[go: up one dir, main page]

JP3545850B2 - Ferroelectric thin film element - Google Patents

Ferroelectric thin film element Download PDF

Info

Publication number
JP3545850B2
JP3545850B2 JP23135395A JP23135395A JP3545850B2 JP 3545850 B2 JP3545850 B2 JP 3545850B2 JP 23135395 A JP23135395 A JP 23135395A JP 23135395 A JP23135395 A JP 23135395A JP 3545850 B2 JP3545850 B2 JP 3545850B2
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric
ferroelectric thin
film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23135395A
Other languages
Japanese (ja)
Other versions
JPH0982906A (en
Inventor
宏典 松永
正義 木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP23135395A priority Critical patent/JP3545850B2/en
Publication of JPH0982906A publication Critical patent/JPH0982906A/en
Application granted granted Critical
Publication of JP3545850B2 publication Critical patent/JP3545850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は強誘電体薄膜素子の構造に関し、より詳細には、強誘電体不揮発性メモリ素子、焦電赤外線センサ素子、圧電素子等に用いられる強誘電体薄膜キャパシタおよびその製造方法に関する。
【0002】
【従来の技術】
強誘電体結晶は、自発分極、高誘電率、焦電効果、圧電効果、電気光学効果等の機能を持ち、従来から、コンデンサ、赤外線センサ、超音波発振器、圧力センサ、周波数フィルター、光スイッチ等の多くの素子開発に応用されている。
【0003】
最近では、強誘電体材料の薄膜化技術の進展に伴い、各種の基板上に高品質の強誘電体薄膜の形成が可能である。この強誘電体薄膜を半導体デバイスに適用する事により、その性能の向上や従来にない新しいデバイスの開発が可能である。例えば、高誘電率材料をDRAMのキャパシタに応用する事で、プレーナー型で高集積化が実現でき、製造工程の簡略化とコスト低減が可能となる。更に、この強誘電体キャパシタの持つ自発分極を利用した不揮発性メモリ(FRAM)の開発が行われ、DRAMに不揮発動作を付加した新規メモリデバイスが実現されている。この様なデバイス開発には、残留自発分極(Pr)が大きく、かつ抗電界(Ec)が小さく、低リーク電流であり、更に駆動電圧の低減と半導体プロセスとの整合の為に膜厚200nm以下の高品質薄膜が必要となる。また、自発分極を利用したデバイス開発には、繰り返し分極反転に伴う強誘電特性の劣化(疲労)の少ない、高信頼性材料の開発が不可欠である。
【0004】
現在、膜特性疲労の少ない強誘電体材料として一連のBi系層状ペロブスカイト構造強誘電体が注目されている。これらの材料は、化学式Bi3m+3(ただし、AはNa1+、K1+、Pb2+、Ca2+、Sr2+、Ba2+及びBi3+から選択されるいずれか1つ、BはFe3+、Ti4+、Nb5+、Ta5+、W6+、Mo6+から選択されるいずれか1つ、mは1以上の自然数とする)で表される。
【0005】
これらのBi系強誘電体材料の中でも、BiTi12は斜方晶系に属する層状ペロブスカイト構造(格子定数:a=5.4100、b=5.4489、c=32.815オングストローム)を持つ強誘電体であり、その自発分極はa軸方向でPrがおよそ50μC/cm、抗電界Ecがおよそ50kV/cm、c軸方向でPrがおよそ4μC/cm、Ecがおよそ4kV/cmと優れた特性を持つ。
【0006】
これらの優れた材料特性を薄膜で実現する為には、キャパシタ構造を形成する為の電極材料の検討が重要である。すなわち、強誘電体と電極との間の仕事関数の差が大きい場合には、強誘電体薄膜中の酸素欠陥や空間電荷によるキャリヤが電極界面にトラップされて反電場が発生し、実効的に強誘電体薄膜にかかる電界強度が減少する為に、分極反転を繰り返した場合に膜特性疲労の原因となる。さらに、強誘電体と電極との膨脹係数の違いによって、強誘電体薄膜に残留反応が発生し、リーク電流や密着力不足による膜剥離の原因となる。
【0007】
従来、DRAMやFRAMに用いられる強誘電体キャパシタ用の電極としては、強誘電体薄膜形成時における耐熱性と耐酸化性に優れたPtが用いられている。しかし、上記の強誘電体との界面における仕事関数、膨脹係数の差を考慮すると、電極材料としては強誘電体材料と類似した酸化物電極材料が望ましい。実際、強誘電体PZT(Pb(Zr,Ti)O)においては、Pt電極に替えて、RuOやIrOを用いる事で膜特性の疲労が減少する事が報告されている。(C.Kwok他, 4th International Symposium on Integrated Ferroelectrics、 Proceedings(1992)421)
【0008】
【発明が解決しようとする課題】
上述した様に、十分な強誘電体キャパシタ特性を引き出し、DRAMやFRAMに適用可能とする為には、各々の強誘電体材料とマッチした電極材料の選択が重要である。すなわち、強誘電体との界面における仕事関数および膨脹係数の差ができるだけ小さい電極材料の開発が必要である。
【0009】
本発明は、Bi系層状ペロブスカイト構造を有する強誘電体を用いた強誘電体キャパシタに適用可能な、膜特性疲労やリーク電流発生が少なく、かつ強誘電体との密着性の良い電極材料を提供する事を目的とする。
【0010】
【課題を解決するための手段】
上述の目的は、基板上に下部電極層と強誘電体薄膜と上部電極層とを順番に備える強誘電体薄膜素子であって、前記強誘電体薄膜が、AをNa1+、K1+、Pb2+、Ca2+、Sr2+、Ba2+及びBi3+のいずれか1つ、BをFe3+、Ti4+、Nb5+、Ta5+、W6+及びMo6+のいずれか1つ、mを1以上の自然数とした際に、化学式Bim−13m+3で表されるBi系層状ペロブスカイト結晶構造を有し、前記下部電極層及び前記上部電極層の少なくとも一方が、Ru、Rh及びIrのいずれか1つとBiとを含む酸化物導電体であることを特徴とする請求項1の強誘電体薄膜素子により達成される。
【0013】
上述の目的は、基板上に下部電極層と強誘電体薄膜と上部電極層とを順番に形成する強誘電体薄膜素子の製造方法であって、前記強誘電体薄膜が、AをNa 、K 、Pb 、Ca 、Sr 、Ba 及びBi のいずれか1つ、BをFe 、Ti 、Nb 、Ta 、W 及びMo のいずれか1つ、mを1以上の自然数とした際に、化学式Bi m−1 3m で表されるBi系層状ペロブスカイト結晶構造を有し、前記強誘電体薄膜上にRu、Rh及びIrのいずれか1つを含む金属酸化物膜を形成し、固相反応によって該強誘電体膜表面を導電化することを特徴とする請求項の強誘電体薄膜素子の製造方法により達成される。
【0014】
【作用】
本発明では、Bi系層状構造ペロブスカイト構造を有する強誘電体がその構成元素として、全てBiを含む事に注目した。すなわち、Biを含む酸化物電極を用いる事で、強誘電体と電極の界面での仕事関数および膨張係数の差が低減できる。本発明では、Biを含む酸化物導電体として、BiRu7−X、BiRh7−X、BiIr7−Xを用いた。すなわち、強誘電体の構成元素を含む酸化物電極を用いる事で、強誘電体への不純物導入を出来るだけ抑制すると共に、強誘電体との格子マッチングを図る事で、強誘電体膜中の残留応力の低減が可能となる。これらの導電性セラミックスの結晶構造はパイロクロア型(立法晶系)であり、その抵抗率はBiRu7−Xは7×10−4Ωcm、BiRh7−Xは3×10−3Ωcm、BiIr7−Xは2×10−3Ωcmである。
【0015】
これらの酸化物導電体材料の温度特性は金属的に振る舞う為、電極として十分に使用できる。更に、下部電極として用いた場合、一般的な金属薄膜電極上よりも同種の酸化物薄膜上の方が酸化物強誘電体の核発生密度が大きくなり強誘電体薄膜自体の緻密化が実現できる。
【0016】
本発明で用いられる基板としては、シリコン単結晶基板の表面をSiO絶縁膜で被覆したものである。勿論、シリコン単結晶基板としては、その表面にトランジスタ等の素子が形成されていてもかまわない。この基板上に下部電極として、上記の酸化物導電体膜を形成する。その形成方法としては、スパッタリング法、CVD法、レーザーアブレーション法、反応性蒸着法等種々の方法が可能である。電極として用いる場合の膜厚は、100〜500nmが好ましい。
【0017】
一方、上部電極として用いる場合には、Bi系強誘電体薄膜上に上記の酸化物導電体膜を直接形成する以外にも、強誘電体上にRuO、RhO、IrOを成膜した後、熱処理する事で強誘電体表面に導電性を持たせる様にする方法がある。
【0018】
【発明の実施の形態】
以下、本発明における強誘電体薄膜キャパシタおよびその製造方法の実施の形態を図を参照しながら説明する。
【0019】
まず、本発明の強誘電体キャパシタの第1の実施の形態について説明する。
【0020】
図1は、本発明の強誘電体キャパシタの第1の実施の形態を示す図である。図1の強誘電体キャパシタは、シリコンウエハ1の表面を熱酸化法により膜厚200nmのSiO層2を形成し、さらにその上にPt電極層3を膜厚100nmで形成したものを基板として用いる。
【0021】
この基板に、下部電極4としてBiRu7−X 薄膜を形成し、さらに強誘電体としてBiTi12の膜5をMOCVD法により作製する。ルテニウム原料として、Ru(C1119、ビスマス原料としてBi(o−C、チタン原料としてTi(i−OCを用いる。
【0022】
下部電極4は、ルテニウム原料を140℃に、またビスマス原料を160℃にそれぞれ加熱気化し、アルゴンガスをキャリヤとして反応ガス酸素と共に500℃に保持した基板上に供給する事でBiRu7−X 薄膜を形成する。ここで、ルテニウム原料キャリヤガス流量は150sccm、ビスマス原料キャリヤガス流量は100sccm、酸素ガス流量は500sccmとし、反応圧力は5Torrとする。1時間の成膜で膜厚100nmのBiRu7−X 薄膜4が得られる。
【0023】
強誘電体BiTi12の膜5は、ルテニウム原料の供給を止め、チタン原料を50℃に加熱気化しガス流量50sccmのアルゴンキャリヤガスでバブリングし、ビスマス原料および酸素ガスと共にBiRu7−X 薄膜電極上に供給する。この時の成膜温度は600℃とする。1時間の成膜で膜厚200nmのBiTi12膜5が得られる。この様にして作製した強誘電体薄膜上に上部電極6として、膜厚100nmのPtを蒸着してキャパシタ構造を作製する。
【0024】
作成されたキャパシタのリーク電流は、3V印加で3×10−7A/cmであった。図2は、このキャパシタのヒステリシス測定の結果を示すグラフである。残留分極については、Pr=4.3μC/cmが得られた。図3は、残留分極Prの疲労特性を示すグラフである。1010回の分極反転後のPrは4.1μC/cmであり、わずかに減少している事が分かる。比較例として、下部電極としてPtのみを使用した場合には、リーク電流密度=7×10−7A/cm、Pr=5.3μC/cmであり、1010回の分極反転後は2.6μC/cmに大きく減少した。
【0025】
このように、BiRu7−X電極を用いる事で、Prの初期値は若干減少するが、膜疲労耐性は大きく向上する事が分かる。又、下部電極としてPtのみを使用した場合には、BiTi12成膜ウエハの一部に、膜剥離が見られたが、BiRu7−X電極の場合にはウエハ全面に均一な強誘電体薄膜が得られた。
【0026】
次に、本発明の強誘電体キャパシタの第2の実施の形態について説明する。
【0027】
前述の第1の実施の形態と同様に、MOCVD法により下部電極BiRu7−X および強誘電体BiTi12を形成した後、引き続き下部電極と同様な条件で上部電極BiRu7−X を膜厚50nmで形成する。さらに、この上部電極上に第1の実施の形態と同様にPt電極を蒸着して、強誘電体キャパシタ構造を作製する。
【0028】
作成されたキャパシタのリーク電流は、4×10−8A/cmという低い値が得られた。これは、第1の実施の形態では強誘電体とPt電極が直接接触していた為に、BiTi12とPtの膨脹係数の差によって強誘電体薄膜中に残留応力が発生し、リーク電流が増大していたのに対して、この第2の実施の形態では強誘電体とPt電極の間に応力緩和に有効な酸化物電極が介在した為に、リーク電流の低減が可能となったものと考えられる。また、図4は、該キャパシタのヒステリシス測定の結果を示すグラフであり、図5は、残留分極Prの疲労特性を示すグラフである。3V印加でPr=5.3μC/cmであり、1010回の分極反転後も5.3μC/cmと全く疲労は見られなかった。これから、強誘電体薄膜の上下を酸化物電極で挟む事によって、従来のPtの様な金属電極の問題点(仕事関数の差に起因する膜疲労、膜中残留応力に起因するリーク電流の増大)が解決できることが分かる。
【0029】
次に、本発明の強誘電体キャパシタの第3の実施の形態について説明する。
【0030】
これは第2の実施の形態の上部BiRu7−X 電極の形成方法として、強誘電体BiTi12表面の導電化を試みたものである。すなわち、第1の実施の形態のBiTi12薄膜形成の後、ルテニウム原料と酸素ガスを短時間(5分)供給する。
【0031】
この様にして得られた薄膜上にPt電極を形成して、電気特性を測定した。その結果、リーク電流は7×10−8A/cmであった。またヒステリシス測定の結果はPr=5.0μC/cmと第2の実施の形態に比べて、少し特性は劣るものの第1の実施の形態よりも改善が見られた。これは、この第3の実施の形態ではBiTi12の表面において膜中のBiとRuが反応して、強誘電体薄膜表面が導電化した結果、第2の実施の形態と同様な効果が得られたものと考えられる。
【0032】
以上の実施の形態では、強誘電体としてBiTi12、酸化物電極としてBiRu7−X を用いたが、SrBiTaを初めとした他のBi系層状ペロブスカイト強誘電体およびBiRh7−X やBiIr7−X 電極を用いても同様の効果が得られる。また成膜法としても、MOCVD法以外の方法、すなわちスパッタリング法、レーザーアブレーション法、ゾルーゲル法を初めとした他の成膜方法を用いる事も可能な事は言うまでもない。
【0033】
【発明の効果】
本発明によれば、Bi系層状ペロブスカイト強誘電体を用いたキャパシタにおいて、電極としてBiを含む酸化物導電体BiRu7−X 、BiRh7−X 、BiIr7−X を用いる事により、従来のPt電極を用いた場合の膜疲労やリーク電流等の問題点が大きく改善できる。さらには、テバイスを作製する際に必要な微細加工においても、ドライエッチングの困難なPtに比べて、酸化物電極はOガスを用いて容易にエッチングできると共に、プロセス時の膜剥離がない。従って、本発明を用いる事により、Bi系強誘電体の優れた特性を有効に引き出せると共に、FRAM等のデバイス作製プロセスを簡便にする事が可能となる。
【図面の簡単な説明】
【図1】本発明の強誘電体キャパシタの断面構造を示す図である。
【図2】本発明のキャパシタの第1の実施の形態のヒステリシス特性を示すグラフである。
【図3】本発明のキャパシタの第1の実施の形態の疲労特性を示すグラフである。
【図4】本発明のキャパシタの第2の実施の形態のヒステリシス特性を示すグラフである。
【図5】本発明のキャパシタの第2の実施の形態の疲労特性を示すグラフである。
【符号の説明】
1 シリコンウエハ
2 絶縁膜
3 電極層
4 下部電極
5 強誘電体薄膜
6 上部電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure of a ferroelectric thin film element, and more particularly, to a ferroelectric thin film capacitor used for a ferroelectric nonvolatile memory element, a pyroelectric infrared sensor element, a piezoelectric element, and the like, and a method of manufacturing the same.
[0002]
[Prior art]
Ferroelectric crystals have functions such as spontaneous polarization, high dielectric constant, pyroelectric effect, piezoelectric effect, and electro-optic effect. Conventionally, capacitors, infrared sensors, ultrasonic oscillators, pressure sensors, frequency filters, optical switches, etc. Has been applied to the development of many devices.
[0003]
Recently, with the development of thin film technology for ferroelectric materials, high quality ferroelectric thin films can be formed on various substrates. By applying this ferroelectric thin film to a semiconductor device, it is possible to improve its performance and to develop a new device which has not existed before. For example, by applying a high dielectric constant material to a capacitor of a DRAM, planar type high integration can be realized, and the manufacturing process can be simplified and the cost can be reduced. Further, a non-volatile memory (FRAM) utilizing spontaneous polarization of the ferroelectric capacitor has been developed, and a new memory device having a non-volatile operation added to a DRAM has been realized. To develop such a device, the residual spontaneous polarization (Pr) is large, the coercive electric field (Ec) is small, the leakage current is low, and the film thickness is 200 nm or less for reducing the driving voltage and matching with the semiconductor process. Requires a high quality thin film. In addition, for the development of a device using spontaneous polarization, it is essential to develop a highly reliable material with less deterioration (fatigue) of ferroelectric characteristics due to repeated polarization inversion.
[0004]
At present, a series of Bi-based layered perovskite ferroelectrics has attracted attention as a ferroelectric material with little film property fatigue. These materials, chemical formula Bi 2 A m B m O 3m + 3 ( however, A is Na 1+, K 1+, Pb 2+ , Ca 2+, Sr 2+, any one selected from Ba 2+ and Bi 3+, B is Any one selected from Fe 3+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ , and Mo 6+ , and m is a natural number of 1 or more).
[0005]
Among these Bi-based ferroelectric materials, Bi 4 Ti 3 O 12 has a layered perovskite structure belonging to an orthorhombic system (lattice constant: a = 5.4100, b = 5.4489, c = 32.815 Å). The spontaneous polarization is such that Pr in the a-axis direction is about 50 μC / cm 2 , coercive electric field Ec is about 50 kV / cm, Pr in the c-axis direction is about 4 μC / cm 2 , and Ec is about 4 kV / cm 2 . cm and excellent properties.
[0006]
In order to realize these excellent material characteristics with a thin film, it is important to consider an electrode material for forming a capacitor structure. In other words, when the work function difference between the ferroelectric and the electrode is large, carriers due to oxygen defects and space charges in the ferroelectric thin film are trapped at the electrode interface, and an anti-electric field is generated. Since the electric field intensity applied to the ferroelectric thin film decreases, repeated polarization reversal causes fatigue of film characteristics. Furthermore, a residual reaction occurs in the ferroelectric thin film due to a difference in expansion coefficient between the ferroelectric and the electrode, which causes film leakage due to leak current or insufficient adhesion.
[0007]
Conventionally, Pt having excellent heat resistance and oxidation resistance when forming a ferroelectric thin film has been used as an electrode for a ferroelectric capacitor used in a DRAM or FRAM. However, considering the difference between the work function and the expansion coefficient at the interface with the ferroelectric, the oxide electrode material similar to the ferroelectric material is desirable as the electrode material. In fact, in the case of ferroelectric PZT (Pb (Zr, Ti) O 3 ), it has been reported that fatigue of film characteristics is reduced by using RuO 2 or IrO 2 instead of the Pt electrode. (C. Kwok et al., 4th International Symposium on Integrated Ferroelectrics, Proceedings (1992) 421).
[0008]
[Problems to be solved by the invention]
As described above, it is important to select an electrode material that matches each ferroelectric material in order to bring out sufficient ferroelectric capacitor characteristics and make it applicable to DRAMs and FRAMs. That is, it is necessary to develop an electrode material having the smallest possible difference between the work function and the expansion coefficient at the interface with the ferroelectric.
[0009]
The present invention provides an electrode material which can be applied to a ferroelectric capacitor using a ferroelectric material having a Bi-based layered perovskite structure, has less fatigue in film characteristics and less leakage current, and has good adhesion to the ferroelectric material. The purpose is to do.
[0010]
[Means for Solving the Problems]
The above-mentioned object is to provide a ferroelectric thin film element having a lower electrode layer, a ferroelectric thin film, and an upper electrode layer in this order on a substrate, wherein the ferroelectric thin film converts A into Na 1+ , K 1+ , Pb 2+ , Ca 2+ , Sr 2+ , Ba 2+ and Bi 3+ , B is Fe 3+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Mo 6+ , m is a natural number of 1 or more upon a has a Bi-based layered perovskite crystal structure expressed by a chemical formula Bi 2 a m-1 B m O 3m + 3, at least one of the lower electrode layer and the upper electrode layer, Ru, and Rh and Ir The ferroelectric thin film element according to claim 1, wherein the ferroelectric thin film element is an oxide conductor containing any one of them and Bi .
[0013]
The object described above is a method of manufacturing a ferroelectric thin film element in which a lower electrode layer, a ferroelectric thin film, and an upper electrode layer are sequentially formed on a substrate, wherein the ferroelectric thin film is formed by converting A into Na 1 + , K 1 + , Pb 2 + , Ca 2 + , Sr 2 + , Ba 2 +, or Bi 3 + , B is Fe 3 + , Ti 4 + , Nb 5 + , Ta 5 + , W 6 + and one of Mo 6 +, upon one or more natural number m, have a Bi-based layered perovskite crystal structure expressed by a chemical formula Bi 2 a m-1 B m O 3m + 3, the 3. The ferroelectric thin film according to claim 2 , wherein a metal oxide film containing any one of Ru, Rh and Ir is formed on the ferroelectric thin film, and the surface of the ferroelectric film is made conductive by a solid-phase reaction. This is achieved by a method of manufacturing a dielectric thin film element.
[0014]
[Action]
In the present invention, attention has been paid to the fact that all ferroelectrics having a Bi-based layered perovskite structure contain Bi as a constituent element thereof. That is, by using the oxide electrode containing Bi, the difference between the work function and the expansion coefficient at the interface between the ferroelectric and the electrode can be reduced. In the present invention, Bi 2 Ru 2 O 7 -X , Bi 2 Rh 2 O 7 -X , and Bi 2 Ir 2 O 7 -X were used as the oxide conductor containing Bi. That is, by using an oxide electrode containing a constituent element of the ferroelectric material, the introduction of impurities into the ferroelectric material is suppressed as much as possible, and by lattice matching with the ferroelectric material, The residual stress can be reduced. The crystal structure of these conductive ceramics is a pyrochlore type (cubic crystal system), and the resistivity is 7 × 10 −4 Ωcm for Bi 2 Ru 2 O 7-X and 3 × for Bi 2 Rh 2 O 7-X. 10 −3 Ωcm and Bi 2 Ir 2 O 7-X are 2 × 10 −3 Ωcm.
[0015]
Since the temperature characteristics of these oxide conductor materials behave metallically, they can be sufficiently used as electrodes. Furthermore, when used as a lower electrode, the nucleation density of an oxide ferroelectric is higher on an oxide thin film of the same type than on a general metal thin film electrode, and the ferroelectric thin film itself can be densified. .
[0016]
The substrate used in the present invention is a single-crystal silicon substrate whose surface is covered with a SiO 2 insulating film. Of course, as a silicon single crystal substrate, an element such as a transistor may be formed on the surface thereof. The above oxide conductor film is formed as a lower electrode on this substrate. Various methods such as a sputtering method, a CVD method, a laser ablation method, and a reactive vapor deposition method are possible as the forming method. When used as an electrode, the thickness is preferably 100 to 500 nm.
[0017]
On the other hand, when used as the upper electrode, RuO 2 , RhO 2 , and IrO 2 were formed on the ferroelectric in addition to directly forming the above oxide conductor film on the Bi-based ferroelectric thin film. After that, there is a method of imparting conductivity to the ferroelectric surface by performing a heat treatment.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a ferroelectric thin film capacitor and a method of manufacturing the same according to the present invention will be described with reference to the drawings.
[0019]
First, a first embodiment of the ferroelectric capacitor of the present invention will be described.
[0020]
FIG. 1 is a diagram showing a ferroelectric capacitor according to a first embodiment of the present invention. The ferroelectric capacitor shown in FIG. 1 has a 200 nm thick SiO 2 layer 2 formed on the surface of a silicon wafer 1 by thermal oxidation, and a Pt electrode layer 3 formed thereon with a 100 nm thickness as a substrate. Used.
[0021]
On this substrate, a Bi 2 Ru 2 O 7 -X thin film is formed as the lower electrode 4, and a Bi 4 Ti 3 O 12 film 5 is formed as a ferroelectric substance by MOCVD. Ru (C 11 H 19 O 2 ) 3 is used as a ruthenium raw material, Bi (o-C 7 H 7 ) 3 is used as a bismuth raw material, and Ti (i-OC 3 H 7 ) 4 is used as a titanium raw material.
[0022]
The lower electrode 4, the ruthenium source to 140 ° C., also bismuth raw material respectively heated and vaporized in 160 ℃, Bi 2 Ru 2 O by being supplied onto the substrate maintained at 500 ° C. with the reaction gas oxygen and argon gas as a carrier Form a 7-X thin film. Here, the flow rate of the ruthenium raw material carrier gas is 150 sccm, the flow rate of the bismuth raw material carrier gas is 100 sccm, the flow rate of the oxygen gas is 500 sccm, and the reaction pressure is 5 Torr. 1 thickness 100nm in film formation hours Bi 2 Ru 2 O 7-X thin film 4 is obtained.
[0023]
The film 5 of the ferroelectric Bi 4 Ti 3 O 12 stops supplying the ruthenium raw material, heats and vaporizes the titanium raw material to 50 ° C., bubbling with an argon carrier gas at a gas flow rate of 50 sccm, and Bi 2 Ru with the bismuth raw material and oxygen gas. It is supplied on a 2 O 7-X thin film electrode. The film formation temperature at this time is 600 ° C. Thickness 200nm Bi 4 Ti 3 O 12 film 5 can be obtained by deposition of 1 hour. A 100 nm-thick Pt film is deposited as the upper electrode 6 on the ferroelectric thin film thus manufactured to form a capacitor structure.
[0024]
The leakage current of the formed capacitor was 3 × 10 −7 A / cm 2 when 3 V was applied. FIG. 2 is a graph showing the result of the hysteresis measurement of this capacitor. Regarding remanent polarization, Pr = 4.3 μC / cm 2 was obtained. FIG. 3 is a graph showing the fatigue characteristics of the remanent polarization Pr. After 10 10 polarization inversions, Pr was 4.1 μC / cm 2 , which indicates that it was slightly reduced. As a comparative example, when only Pt was used as the lower electrode, the leak current density was 7 × 10 −7 A / cm 2 , Pr was 5.3 μC / cm 2 , and 2 after 10 10 polarization inversions. 0.6 μC / cm 2 .
[0025]
Thus, by using a Bi 2 Ru 2 O 7-X electrode, the initial value of Pr decreases slightly, but the film fatigue resistance it can be seen that greatly improved. When only Pt was used as the lower electrode, film peeling was observed on a part of the Bi 4 Ti 3 O 12 film-formed wafer, but in the case of the Bi 2 Ru 2 O 7-X electrode, the film was peeled off. A uniform ferroelectric thin film was obtained on the entire surface.
[0026]
Next, a second embodiment of the ferroelectric capacitor of the present invention will be described.
[0027]
Like the first embodiment described above, after forming the lower electrode Bi 2 Ru 2 O 7-X and the ferroelectric Bi 4 Ti 3 O 12 by MOCVD, the upper electrode in a subsequently the same conditions as the lower electrode the Bi 2 Ru 2 O 7-X is formed to a thickness of 50nm. Further, a Pt electrode is deposited on the upper electrode in the same manner as in the first embodiment, to produce a ferroelectric capacitor structure.
[0028]
The leakage current of the formed capacitor was as low as 4 × 10 −8 A / cm 2 . This is because, in the first embodiment, since the ferroelectric and the Pt electrode were in direct contact with each other, residual stress was generated in the ferroelectric thin film due to the difference in expansion coefficient between Bi 4 Ti 3 O 12 and Pt. In the second embodiment, an oxide electrode effective for stress relaxation is interposed between the ferroelectric and the Pt electrode, while the leak current is increased. Therefore, the leak current can be reduced. It is considered that it became. FIG. 4 is a graph showing a result of the hysteresis measurement of the capacitor, and FIG. 5 is a graph showing a fatigue characteristic of the residual polarization Pr. Pr was 5.3 μC / cm 2 when 3 V was applied, and was 5.3 μC / cm 2 even after 10 10 polarization inversions, indicating no fatigue. From now on, by sandwiching the upper and lower portions of the ferroelectric thin film between the oxide electrodes, the problems of the conventional metal electrode such as Pt (film fatigue due to a difference in work function, increase in leakage current due to residual stress in the film) ) Can be solved.
[0029]
Next, a third embodiment of the ferroelectric capacitor of the present invention will be described.
[0030]
This is an attempt to make the surface of the ferroelectric Bi 4 Ti 3 O 12 conductive as a method of forming the upper Bi 2 Ru 2 O 7 -X electrode of the second embodiment. That is, after forming the Bi 4 Ti 3 O 12 thin film of the first embodiment, a ruthenium raw material and oxygen gas are supplied for a short time (5 minutes).
[0031]
A Pt electrode was formed on the thin film thus obtained, and the electrical characteristics were measured. As a result, the leak current was 7 × 10 −8 A / cm 2 . As a result of the hysteresis measurement, Pr = 5.0 μC / cm 2 , which was slightly inferior to the second embodiment, but improved compared to the first embodiment. This is because, in the third embodiment, Bi in the film reacts with Ru on the surface of Bi 4 Ti 3 O 12 to make the surface of the ferroelectric thin film conductive, and as a result, similar to the second embodiment. It is considered that a significant effect was obtained.
[0032]
In the above embodiment, Bi 4 Ti 3 O 12 was used as the ferroelectric and Bi 2 Ru 2 O 7-X was used as the oxide electrode. However, other Bi-based layers such as SrBi 2 Ta 2 O 9 were used. The same effect can be obtained by using a perovskite ferroelectric and Bi 2 Rh 2 O 7 -X or Bi 2 Ir 2 O 7 -X electrodes. Further, it goes without saying that a method other than the MOCVD method, that is, other film forming methods such as a sputtering method, a laser ablation method, and a sol-gel method can be used as the film forming method.
[0033]
【The invention's effect】
According to the present invention, in a capacitor using a Bi-based layered perovskite ferroelectric, an oxide conductor Bi 2 Ru 2 O 7 -X , Bi 2 Rh 2 O 7 -X , Bi 2 Ir 2 containing Bi as an electrode is used. By using O 7 -X , problems such as film fatigue and leak current when a conventional Pt electrode is used can be greatly improved. Further, even in the fine processing required for manufacturing a device, the oxide electrode can be easily etched using O 2 gas as compared with Pt which is difficult to dry-etch, and there is no film peeling during the process. Therefore, by using the present invention, the excellent characteristics of the Bi-based ferroelectric can be effectively brought out, and the process of manufacturing a device such as an FRAM can be simplified.
[Brief description of the drawings]
FIG. 1 is a diagram showing a sectional structure of a ferroelectric capacitor of the present invention.
FIG. 2 is a graph showing hysteresis characteristics of the capacitor according to the first embodiment of the present invention.
FIG. 3 is a graph showing fatigue characteristics of the capacitor according to the first embodiment of the present invention.
FIG. 4 is a graph showing hysteresis characteristics of the capacitor according to the second embodiment of the present invention.
FIG. 5 is a graph showing fatigue characteristics of the capacitor according to the second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Silicon wafer 2 Insulating film 3 Electrode layer 4 Lower electrode 5 Ferroelectric thin film 6 Upper electrode

Claims (2)

基板上に下部電極層と強誘電体薄膜と上部電極層とを順番に備える強誘電体薄膜素子であって、前記強誘電体薄膜が、AをNa1+、K1+、Pb2+、Ca2+、Sr2+、Ba2+及びBi3+のいずれか1つ、BをFe3+、Ti4+、Nb5+、Ta5+、W6+及びMo6+のいずれか1つ、mを1以上の自然数とした際に、化学式Bim−13m+3で表されるBi系層状ペロブスカイト結晶構造を有し、前記下部電極層及び前記上部電極層の少なくとも一方が、Ru、Rh及びIrのいずれか1つとBiとを含む酸化物導電体であることを特徴とする強誘電体薄膜素子。What is claimed is: 1. A ferroelectric thin-film device comprising a substrate in which a lower electrode layer, a ferroelectric thin film, and an upper electrode layer are provided in this order, wherein the ferroelectric thin film is composed of Na 1+ , K 1+ , Pb 2+ , Ca 2+ , When any one of Sr 2+ , Ba 2+ and Bi 3+ , B is any one of Fe 3+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Mo 6+ and m is a natural number of 1 or more, has a Bi-based layered perovskite crystal structure expressed by a chemical formula Bi 2 a m-1 B m O 3m + 3, at least one of the lower electrode layer and the upper electrode layer, Ru, or one of Bi Rh and Ir A ferroelectric thin film element characterized by being an oxide conductor containing: 基板上に下部電極層と強誘電体薄膜と上部電極層とを順番に形成する強誘電体薄膜素子の製造方法であって、前記強誘電体薄膜が、AをNa1+、K1+、Pb2+、Ca2+、Sr2+、Ba2+及びBi3+のいずれか1つ、BをFe3+、Ti4+、Nb5+、Ta5+、W6+及びMo6+のいずれか1つ、mを1以上の自然数とした際に、化学式Bim−13m+3で表されるBi系層状ペロブスカイト結晶構造を有し、前記強誘電体薄膜上に、Ru、Rh及びIrのいずれか1つを含む金属酸化物膜を形成し、固相反応によって該強誘電体膜表面を導電化することを特徴とする強誘電体薄膜素子の製造方法。A method of manufacturing a ferroelectric thin film element in which a lower electrode layer, a ferroelectric thin film, and an upper electrode layer are sequentially formed on a substrate, wherein the ferroelectric thin film converts A into Na 1+ , K 1+ , Pb 2+. , Ca 2+ , Sr 2+ , Ba 2+ and Bi 3+ , B is Fe 3+ , Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Mo 6+ , m is a natural number of 1 or more. metal when the have a Bi-based layered perovskite crystal structure expressed by a chemical formula Bi 2 a m-1 B m O 3m + 3, comprising the ferroelectric thin film, Ru, one of Rh and Ir A method for manufacturing a ferroelectric thin film element, comprising forming an oxide film and making the surface of the ferroelectric film conductive by a solid phase reaction.
JP23135395A 1995-09-08 1995-09-08 Ferroelectric thin film element Expired - Fee Related JP3545850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23135395A JP3545850B2 (en) 1995-09-08 1995-09-08 Ferroelectric thin film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23135395A JP3545850B2 (en) 1995-09-08 1995-09-08 Ferroelectric thin film element

Publications (2)

Publication Number Publication Date
JPH0982906A JPH0982906A (en) 1997-03-28
JP3545850B2 true JP3545850B2 (en) 2004-07-21

Family

ID=16922297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23135395A Expired - Fee Related JP3545850B2 (en) 1995-09-08 1995-09-08 Ferroelectric thin film element

Country Status (1)

Country Link
JP (1) JP3545850B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195768A (en) 1997-10-22 1999-07-21 Fujitsu Ltd Electronic device including perovskite oxide film, method of manufacturing the same, and ferroelectric capacitor
JP2000077616A (en) * 1998-09-03 2000-03-14 Hitachi Ltd Dielectric element, method of manufacturing the same, and semiconductor device
JP2001196547A (en) 2000-01-12 2001-07-19 Fujitsu Ltd Semiconductor device
US7205056B2 (en) * 2001-06-13 2007-04-17 Seiko Epson Corporation Ceramic film and method of manufacturing the same, ferroelectric capacitor, semiconductor device, and other element

Also Published As

Publication number Publication date
JPH0982906A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
JP3133922B2 (en) Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element
US5998819A (en) Thin ferroelectric film element having a multi-layered thin ferroelectric film and method for manufacturing the same
US5821005A (en) Ferroelectrics thin-film coated substrate and manufacture method thereof and nonvolatile memory comprising a ferroelectrics thinfilm coated substrate
US20050242381A1 (en) Ferroelectric capacitor, process for production thereof and semiconductor device using the same
JP3480624B2 (en) Ferroelectric thin film coated substrate, method of manufacturing the same, and capacitor structure element
JPH0855967A (en) Method for manufacturing ferroelectric thin film capacitor
JPH09153597A (en) Ferroelectric thin film element manufacturing method, ferroelectric thin film element, and ferroelectric memory element
JP2003532275A (en) Recovery by voltage cycling of ferroelectric film damaged by process
JP3891603B2 (en) Ferroelectric thin film coated substrate, capacitor structure element, and method for manufacturing ferroelectric thin film coated substrate
JP2000169297A (en) Method for producing oxide ferroelectric thin film, oxide ferroelectric thin film, and oxide ferroelectric thin film element
EP1035589B1 (en) Iridium composite barrier structure and method for same
JP3095944B2 (en) Method for producing oxide crystal thin film and thin film element
JP3545850B2 (en) Ferroelectric thin film element
JP3292795B2 (en) Method for manufacturing semiconductor memory device
JPH09102587A (en) Ferroelectric thin film element
JPH0969614A (en) Ferroelectric thin film, dielectric thin film, and method of manufacturing integrated circuit including ferroelectric thin film
JP3366212B2 (en) Method of manufacturing ferroelectric thin film element, ferroelectric thin film element, and ferroelectric memory device
JPH1056140A (en) Ferroelectric memory device and method of manufacturing the same
JPH09260516A (en) Ferroelectric thin film coated substrate and capacitor structure element using the same
JPH08340084A (en) Method for producing dielectric thin film and dielectric thin film produced by the method
JPH11233734A (en) Semiconductor memory device and method of manufacturing the same
JP3294214B2 (en) Thin film capacitors
JPH088403A (en) Ferroelectric crystal thin film coated substrate, ferroelectric thin film element including the substrate, and method for manufacturing the ferroelectric thin film element
JP3277097B2 (en) Manufacturing method of ferroelectric thin film
JPH1012833A (en) Substrate coated with ferroelectric film and use thereof

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees