomposed, and by reaction such as hydrolysis, flammable gases such as hydrogen gas, methane gas, carbon monoxide gas, and carbon dioxide (CO 2 ) Generate. The reaction formulas (1) to (6) are shown below.
C x H y O z → C + H 2 O + H 2 + CO 2 + CH 4 ...... (1)
C x H y O z + H 2 O → CO 2 + H 2 + CO ...... (2)
C + H 2 O → CO + H 2 (3)
CO + H 2 O → CO 2 + H 2 (4)
C + 2H 2 → CH 4 (5)
CO + 3H 2 O → CH 4 + H 2 O (6)
The reactions of the above formulas (1) and (2) occur simultaneously in the early stage of decomposition of carbon resources, etc., and the formulas (3) to (6) occur in the middle and later stages of the decomposition reaction in which the reactions of the respective formulas occur in combination rather than individually. .
[0013]
The main components of waste concrete are (CaO) 3 (SiO 2 ) 2 (H 2 O) 3 , Ca (OH) 2, etc., and these compounds contain a large amount of Ca. The waste concrete granular material is decomposed in the subcritical or supercritical state of water, and becomes powdered CaO or Ca (OH) 2 in the reactor. Ca in these compounds acts as a catalyst during the gasification reaction and significantly promotes the generation of the combustible gas. The CaO, Ca (OH) powder formula, such as 2 (1), (2) and react with becomes equivalent CaCO 3 powder and limestone carbon dioxide generated in (4) (CO 2). These reactions are shown in formulas (7) to (10).
[0014]
[Chemical 1]
Figure 0003543934
[0015]
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O (9)
CaO + CO 2 → CaCO 3 (10)
The reactions of the formulas (9) and (10) proceed rapidly, and when leaving the reactor, almost the entire amount of waste concrete powder is stabilized in the state of CaCO 3 . In addition, since the reaction represented by the formula (10) is an exothermic reaction, a considerable part of the amount of heat necessary for other reactions can be covered by this heat of chemical reaction.
[0016]
Furthermore, CaO, which is a component of waste concrete, also reacts with impurities such as sulfur and heavy metals in carbon resources and the like, and these impurities become chemically and thermally stable compounds. For this reason, the produced combustible gas is highly purified. Especially when coal ash is added to a slurry or emulsion and mixed, the coal ash contains abundant metal compounds other than Ca such as Na 2 O, Na 2 CO 3 , K 2 CO 3, etc. Further promote the process and further remove impurities such as sulfur and heavy metals in the carbon resources. Since the obtained CaCO 3 is generated by absorbing carbon dioxide, the strength of the CaCO 3 particles themselves is increased. For this reason, besides being used as a cement raw material, CaCO 3 can be used for waste liquid treatment materials in addition to roadbed materials, and can be used in new fields.
[0017]
A method for reusing waste concrete according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, coal 10 that is a raw material such as a carbon resource is carbonized in a carbonization process 11 to generate coal coke 12 and coal gas 13. The coke 12 is finely pulverized to a particle size of 500 μm or less in the pulverizing step 14 and then sent to the mixing step 15 where it is mixed with the water 16 and the granular material of the waste concrete 17 to generate a slurry. It is desirable to further add and mix the coal ash 18 in the mixing step 15. The waste concrete 17 is pulverized to a particle size of 500 μm or less in a pulverization process 19 using a crusher or the like before being supplied to the mixing process 15, and then sent to the deboning process 21 to be made of bone such as stone, gravel, sand, The material 22 is removed and becomes a granular material. The water 16 is heated by the preheater 23 and sent to the mixing step 15.
The slurry containing waste concrete particles, carbon resources, and water and water is taken out from the mixer in the mixing step 15, then pumped by the pump 24, heated by the preheater 26, and supplied to the decomposition reaction step 27. Therefore, the pressure is further increased and the temperature is increased to maintain the subcritical or supercritical state of water. As a result, in the decomposition reaction step 27, a combustible gas containing a solid content mainly composed of CaCO 3 and hydrogen, methane, and carbon monoxide is generated based on the above-described formulas (1) to (10).
[0018]
The solid content 28 mainly composed of CaCO 3 obtained in the decomposition reaction step 27 is taken out from the reactor through a heat recovery device 29 in powder form. In addition, the combustible gas and moisture obtained in the decomposition reaction step 27 are recovered by the heat recovery device 29 and cooled, and then sent to the separation step 31. In the separation step 31, the combustible gas 32 containing hydrogen, methane, and carbon monoxide is separated from the water 33. After the temperature of the water 33 is raised by the heat recovery device 29 described above, the water 33 is sent to the separation step 15 and reused.
On the other hand, the combustible gas 32 is sent to the gas turbine 37 of the gas turbine combined power generator 36 together with the coal gas 13 generated in the dry distillation process 11 of the coal 10, and is burned there, and the gas turbine 37 is driven by the combustion energy. Due to the rotational energy of the gas turbine 37, the first generator 38, which is directly connected to the gas turbine and the rotating shaft, generates power. The exhaust gas from the gas turbine 37 is supplied to the boiler 39, and steam energy is generated from the boiler 39 by the heat energy of the exhaust gas. This thermal energy drives the steam turbine 41, and the second generator 42, which is directly connected to the steam turbine and the rotating shaft, generates power. Reference numeral 43 denotes a heat exchanger. As a result, power generation is performed with high efficiency. Exhaust gas 44 mainly containing water vapor and carbon dioxide is discharged from the boiler 39.
[0019]
The solid content 28 mainly composed of CaCO 3 taken out from the reactor in the decomposition reaction step 27 is used in place of or as a part of limestone (CaCO 3 ) 47 which is a main raw material of cement. That is, the solid content 28 is blended in the clay raw material 48 and the blending step 49, and then supplied to the cement factory 50 to produce cement 51 and discharge the by-product carbon dioxide 52. As a result, the amount of new limestone mined from the limestone mine can be reduced.
[0020]
【The invention's effect】
As described above, according to the present invention, a slurry or emulsion containing waste concrete particles, carbon resources, and the like and water is prepared, and this slurry or emulsion is subjected to temperature and pressure in a subcritical or supercritical state of water. Is maintained at 10 to 35 MP at 380 to 850 ° C. to produce a combustible gas containing CaCO 3 as a main component and hydrogen, methane, and carbon monoxide, and the solid content and the combustible gas are separated. By doing so, it has the following excellent effects.
(1) Since the compound constituting the waste concrete contains a large amount of Ca, this Ca acts as a catalyst to significantly promote the generation of the combustible gas. Carbon dioxide (CO 2 ) generated during the generation of this combustible gas reacts with waste concrete to produce limestone (CaCO 3 ) as a raw material for cement. While suppressing the release to the atmosphere, this limestone can be recycled to the cement factory as a cement raw material, and the amount of new limestone mined from the limestone mine can be reduced. This suppresses the emission of carbon dioxide by the amount of CO 2 in the limestone newly introduced from the mine. Conventional cement factories are sometimes located in the vicinity of Yamamoto of the limestone mine that is the raw material, and it was often difficult to secure raw material resources due to long-term operation, but according to the method of the present invention, the location of the cement factory It also contributes to alleviating the conditions, and the cost of transporting the cement raw material can be reduced accordingly.
(2) Impurities such as sulfur and heavy metals contained in carbon resources are absorbed by limestone (CaCO 3 ) produced by the reaction between carbon dioxide and waste concrete, or metal compounds contained in coal ash. The gas becomes a clean combustible gas that does not contain impurities such as sulfur and heavy metals, and this combustible gas becomes a fuel gas suitable for a gas turbine combined power generator or a high-efficiency power generator.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a method for reusing waste concrete according to the present invention.
FIG. 2 is a block diagram showing a conventional cement manufacturing method.
FIG. 3 is a block diagram showing a conventional gas turbine combined power generation method.
[Explanation of symbols]
10 Coal 11 Carbonization process 12 Coal coke (carbon resources)
13 Coal gas 14, 19 Grinding process 15 Mixing process 16, 33 Water 17 Waste concrete 18 Coal ash 21 Aggregation process 22 Aggregate 27 Decomposition reaction process 28 Solid content 31 mainly composed of CaCO 3 Separation process 32 Combustible gas 36 Gas turbine combined power generation device 44, 52 Carbon dioxide 47 Limestone (CaCO 3 )
50 cement factory 51 cement

