JP3552512B2 - Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper - Google Patents
Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper Download PDFInfo
- Publication number
- JP3552512B2 JP3552512B2 JP00842598A JP842598A JP3552512B2 JP 3552512 B2 JP3552512 B2 JP 3552512B2 JP 00842598 A JP00842598 A JP 00842598A JP 842598 A JP842598 A JP 842598A JP 3552512 B2 JP3552512 B2 JP 3552512B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- electrolytic
- dissolved oxygen
- impurities
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Electrolytic Production Of Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、銅の電解精製方法および電解採取方法に関し、特に、不純物の製品への混入を防止し、製品品質を維持する銅の電解精製方法および銅電解液における脱不純物のための電解採取方法に関する。
【0002】
【従来の技術】
銅などの金属の電解精製においては、アノードにAs、Sb、Bi等の不純物を含むことが多い。これらの不純物元素は、電解に伴い電解液に溶出するか、スライムとして電解槽の槽底に沈積する。電解液に溶出した場合、かみ込みあるいは電析して、電気銅を汚染( Contamination)し、製品品質を著しく低下させる。このため、電解液に溶出する不純物を、一定の許容濃度以下に維持することが求められていた。
【0003】
電解液に溶出した不純物を除去(脱不純物)するのに、電解採取方法による浄液処理が行われている(特願平8−219999号)。該電解採取方法では、鉛などの不溶性アノードを使用して、表面から酸素を発生させ、酸素の気泡あるいは電解液に溶け込んだ酸素と接触させることで、不純物を酸化、沈殿させて除去する。
【0004】
しかし該電解採取方法は、電流効率が低いために電力コストが高く、除去効率も低く、また、アルシン等の有毒性ガスや、爆発性ガスが発生する。さらに、ガスの発生に起因し作業環境を害するミストの拡散を完全に防止することは、電解採取槽を密閉することがむしろ危険であり、困難であった。また、除去した不純物には多量の銅を含んでいるため溶錬工程を繰り返さなくてはならず、不純物の対応力への制約となっていた。
【0005】
その他に、電解液から不純物を効率的に除去する方法として、例えばキレート樹脂を使用する方法がある。この方法では、不純物を高純度に分離できるメリットがあるが、一般に建設コストおよび操業コストが高く、除去した不純物の処理を検討する必要があるなどの問題があり、従来の工程の中で、容易に行える方法とは言い難い。
【0006】
一方、電解精製において、電解液に溶出せず、電解精製槽の槽底に沈積する不純物(スライム)は、スライム処理工程で処理され、多くは製品として回収し供される。この工程による不純物の回収は、効率が高く、電力コストも低い。
【0007】
従って、銅の電解精製におけるアノードの不純物はスライムとして分離することが、電気銅の品質面のみならずコスト面からも有利である。しかし、一般的に、スライム処理工程においても、不純物の処理能力には制限があるので、不純物の全量をスライムとして沈積させるのが常に有利とは限らない。
【0008】
以上のことから、銅の電解精製において、不純物の溶出と沈積との割合である溶出率を、一定に制御することが望まれていた。
【0009】
これに関し、従来の銅の電解精製方法において、アノードから不純物を電解液に溶出させずにスライムとして沈積させるため、すなわち溶出率を下げるため、アノード組成の変更が行われてきた。しかし、不純物の溶出機構に未だ不明確な部分が多いことから、経験によるアノード組成の決定が一般的であり、希望通りの正確な溶出率を得ること、すなわち不純物を溶出と沈積とに正確に分配することは困難であった。
【0010】
【発明が解決しようとする課題】
本発明は、銅の電解精製方法において、アノードからの不純物の溶出量を任意に制御し、安定した操業を実現することを目的とする。
【0011】
【課題を解決するための手段】
上記の課題を解決するために、本発明の銅の電解精製方法では、電解液の溶存酸素濃度を制御することにより、アノードからの不純物の溶出量を制御する。
【0012】
供給する電解液の溶存酸素濃度を制御するために、供給前に、不溶性アノードを使用して前記電解液に対し、断続的に通電して溶存酸素の発生効率を制御する。
【0013】
また、本発明の電解液から不純物を除去する電解採取方法は、通電を断続的に行う断続通電法により、電解液中の溶存酸素の発生効率を制御する。
【0014】
前記断続通電法における通電時間が、全体に対して30〜50%であることが好ましい。
【0015】
【発明の実施の形態】
銅の電解精製において、アノードからの不純物の溶出機構については、確かな根拠がないが、アノードから電解液中に溶出した不純物が、酸化されて酸化物あるいは複塩等の形で沈積すると考えられる。このため、電解液に空気などのガスや、過酸化水素などの酸化剤を投入して、溶出した不純物を効率よく酸化除去することで、操業を効率的にすることが考えられるが、上記ガスの吹き込みは、一般に効率が極めて低く、酸化剤の投入は、時としてスケールを生じるので、かえって操業を困難にすることがある。
【0016】
本発明者は、電解液中に溶出した不純物を、効率的に酸化する方法を検討した。その結果、電解液中の溶存酸素濃度が増加した場合、電解液に溶出する不純物の量が減少し、スライムとして沈積する不純物の量が増加する現象、すなわち不純物の溶出率が減少する現象を利用して、電解液中の溶存酸素濃度を操作することで、電解精製における不純物の溶出率を制御できることを見出した。
【0017】
また、銅の電解精製に用いる電解液は、電解採取により浄液処理されて給液されるのが通常である。そこで、電解精製に供給される電解液中の溶存酸素濃度を高める方法として、電解採取における不溶性アノードによる電解が考えられ、その他に、酸素ガスを吹き込む方法や、過酸化水素などの、酸素を発生する液体を混合する方法も考えられる。しかし、電解以外の方法は、効率、コストの面で、電解よりはるかに不利であることが確認されている。
【0018】
前記電解採取では、電解液中の不純物が、アノード表面に発生する酸素ガスにより酸化され、電解採取槽の槽底に沈積することで、電解液から除去されるものと考えられるが、一方、該酸素ガスは気泡となって液面へ上昇し、液面からミストとして拡散してしまう。従って、酸素ガスを気泡として放出させるのではなく、溶存酸素として電解液に溶け込ませることが、電解液中の不純物を酸化することと、溶存酸素を効率よく得ることに効果的であると考えられる。
【0019】
本発明者は、脱不純物のための電解採取における通電を、短時間で通電、停電を繰り返す断続通電とすることで、溶存酸素の発生効率が高められることを見出した。すなわち、従来行われてきた連続通電では、アノード表面で発生した酸素は気泡として成長するにつれて、アノード表面にもはやとどまることのできない限度の大きさを超えてしまい、アノードから離れて電解液面に上昇しミストとなる。このため、電解液への酸素の溶け込みが十分に行えないまま、大気放出してしまうことになる。これに対し断続通電を行うと、アノード表面での気泡の成長が停止する停電操作中の時間だけ、酸素の気泡は電解液内に長くとどまり、電解液への酸素の溶け込みが進行して、溶存酸素濃度が高くできることになると考えられる。
【0020】
本発明の脱不純物の電解採取方法では、電解採取槽の通電を、全体に対して30〜50%の通電時間とする断続的通電とすることで、溶存酸素の発生効率を高く維持した電解液を得る。そして、このように溶存酸素濃度が制御された電解液を、電解精製槽に供給する。電解精製槽の電解液の溶存酸素濃度が制御されることで、アノードからの不純物の溶出量やスライム量を制御することができる。
【0021】
なお、本発明の電解液中の溶存酸素制御方法は、不溶性アノードを使用した電解槽によるものであって、電解採取槽の名称に限られない。
【0022】
【実施例1】
幅1260mm、長さ3000mm、深さ1350mmの電解精製槽を8槽使用し、それぞれ精製アノード26枚と銅種板カソード27枚を装入した。精製アノードは横幅1030mm、縦幅1050mm、厚さ38mm、単重370kgであり、不純物品位はPb0.11%、As0.08%、Sb0.042%、Bi0.024%である。銅種板カソードは横幅1070mm、縦幅1050mm、初期厚さ0.7mmである。
【0023】
次に、別に設けた電解採取槽から平均溶存酸素濃度(DO)10mg/リットルの排液を得て、8槽の前記電解精製槽に給液した。ただし、各電解精製槽では、電解採取槽を通液しない電解液と混合することで、各電解精製槽のDOを0.12〜3mg/リットルに変化させて調整した。
【0024】
8槽の電解精製槽を、一槽あたり16kAの電流で430時間通電した。通電後、電解精製槽の槽底のスライムを回収し、洗浄後、化学分析した。また同時に、通電前後での精製アノードの重量の変化から、精製アノードからの不純物の溶出量を測定した。この通電を同一組成の精製アノードを用いて3回繰り返した。なお、電解採取槽の排液の浮遊成分を測定したが、2mg/リットル以下であり、一般の電解精製槽の排液の浮遊成分の、1〜2mg/リットルとほとんど変わらないことから、電解採取槽で生成したスケールが電解精製槽に送り込まれていないことを確認した。
【0025】
不純物の電解液への溶出率を以下の式(数1)で定義し、各元素の溶出率と、電解精製槽の溶存酸素濃度との関係を図1にプロットした。
【0026】
【数1】
溶出率(%)=100−スライムの不純物量/アノードからの不純物溶減量×100
【0027】
図1に示されるように、溶出率は電解液のDO濃度が増加するに伴い減少し、DO濃度を一定に維持することで、任意の不純物溶出率に制御できることが確認された。
【0028】
なお、電気銅の中央部を貫通ボーリングし、化学溶解して分析した結果を表1に示す。溶存酸素濃度の高い電解液を給液しても、電気銅の品質には全く悪影響を及ぼさないことが確認された。
【0029】
【表1】
【0030】
【実施例2】
幅1260mm、長さ3000mm、深さ1350mmの電解採取槽を使用し、鉛アノード12枚、銅カソード13枚を装入した。鉛アノードは、横幅1070mm、縦幅1050mm、厚さ40mmで、銅カソードは、横幅1070mm、縦幅1050mm、初期厚さ0.7mmで、鉛アノードの間隔は210mmとした。
【0031】
該電解採取槽において、銅濃度50g/リットル、硫酸濃度190g/リットル、液温60℃の電解液を給液として、毎分30リットルの流量で供給し、8kAの電流で連続通電した。給液としての電解液の平均溶存酸素濃度は、溶存酸素濃度計(東亜電波工業製、型式DO−20A)で測定して、0.12mg/リットルと一定だった。
【0032】
連続通電して24時間経過後から、通電サイクルを、1分間の停電と1分間の通電を繰り返す断続通電に設定した。この通電サイクルを設定してから24時間経過した後に、排液と給液の平均溶存酸素濃度を溶存酸素濃度計(東亜電波工業製、型式DO−20A)で測定した。
【0033】
それからは、異なる通電サイクル効率で設定し直して24時間経過後に、溶存酸素濃度の測定を繰り返した。
【0034】
通電電流値と給排液の平均溶存酸素濃度とから下式(数2)を用いて、溶存酸素の発生効率を算出し、全体に占める通電時間の割合である通電サイクル効率(%)との関係を求めた。
【0035】
【数2】
発生効率(%)=(排液溶存酸素濃度−給液溶存酸素濃度)×流量×60/(0.2985×通電電流値)×100
【0036】
式中、溶存酸素濃度の単位は(g/リットル)、流量の単位は(リットル/分)、通電電流値は(A)であり、定数の0.2985は、通電電流値を1Aとして1時間で得られる酸素が理論上0.2985gであることを示す。
【0037】
その結果、図2に示すように、通電サイクル効率(%)を30〜50%とすることで、高い溶存酸素の発生効率を得られることがわかった。高い通電サイクル効率を適用することが、電解採取槽を効率よく運転することになるので、通電サイクル効率を50%とする時が、最も効率よく溶存酸素濃度の高い電解液を得られることになる。
【0038】
【発明の効果】
本発明の銅の電解精製方法、および脱不純物のための電解採取方法により、従来の電解精製槽および電解採取槽から最小限の設備改造のみで、不純物を溶出と沈積とに正確に分配する制御が、容易にできるようになり、安定した操業と高い製品品質の維持ができるようになった。
【0039】
また、本発明の脱不純物のための電解採取方法により、従来より高効率で高い溶存酸素濃度の電解液が得られるようになり、浄液工程における効率の向上に加えて、ミストの発生が減少できるようになった。
【図面の簡単な説明】
【図1】電解精製槽における給液溶存酸素濃度と溶出率の関係を示すグラフである。
【図2】電解採取槽における溶存酸素の発生効率と通電サイクル効率の関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for electrolytically refining copper and a method for electrowinning copper, and more particularly, to a method for electrolytically refining copper and an electrowinning method for removing impurities in a copper electrolytic solution, which prevent contamination of a product with a product and maintain product quality. About.
[0002]
[Prior art]
In electrolytic refining of metals such as copper, the anode often contains impurities such as As, Sb, and Bi. These impurity elements are eluted into the electrolytic solution during electrolysis or are deposited as slime on the bottom of the electrolytic cell. When eluted in the electrolytic solution, it bites or deposits, contaminating the electrolytic copper, and significantly lowering the product quality. For this reason, it has been demanded that impurities eluted in the electrolyte be maintained at a certain allowable concentration or less.
[0003]
In order to remove the impurities eluted in the electrolytic solution (de-impurity), a purification treatment by an electrolytic sampling method is performed (Japanese Patent Application No. 8-219999). In this electrowinning method, oxygen is generated from the surface using an insoluble anode such as lead, and is brought into contact with oxygen bubbles or oxygen dissolved in the electrolytic solution, thereby oxidizing and precipitating and removing impurities.
[0004]
However, the electrowinning method has a low current efficiency, so that the power cost is high, the removal efficiency is low, and a toxic gas such as arsine or an explosive gas is generated. Furthermore, it was rather dangerous and difficult to completely prevent the diffusion of the mist that harms the working environment due to the generation of gas, because it is rather dangerous to seal the electrowinning tank. Further, since the removed impurities contain a large amount of copper, the smelting process has to be repeated, which is a constraint on the ability of the impurities to cope.
[0005]
Other methods for efficiently removing impurities from the electrolyte include, for example, a method using a chelate resin. This method has the advantage that impurities can be separated with high purity, but generally has high construction costs and operating costs, and it is necessary to consider the treatment of the removed impurities. This is hard to say.
[0006]
On the other hand, in the electrolytic refining, impurities (slime) which do not elute in the electrolytic solution and deposit on the bottom of the electrolytic refining tank are treated in a slime treatment step, and are mostly collected and provided as products. The recovery of impurities by this step is high in efficiency and low in power cost.
[0007]
Therefore, it is advantageous from the viewpoint of not only the quality of the electrolytic copper but also the cost to separate the impurities of the anode in the electrolytic refining of copper as slime. However, in general, even in the slime treatment step, there is a limitation in the ability to treat impurities, and it is not always advantageous to deposit the entire amount of impurities as slime.
[0008]
From the above, it has been desired to control the elution rate, which is the ratio between the elution and deposition of impurities, in the electrolytic refining of copper to be constant.
[0009]
In this regard, in the conventional copper electrolytic refining method, the anode composition has been changed in order to deposit impurities as slime from the anode without eluting them into the electrolytic solution, that is, to lower the elution rate. However, since there are still many unclear points in the mechanism of elution of impurities, it is common to determine the anode composition based on experience, and to obtain a desired exact elution rate, that is, to accurately dissolve impurities into elution and deposition. It was difficult to distribute.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to realize a stable operation by arbitrarily controlling the elution amount of impurities from an anode in a method for electrolytic refining of copper.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the method for electrolytically refining copper of the present invention, the amount of dissolved impurities from the anode is controlled by controlling the dissolved oxygen concentration of the electrolytic solution.
[0012]
In order to control the concentration of dissolved oxygen in the supplied electrolyte, the electrolyte is intermittently energized using an insoluble anode before supply to control the generation efficiency of dissolved oxygen.
[0013]
Further, in the electrowinning method for removing impurities from the electrolytic solution of the present invention, the generation efficiency of dissolved oxygen in the electrolytic solution is controlled by an intermittent energizing method in which energization is performed intermittently.
[0014]
It is preferable that the energizing time in the intermittent energizing method is 30 to 50% of the whole.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In copper electrorefining, there is no clear basis for the mechanism of elution of impurities from the anode, but it is thought that impurities eluted from the anode into the electrolyte are oxidized and deposited in the form of oxides or double salts. . For this reason, it is conceivable to make the operation more efficient by introducing a gas such as air or an oxidizing agent such as hydrogen peroxide into the electrolytic solution to efficiently oxidize and remove the eluted impurities. Blowing is generally very inefficient, and the introduction of oxidizing agents sometimes creates scale, which can make operation more difficult.
[0016]
The present inventors have studied a method for efficiently oxidizing impurities eluted in an electrolytic solution. As a result, when the dissolved oxygen concentration in the electrolyte increases, the amount of impurities eluted in the electrolyte decreases, and the amount of impurities deposited as slime increases, that is, the phenomenon in which the elution rate of impurities decreases. Then, it was found that by controlling the concentration of dissolved oxygen in the electrolytic solution, the elution rate of impurities in electrolytic refining can be controlled.
[0017]
In addition, the electrolytic solution used for electrolytic refining of copper is usually supplied after being subjected to a purification treatment by electrolytic sampling. Therefore, as a method of increasing the concentration of dissolved oxygen in the electrolytic solution supplied to the electrolytic refining, electrolysis using an insoluble anode in electrolytic extraction can be considered. In addition, a method of blowing oxygen gas or generating oxygen such as hydrogen peroxide can be considered. A method of mixing liquids to be mixed is also conceivable. However, methods other than electrolysis have been found to be much more disadvantageous in terms of efficiency and cost than electrolysis.
[0018]
In the electrowinning, it is considered that impurities in the electrolysis solution are oxidized by oxygen gas generated on the anode surface and are deposited on the bottom of the electrowinning tank to be removed from the electrolysis solution. The oxygen gas becomes bubbles and rises to the liquid surface, and diffuses from the liquid surface as mist. Therefore, it is considered that dissolving oxygen gas in the electrolyte as dissolved oxygen instead of releasing it as bubbles is effective in oxidizing impurities in the electrolyte and efficiently obtaining dissolved oxygen. .
[0019]
The inventor of the present invention has found that the generation efficiency of dissolved oxygen can be enhanced by performing intermittent energization in which the energization and de-energization in a short time are repeated in the electrowinning for removing impurities. In other words, in the conventional continuous energization, as the oxygen generated on the anode surface grows as bubbles, the oxygen exceeds the limit that can no longer remain on the anode surface, and rises to the electrolyte surface away from the anode. It becomes a mist. Therefore, the oxygen is released to the atmosphere without sufficiently dissolving oxygen into the electrolyte. On the other hand, when intermittent energization is performed, oxygen bubbles remain in the electrolyte for a long time during the power failure operation when the growth of bubbles on the anode surface stops, and the dissolution of oxygen into the electrolyte proceeds, It is considered that the oxygen concentration can be increased.
[0020]
In the decontamination electrowinning method of the present invention, the electrolysis solution is maintained at a high efficiency of generating dissolved oxygen by intermittently energizing the electrowinning tank with an energizing time of 30 to 50% of the whole. Get. Then, the electrolytic solution whose dissolved oxygen concentration is controlled as described above is supplied to the electrolytic refining tank. By controlling the concentration of dissolved oxygen in the electrolytic solution in the electrolytic refining tank, the amount of elution of impurities from the anode and the amount of slime can be controlled.
[0021]
The method for controlling dissolved oxygen in an electrolytic solution of the present invention is based on an electrolytic cell using an insoluble anode, and is not limited to the name of the electrolytic collection tank.
[0022]
Embodiment 1
Eight electrorefining tanks having a width of 1,260 mm, a length of 3,000 mm, and a depth of 1,350 mm were used, and 26 purified anodes and 27 copper seed plate cathodes were respectively charged. The refined anode has a width of 1030 mm, a length of 1050 mm, a thickness of 38 mm, and a unit weight of 370 kg. The impurity grades are Pb 0.11%, As 0.08%, Sb 0.042%, and Bi 0.024%. The copper seed plate cathode has a width of 1070 mm, a height of 1050 mm, and an initial thickness of 0.7 mm.
[0023]
Next, drainage having an average dissolved oxygen concentration (DO) of 10 mg / liter was obtained from a separately provided electrowinning tank, and supplied to the eight electrorefining tanks. However, in each electrolytic refining tank, DO was adjusted to 0.12 to 3 mg / liter by mixing with an electrolytic solution that does not flow through the electrolytic collecting tank.
[0024]
Eight electrolytic purification tanks were energized at a current of 16 kA per tank for 430 hours. After energization, the slime at the bottom of the electrolytic refining tank was collected, washed, and chemically analyzed. At the same time, the amount of impurities eluted from the purified anode was measured from the change in the weight of the purified anode before and after energization. This energization was repeated three times using a purified anode having the same composition. In addition, the suspended component of the drainage of the electrolytic collection tank was measured, but it was 2 mg / liter or less, which was almost the same as the suspended component of the drainage of a general electrolytic refining tank, which was 1 to 2 mg / liter. It was confirmed that the scale generated in the tank was not sent to the electrolytic purification tank.
[0025]
The elution rate of impurities into the electrolytic solution was defined by the following equation (Equation 1), and the relationship between the elution rate of each element and the dissolved oxygen concentration in the electrolytic purification tank was plotted in FIG.
[0026]
(Equation 1)
Elution rate (%) = 100−amount of impurities in slime / amount of impurities dissolved from anode × 100
[0027]
As shown in FIG. 1, it was confirmed that the elution rate was reduced as the DO concentration of the electrolytic solution was increased, and it was possible to control the impurity elution rate to an arbitrary level by keeping the DO concentration constant.
[0028]
Table 1 shows the results of penetrating boring through the center of electrolytic copper, chemically dissolving and analyzing. It was confirmed that the supply of the electrolytic solution having a high dissolved oxygen concentration had no adverse effect on the quality of electrolytic copper.
[0029]
[Table 1]
[0030]
Embodiment 2
Using an electrowinning tank having a width of 1260 mm, a length of 3000 mm and a depth of 1350 mm, 12 lead anodes and 13 copper cathodes were charged. The lead anode had a width of 1070 mm, a length of 1050 mm, and a thickness of 40 mm. The copper cathode had a width of 1070 mm, a length of 1050 mm, an initial thickness of 0.7 mm, and a lead anode interval of 210 mm.
[0031]
In the electrolytic collection tank, an electrolytic solution having a copper concentration of 50 g / liter, a sulfuric acid concentration of 190 g / liter, and a liquid temperature of 60 ° C. was supplied as a feed at a flow rate of 30 liters per minute, and was continuously supplied with a current of 8 kA. The average dissolved oxygen concentration of the electrolytic solution serving as a feed solution was constant at 0.12 mg / liter as measured by a dissolved oxygen concentration meter (manufactured by Toa Denpa Kogyo Kogyo, model DO-20A).
[0032]
After 24 hours from continuous energization, the energization cycle was set to intermittent energization in which power interruption for one minute and energization for one minute were repeated. Twenty-four hours after setting this energization cycle, the average dissolved oxygen concentration of the drainage and the feed was measured using a dissolved oxygen concentration meter (TOA Dempa Kogyo, Model DO-20A).
[0033]
Thereafter, the measurement of the dissolved oxygen concentration was repeated 24 hours after resetting with different energization cycle efficiencies.
[0034]
Using the following equation (Equation 2), the generation efficiency of dissolved oxygen is calculated from the energizing current value and the average dissolved oxygen concentration of the supply and drainage liquid, and the energizing cycle efficiency (%), which is the ratio of energizing time to the total, is calculated. Seeking a relationship.
[0035]
(Equation 2)
Generation efficiency (%) = (discharged liquid dissolved oxygen concentration-feed liquid dissolved oxygen concentration) x flow rate x 60 / (0.2985 x energizing current value) x 100
[0036]
In the formula, the unit of the dissolved oxygen concentration is (g / liter), the unit of the flow rate is (liter / minute), and the energizing current value is (A). The constant of 0.2985 is 1 hour when the energizing current value is 1A. Shows that the oxygen obtained in the above is theoretically 0.2985 g.
[0037]
As a result, as shown in FIG. 2, it was found that a high dissolved oxygen generation efficiency can be obtained by setting the energization cycle efficiency (%) to 30 to 50%. Applying high energization cycle efficiency will operate the electrowinning tank efficiently, so when the energization cycle efficiency is set to 50%, an electrolytic solution having a high dissolved oxygen concentration can be obtained most efficiently. .
[0038]
【The invention's effect】
With the method for electrolytically refining copper of the present invention and the method for electrowinning for removing impurities, control for accurately distributing impurities to elution and sedimentation with only minimal equipment modification from conventional electrorefining tanks and electrowinning tanks. However, it has become easier to maintain stable operation and high product quality.
[0039]
In addition, the electrolytic extraction method for removing impurities according to the present invention makes it possible to obtain an electrolytic solution having a higher dissolved oxygen concentration with higher efficiency than before, and in addition to improving the efficiency in the liquid purification step, the generation of mist is reduced. Now you can.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a dissolved oxygen concentration of a feed solution and an elution rate in an electrolytic purification tank.
FIG. 2 is a graph showing the relationship between the efficiency of generation of dissolved oxygen in an electrowinning tank and the efficiency of energization cycle.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP00842598A JP3552512B2 (en) | 1998-01-20 | 1998-01-20 | Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP00842598A JP3552512B2 (en) | 1998-01-20 | 1998-01-20 | Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH11200084A JPH11200084A (en) | 1999-07-27 |
| JP3552512B2 true JP3552512B2 (en) | 2004-08-11 |
Family
ID=11692780
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP00842598A Expired - Lifetime JP3552512B2 (en) | 1998-01-20 | 1998-01-20 | Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3552512B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TW555880B (en) * | 2002-11-22 | 2003-10-01 | Univ Feng Chia | Oxygen removal method of copper wire replacement deposition |
| JP4952203B2 (en) * | 2006-11-13 | 2012-06-13 | 住友金属鉱山株式会社 | Method for preventing formation of floating slime in electrolytic copper refining |
-
1998
- 1998-01-20 JP JP00842598A patent/JP3552512B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JPH11200084A (en) | 1999-07-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4468305A (en) | Method for the electrolytic regeneration of etchants for metals | |
| CN102560534B (en) | Process for electrolytic refining of copper | |
| EP2650403A2 (en) | Electrorecovery of gold and silver from thiosulphate solutions | |
| EP3794166B1 (en) | Improvement in copper electrorefining | |
| CN107177865B (en) | Process for separating lead and bismuth from high-bismuth lead alloy | |
| Moskalyk et al. | Anode effects in electrowinning | |
| JP6985678B2 (en) | Electrorefining method for low-grade copper anodes and electrolytes used for them | |
| US5372684A (en) | Process for the direct electrochemical refining of copper scrap | |
| JP3552512B2 (en) | Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper | |
| WO2007034645A1 (en) | PROCESS FOR PRODUCING Ti AND APPARATUS THEREFOR | |
| US4895626A (en) | Process for refining and purifying gold | |
| US5441609A (en) | Process for continuous electrochemical lead refining | |
| US6309531B1 (en) | Process for extracting copper or iron | |
| US20230083759A1 (en) | Method for recovering metal zinc from solid metallurgical wastes | |
| EP0028158A1 (en) | Methods and systems of removal of metals from solution and of purification of metals and purified solutions and metals so obtained | |
| JP3998951B2 (en) | Method and apparatus for recovering valuable metals from scrap | |
| JP3875548B2 (en) | Electrolyte purification method | |
| JPH03115592A (en) | Molten salt electrolyzer | |
| RU2790423C2 (en) | Copper electrorefining improvement | |
| CN114517309B (en) | Nickel supplementing and decoppering method in nickel electrolysis production system | |
| JPH0711075B2 (en) | Indium purification method | |
| JP2570076B2 (en) | Manufacturing method of high purity nickel | |
| JP3083079B2 (en) | Copper electrorefining method | |
| Moats et al. | Electrowinning and Electrorefining | |
| JP4147079B2 (en) | Method for removing Ag from chloride bath |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040413 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040426 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080514 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090514 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100514 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110514 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120514 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 9 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 10 |
|
| EXPY | Cancellation because of completion of term |