Claims (4)

粉砕した廃コンクリート(17)から骨材を除去して粉粒体を得る工程と、
炭素資源(12)又は炭化水素資源と前記粉粒体と水(16)を含むスラリー又はエマルジョンを調製する工程と、
前記スラリー又はエマルジョンを水の亜臨界又は超臨界状態の温度及び圧力である380〜850℃で10〜35MPに維持して、CaCOを主成分とする固形分(28)と水素、メタン、一酸化炭素を含む可燃性ガス(32)を生成する工程と、
前記固形分(28)及び前記可燃性ガス(32)を分離する分離工程と
を含む廃コンクリートの再利用方法。
Removing the aggregate from the crushed waste concrete (17) to obtain a granular material;
Preparing a slurry or emulsion comprising a carbon resource (12) or hydrocarbon resource, said particulate and water (16);
The slurry or emulsion by keeping the 10~35MP in a subcritical or temperature and pressure of the supercritical state is three hundred eighty to eight hundred and fifty ° C. water, solids composed mainly of CaCO 3 (28) hydrogen, methane, single Producing a combustible gas (32) comprising carbon oxide;
A method for reusing waste concrete, comprising a separation step of separating the solid (28) and the combustible gas (32).
スラリー又はエマルジョンに石炭灰(18)を金属化合物として更に添加する請求項1記載の廃コンクリートの再利用方法。The method for reusing waste concrete according to claim 1, wherein coal ash (18) is further added as a metal compound to the slurry or emulsion. 分離工程で得られた固形分(28)をセメント製造用の原料の一部に用いる請求項1又は2記載の廃コンクリートの再利用方法。The method for reusing waste concrete according to claim 1 or 2, wherein the solid content (28) obtained in the separation step is used as part of a raw material for producing cement. 分離工程で得られた可燃性ガス(32)をガスタービン複合発電装置(36)又は高効率発電装置の燃料とする請求項1ないし3いずれか記載の廃コンクリートの再利用方法。The method for reusing waste concrete according to any one of claims 1 to 3, wherein the combustible gas (32) obtained in the separation step is used as fuel for the gas turbine combined power generation device (36) or the high efficiency power generation device.
JP3827199A 1999-02-17 1999-02-17 How to recycle waste concrete Expired - Fee Related JP3543934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3827199A JP3543934B2 (en) 1999-02-17 1999-02-17 How to recycle waste concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3827199A JP3543934B2 (en) 1999-02-17 1999-02-17 How to recycle waste concrete

Publications (2)

Publication Number Publication Date
JP2000239670A JP2000239670A (en) 2000-09-05
JP3543934B2 true JP3543934B2 (en) 2004-07-21

Family

ID=12520663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3827199A Expired - Fee Related JP3543934B2 (en) 1999-02-17 1999-02-17 How to recycle waste concrete

Country Status (1)

Country Link
JP (1) JP3543934B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058247A1 (en) * 2018-09-20 2020-03-26 Thyssenkrupp Industrial Solutions Ag Method and facility for producing material containing hydrated cement

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2443222C (en) 2001-04-13 2009-09-15 Co2 Solution Inc. A process and a plant for the production of portland cement clinker
CA2353307A1 (en) 2001-07-13 2003-01-13 Carmen Parent Device and procedure for processing gaseous effluents
CA2405635A1 (en) 2002-09-27 2004-03-27 C02 Solution Inc. A process and a plant for the production of useful carbonated species and for the recycling of carbon dioxide emissions from power plants
JP2022148255A (en) * 2021-03-24 2022-10-06 太平洋セメント株式会社 Cement clinker production system and cement clinker production method
JP2022096064A (en) * 2020-12-17 2022-06-29 太平洋セメント株式会社 Cement clinker manufacturing system
EP4215858A4 (en) * 2020-12-17 2024-10-30 Taiheiyo Cement Corporation CEMENT CLINKER PRODUCTION SYSTEM AND CEMENT CLINKER PRODUCTION PROCESS
JP7576586B2 (en) * 2022-02-04 2024-10-31 鹿島道路株式会社 Cement-based composition, method for producing cement-based composition, and method for recovering carbon dioxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058247A1 (en) * 2018-09-20 2020-03-26 Thyssenkrupp Industrial Solutions Ag Method and facility for producing material containing hydrated cement
US12005459B2 (en) 2018-09-20 2024-06-11 Thyssenkrupp Industrial Solutions Ag Method and facility for producing material containing hydrated cement

Also Published As

Publication number Publication date
JP2000239670A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
JP7365360B2 (en) Method for producing solid composites
CN1167896C (en) Method and device for treating waste by gasification
KR100445363B1 (en) Waste treatment apparatus and method through vaporization
RU2504426C2 (en) Improved integrated chemical process
JP3916179B2 (en) High temperature gasification method and apparatus for waste
JP2004339360A (en) Method and system for treating biomass and fluid fuel obtained by the method
RU2451057C2 (en) Method of and device for energy generation
WO2010109798A1 (en) Gasification system and gasification process
JP3543934B2 (en) How to recycle waste concrete
CN1137249C (en) Method and device for treating waste by gasification
JP7600011B2 (en) CEMENT CLINKER PRODUCTION SYSTEM AND CEMENT CLINKER PRODUCTION METHOD
CN113915619A (en) Waste fan blade treatment device for rotary kiln and plasma melting furnace
JPWO2012014277A1 (en) Method for producing hydrogen-containing gas
JP3079051B2 (en) Gasification of waste
JP2004269301A (en) Lightweight aggregate and method for producing the same
CN103534338A (en) Process for continuous production of synthesis gas from oil sands and/or oil shale
JP7748812B2 (en) Cement clinker manufacturing system and cement clinker manufacturing method
CN102834492B (en) Method and apparatus for reactivating carbon solids
JP3947887B2 (en) Method and apparatus for converting coal into fuel for power generation facilities
CN102364249A (en) Novel process for producing steam and generating electric power by recycling heat of waste residue, waste ash and waste gas
JP2012219182A (en) Method for decomposing tar in coal gas
EP0026200B1 (en) A method of recovering high-grade fuel from solid mineral-fuel raw material
JP2002060281A (en) Artificial lightweight foam and its aggregate
JP2017149619A (en) Method for producing anhydrous gypsum
JP6940836B1 (en) Concrete admixtures, concrete admixture manufacturing methods and concrete products

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees