[go: up one dir, main page]

JP3562129B2 - Encapsulation bags and lead wires for non-aqueous electrolyte batteries - Google Patents

Encapsulation bags and lead wires for non-aqueous electrolyte batteries Download PDF

Info

Publication number
JP3562129B2
JP3562129B2 JP09861696A JP9861696A JP3562129B2 JP 3562129 B2 JP3562129 B2 JP 3562129B2 JP 09861696 A JP09861696 A JP 09861696A JP 9861696 A JP9861696 A JP 9861696A JP 3562129 B2 JP3562129 B2 JP 3562129B2
Authority
JP
Japan
Prior art keywords
lead wire
bag
conductor
sealed
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09861696A
Other languages
Japanese (ja)
Other versions
JPH09283101A (en
Inventor
豊 福田
幸司 花房
啓一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP09861696A priority Critical patent/JP3562129B2/en
Publication of JPH09283101A publication Critical patent/JPH09283101A/en
Application granted granted Critical
Publication of JP3562129B2 publication Critical patent/JP3562129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Insulated Conductors (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器の電源に使用される非水電解質電池用の封入袋及び、電極と外部との接続のためのリード線に関するものである。
より詳細には、非水電解質電池を構成する正極、負極、電解液等を封入し、正極と負極のリード線を夫々外部に取り出す構造とし、これらのリード線をも封入する袋であって、密封信頼性の高い構成を有することを特徴とする。
【0002】
【従来の技術】
電子機器の小型化と共に電源としての電池の小型化、薄肉化への要求も強まっている。こうした要求に対して、電極、電解質等をプラスチックやプラスチックと金属とのはりあわせによる袋に封入するタイプの電池が種々検討されている。こうしたタイプの電池の課題の1つは、いかにして密封信頼性を向上させるかである。
【0004】
前記の課題に対しても種々の検討が行われており、たとえば、特開昭56−71278号にみられるごとく、シート状バッテリーの「熱融着しろ」を出来るだけ少なくして小形化を図り、かつ、リード線金属を直接プラスチック袋に熱封入するのではなく、あらかじめリード線に樹脂被覆したものを用いることで、密封性の向上をはかる試みが提案されている。
【0005】
また、特開平3−62447号にみられる如く、封入袋のシール部分の材料をアクリル酸変成ポリエチレン又はアクリル酸変成ポリプロピレンを用いることで、密封性の向上をはかる試みが提案されている。
【0006】
【発明が解決しようとする課題】
ところが、特開昭56−71278号にみられる方法では、電池を封入している袋が樹脂単体で形成されているため、密封性が悪く、外部から水分が侵入したり、電解液が揮発するために、有機溶媒系の固体電解質を利用した非水電解質電池に適用できない。
一方、特開平3−62447号に開示されている方法では、有機溶媒を利用した非水電解質電池では電解液の揮発防止には有効であるが、吸湿性の高いアクリル酸変成ポリオレフィンを利用しているために、外部から水分が侵入しやすいという問題がある。
【0007】
【課題を解決するための手段】
本発明等は、前記の課題について種々検討し、リード線の導体の直上のみにマレイン酸変成ポリオレフィン層を設け、更に封入袋のシール部分の材質にもマレイン酸変成ポリオレフィンを使用することが密封信頼性の向上に役立つことを見出し、本発明を完成した。
【0008】
以下、本発明を図を用いて詳細に説明する。
電極、電解質、隔膜等が封入袋に挿入されたタイプの電池に於ては、図3に示す如く、直接接触する封入袋の内側の最内層の絶縁体12が融着されることにより封入袋が作製されている。そして、模擬的に図2に示した如くに、封入袋に正極、負極、隔膜、電解液が収納され、又、図4に示す如く、封入袋とリード線は、封入袋の絶縁体12とリード線の最外層の絶縁体11が融着されることにより一体化され、リード線が外部に取り出されており、封入袋内部に於てリード線が、正、負極の極板にそれぞれ接続されている。リード線と電極とは、あらかじめ接続され、封入袋に封入される。
【0009】
正極,負極極板は、集電体と呼ばれる金属箔やエキスパンデッドメタル等の金属基材上に活物質層が形成された構造を有する。リード線と正極、負極極板の接続方法については特に限定されないが、この極板の金属基材とリード線の導体とをスポット溶接や、超音波溶接等で接続する方法が好ましく利用できる。
【0010】
このリード線導体の材質には、正極接続用には、非常に高い電位がかかるために、高電位で溶解しない材質のものが望ましい。そのためにアルミニウム、またはチタン、あるいはこれらの金属の合金が好ましく利用できる。負極接続用には、過充電で、リチウムが析出したり、過放電では、電位が高くなることから、リチウムが析出した場合形状が変化しにくい、即ちリチウムと合金を形成しにくく、比較的高電位で溶解しにくい材質のものが好ましい。以上の観点から、導体の材質には、ニッケルまたは銅、あるいはこれらの金属の合金が好ましく利用できる。
【0011】
導体の形状については、丸型や平角導体の単線が好ましく利用できるが、丸型の場合、電池容量が大きい場合には、丸型の直径が大きくなるため、封入袋の最内層の絶縁体12の間にはさまれるリード線の厚みが大きくなるために、リード線の最外層の絶縁体11と封入袋の最内層の絶縁体12との融着部に間隙が生じやすくなり、リード線と封入袋の融着部での密閉の信頼性が低くくなる問題がある。
それに対して、平角導体を利用した場合には、電池容量増加に対しても導体の厚みを大きくせずに幅を大きくすることで断面積をかせぐことができるために、封入袋の最内層の絶縁体12との間にはさまれたリード線の絶縁体11との融着部の密閉に対する信頼性の低下はおこらない。更にFPC(フレキシブルプリント基板)等を利用した外部回路や、電極極板との接続においても平角導体の方が接触面積が大きく、スポット溶接や超音波溶接により、より信頼性の高い接続を行うことが可能となる。
【0012】
電解質には、プロピレンカーボネート,γ−ブチロラクトン,エチレンカーボネート,ジエチルカーボネート,ジメチルカーボネート,1、2−ジメトキシエタン,テトラヒドロフランなどの有機溶媒にLiClO,LiBF,LiPF,LiAsF等の非水電解液やリチウムイオン伝導性の固体電解質などが利用できる。
【0013】
封入袋は、アルミ箔等の金属箔や金属蒸着層がサンドイッチ状に挿入されたプラスチックとのはりあわせ材料を用いるものが好ましく、少なくとも内側のプラスチックは電解質に溶解しないことが必要である。
【0014】
本発明の重要な特徴の1つは、この封入袋の内側の材料の選定にある。封入袋の最内層にマレイン酸変成ポリオレフィンを使用し、シートシール部をこのマレイン酸変成ポリオレフィンで構成することにより、密封信頼性を顕著に向上させることができる。
【0015】
本発明の別の特徴として、リード線の絶縁構成があげられる。リード線は前記の如く、導体を電極に接続し、封入袋の外部に取り出して、電極と外部の機器等との接続の役割を果たす。封入袋の密封性のため、リード線の絶縁体を封入袋のヒートシール部に封入して一体とするが、絶縁体と導体との気密性が不充分だと封入袋全体の密封信頼性が不足することになる。
【0016】
リード線の導体直上にマレイン酸変成ポリオレフィン層を設けることにより、リード線の導体と絶縁体との気密性が保たれ、リード線を封入袋のシートシール部に封入することにより、リード線を封入袋の外に取り出しても封入袋の密封信頼性を損なわぬようにできる。
【0017】
【実施例】
以下に実施例について説明する。
まず、LiCoO粉末(日本化学工業製)100重量部に、グラファイト10重量部、ポリフッ化ビニリデン10重量部を混合し、N−メチル−2−ピロリドンに溶解した後、ペースト状にした。次に、このペーストを厚さ20μmのアルミ箔の片面に塗工し、乾燥後、ローラープレスした。このようにして厚さ0.1mm,幅50mm,長さ105mmの極板(5mmは、未塗工部)を作製し、正極とした。
【0018】
次に、リン状天然黒鉛粉末100重量部に、ポリフッ化ビニリデン20重量部を混合し、N−メチル−2−ピロリドンに溶解した後、ペースト状にした。このペーストを厚さ20μmの銅箔の両面に塗工し、乾燥後、ローラープレスした。このようにして厚さ0.10mm,幅50mm,長さ105mmの極板(5mmは未塗工部)を作製し、負極とした。
【0019】
このようにして得られた正極と負極の間に厚み25μmのポリプロピレンの微多孔膜の融膜をはさみ、極板の活物質層が塗工されていないアルミ箔(正極)と銅箔(負極)それぞれをリード線の導体部に超音波溶接により接続し、図2に示す如く封入袋に挿入した後、8ccの電解液を注入し、減圧含浸した後、リード線を封入袋の間に挟み込み、封入袋の内層とリード線の外側の絶縁体を200℃,5秒の条件でシール機により熱融着(シール幅:10mm)し試験電池とした。電解液としては、エチレンカーボネートとジエチルカーボネートを1:1の体積比率で混合し、六フッ化リン酸リチウムを1mol/lとなるように溶解したものを使用した。
【0020】
封入袋として、表1に示した各種のはりあわせフィルムを70mm×135mmの矩形に切断し、各々2枚を第4層の側をむかいあわせにして重ね、矩形の周囲3辺を夫々シール幅5mmでヒートシールし、袋状に作成したものを使用した。
【0021】
リード線としては、正極用には0.1×4mmのアルミの平角導体を使用し、負極用には0.1×4mmの銅の平角導体を使用し、これに表2に示した各種の絶縁層を設けたものを使用した。
【0022】
【表1】

Figure 0003562129
【0023】
【表2】
Figure 0003562129
【0024】
表1、はりあわせフィルムを用いた封入袋と表2の絶縁を用いたリード線とを表3の様に組み合わせて、前述の如くの試験電池を作成した。
【0025】
【表3】
Figure 0003562129
【0026】
【発明の効果】
本発明の効果を以下の様に、恒温、恒湿槽テストで確認した。すなわち、前述のようにして作成した試験電池を60℃,95%RH恒温恒湿槽に入れ、720時間保持した後の重量変化と、カールフィッシャー法による溶媒中の水分濃度測定を行い、シール部の電解質バリア性及び水蒸気バリア性を評価した。
【0027】
比較例1,2,5,6,7,8,9では液もれが観察された。
その他の評価結果は表4に示す通りであった。すなわち、比較例は電解液揮発量が大きいとか、液もれをおこすといった具合に、電解質バリア性が不充分であるか、又は水分濃度が大きくなっていて、水蒸気バリア性が不充分であるかのいずれかであった。しかし、実施例1,実施例2はいずれも電解液揮発量も小さく、かつ水分濃度も小さいので、電解質バリア性、水蒸気バリア性の両方ともに良好であり、本発明のシール部の材料としてマレイン酸ポリオレフィンを使用すること及びリード線の導体の直上にマレイン酸ポリオレフィン層を設けることの効果が確認できた。
【0028】
【表4】
Figure 0003562129
【0029】
また、リード線も封入袋に入れてしまって、同様に10mm幅でヒートシールをしたものについても、恒温、恒湿テストを実施し、はりあわせフィルムA,Bを用いたものは電解質バリア性,水蒸気バリア性ともに優れていること、はりあわせフィルムC,Dを用いたものは樹脂が溶解して液もれを起こし、はりあわせフィルムE,F,Gを用いたものは、リード線を挟んでいなくても電解質バリア性又は水蒸気バリア性のいずれか又は両方ともに不充分であることを確認した。
【0030】
更に、リード線の導体形状についての効果も確認した。すなわち、本実施例では平角導体を使用したが、丸線を導体としたリード線を封入袋のヒートシール部に封入すると、シール部の材料にマレイン酸ポリオレフィンを使用し、リード線導体の直上にマレイン酸ポリオレフィン層を形成させたリード線を使用しても、密封信頼性が充分とはいえないということも確認した。
【図面の簡単な説明】
【図1】本発明の封入袋とリード線を用いた非水電解質電池を示す。
【図2】封入袋の内部を模式的に示す。
【図3】封入袋の断面を示す。
【図4】封入袋のヒートシール部の拡大図を示す。
【符号の説明】
1, 1′:リード線の導体
2, 2′:リード線の絶縁
3:封入袋
4:封入袋のシール部分
5, 5′:電極
6:隔膜
7:正極集電体
7′:負極集電体
8:正極活物質
8′:負極活物質
9: アルミ箔
10:マレイン酸ポリオレフィン層
11:絶縁外層
12:マレイン酸ポリオレフィン層
14:PE層
15:PET層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an encapsulation bag for a non-aqueous electrolyte battery used as a power supply of an electronic device, and a lead wire for connecting an electrode to the outside.
In more detail, the positive electrode constituting the non-aqueous electrolyte battery, the negative electrode, the electrolyte and the like are sealed, and the lead wires of the positive electrode and the negative electrode are each taken out to the outside, a bag that also seals these leads, It is characterized by having a configuration with high sealing reliability.
[0002]
[Prior art]
Along with the miniaturization of electronic devices, there is an increasing demand for miniaturization and thinning of batteries as power sources. In response to such demands, various types of batteries in which electrodes, electrolytes, and the like are sealed in bags made of plastic or a laminate of plastic and metal have been studied. One of the challenges with these types of batteries is how to improve sealing reliability.
[0004]
Various studies have been conducted on the above-mentioned problem, and for example, as disclosed in Japanese Patent Application Laid-Open No. 56-71278, the "heat-sealing margin" of the sheet-shaped battery is reduced as much as possible to reduce its size. Attempts have been made to improve the sealing performance by using a material in which the lead wire is coated with a resin in advance instead of directly encapsulating the lead wire metal in a plastic bag.
[0005]
Further, as disclosed in Japanese Patent Application Laid-Open No. 3-62447, an attempt has been made to improve the sealing performance by using acrylic acid-modified polyethylene or acrylic acid-modified polypropylene as the material of the sealing portion of the enclosing bag.
[0006]
[Problems to be solved by the invention]
However, in the method disclosed in JP-A-56-71278, since the bag enclosing the battery is formed of a single resin, the sealing performance is poor, moisture enters from the outside, and the electrolyte is volatilized. Therefore, it cannot be applied to a non-aqueous electrolyte battery using an organic solvent-based solid electrolyte.
On the other hand, the method disclosed in Japanese Patent Application Laid-Open No. 3-62447 is effective in preventing volatilization of an electrolytic solution in a non-aqueous electrolyte battery using an organic solvent, but uses a highly hygroscopic modified acrylic acid-modified polyolefin. Therefore, there is a problem that moisture easily enters from the outside.
[0007]
[Means for Solving the Problems]
The present invention and the like have examined the above problems in various ways, and provided a maleic acid-modified polyolefin layer only directly above the conductor of the lead wire, and furthermore, the use of maleic acid-modified polyolefin for the material of the sealing portion of the encapsulation bag has a sealing reliability. The present invention has been found to be useful for improving the performance, and the present invention has been completed.
[0008]
Hereinafter, the present invention will be described in detail with reference to the drawings.
In a battery of a type in which an electrode, an electrolyte, a diaphragm, etc. are inserted into a sealed bag, as shown in FIG. Has been produced. Then, as shown in FIG. 2, the positive electrode, the negative electrode, the diaphragm, and the electrolytic solution are stored in the encapsulating bag, and as shown in FIG. 4, the encapsulating bag and the lead wire are in contact with the insulator 12 of the encapsulating bag. The insulator 11 of the outermost layer of the lead wire is integrated by fusing, the lead wire is taken out, and the lead wire is connected to the positive and negative electrode plates inside the enclosing bag. ing. The lead wire and the electrode are connected in advance and sealed in a sealing bag.
[0009]
The positive and negative electrode plates have a structure in which an active material layer is formed on a metal substrate called a current collector, such as a metal foil or an expanded metal. The method of connecting the lead wire to the positive and negative electrode plates is not particularly limited, but a method of connecting the metal base material of the electrode plate and the conductor of the lead wire by spot welding, ultrasonic welding, or the like can be preferably used.
[0010]
Since a very high potential is applied to the positive electrode connection, a material that does not dissolve at a high potential is desirable for the material of the lead wire conductor. Therefore, aluminum, titanium, or an alloy of these metals can be preferably used. For the connection of the negative electrode, lithium is deposited by overcharging, and the potential is increased by overdischarging.Therefore, the shape is not easily changed when lithium is deposited, that is, it is difficult to form an alloy with lithium, and it is relatively high. A material that is difficult to dissolve at a potential is preferable. From the above viewpoints, nickel or copper or an alloy of these metals can be preferably used as the material of the conductor.
[0011]
Regarding the shape of the conductor, a single wire of a round shape or a flat rectangular conductor can be preferably used. However, in the case of a round shape, the diameter of the round shape increases when the battery capacity is large. Since the thickness of the lead wire sandwiched between the lead wires becomes large, a gap is easily generated in the fusion part between the insulator 11 of the outermost layer of the lead wire and the insulator 12 of the innermost layer of the encapsulating bag, and the lead wire and There is a problem that the reliability of sealing at the fusion portion of the enclosing bag is reduced.
On the other hand, when a rectangular conductor is used, the cross-sectional area can be increased by increasing the width of the conductor without increasing the thickness of the conductor, even if the battery capacity is increased. There is no reduction in the reliability with respect to the sealing of the fused portion of the lead wire sandwiched between the insulator 12 and the insulator 11. Furthermore, when connecting to an external circuit using an FPC (flexible printed circuit board) or an electrode plate, a rectangular conductor has a larger contact area and a more reliable connection by spot welding or ultrasonic welding. Becomes possible.
[0012]
Examples of the electrolyte include organic solvents such as propylene carbonate, γ-butyrolactone, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran, and non-aqueous electrolytes such as LiClO 4 , LiBF 4 , LiPF 6 , and LiAsF 6. Or a lithium ion conductive solid electrolyte.
[0013]
The encapsulating bag is preferably made of a material that is bonded to a metal foil such as an aluminum foil or a plastic in which a metal vapor-deposited layer is inserted in a sandwich shape. It is necessary that at least the inner plastic does not dissolve in the electrolyte.
[0014]
One of the important features of the present invention lies in the selection of the material inside the enclosure. By using a maleic acid-modified polyolefin for the innermost layer of the enclosing bag and forming the sheet seal portion with the maleic acid-modified polyolefin, the sealing reliability can be remarkably improved.
[0015]
Another feature of the present invention is the insulation configuration of the lead wires. As described above, the lead wire connects the conductor to the electrode, takes it out of the sealing bag, and plays a role of connecting the electrode to an external device or the like. The insulation of the lead wire is sealed in the heat-sealed part of the encapsulation bag for the sealing of the encapsulation bag, but if the airtightness between the insulator and the conductor is insufficient, the sealing reliability of the entire encapsulation bag is reduced. Will run short.
[0016]
By providing a maleic acid-modified polyolefin layer directly above the conductor of the lead wire, airtightness between the conductor of the lead wire and the insulator is maintained, and the lead wire is sealed by enclosing the lead wire in the seat seal of the encapsulation bag. Even if it is taken out of the bag, the sealing reliability of the sealed bag can be maintained.
[0017]
【Example】
Examples will be described below.
First, 10 parts by weight of graphite and 10 parts by weight of polyvinylidene fluoride were mixed with 100 parts by weight of LiCoO 2 powder (manufactured by Nippon Chemical Industry Co., Ltd.), and dissolved in N-methyl-2-pyrrolidone to form a paste. Next, this paste was applied to one surface of an aluminum foil having a thickness of 20 μm, dried, and then pressed with a roller. Thus, an electrode plate having a thickness of 0.1 mm, a width of 50 mm, and a length of 105 mm (5 mm is an uncoated portion) was prepared and used as a positive electrode.
[0018]
Next, 20 parts by weight of polyvinylidene fluoride was mixed with 100 parts by weight of phosphorus-like natural graphite powder, dissolved in N-methyl-2-pyrrolidone, and then formed into a paste. This paste was applied to both sides of a copper foil having a thickness of 20 μm, dried, and then pressed with a roller. Thus, an electrode plate having a thickness of 0.10 mm, a width of 50 mm, and a length of 105 mm (5 mm is an uncoated portion) was prepared and used as a negative electrode.
[0019]
An aluminum foil (positive electrode) and a copper foil (negative electrode) having a 25 μm thick microporous polypropylene film sandwiched between the positive electrode and the negative electrode obtained as described above and having no active material layer applied to the electrode plate. Each was connected to the conductor of the lead wire by ultrasonic welding, inserted into a sealed bag as shown in FIG. 2, injected with 8 cc of electrolyte, impregnated under reduced pressure, and then the lead wire was sandwiched between the sealed bags. The inner layer of the sealing bag and the insulator outside the lead wire were heat-sealed (sealing width: 10 mm) by a sealing machine at 200 ° C. for 5 seconds to obtain a test battery. As the electrolytic solution, a solution obtained by mixing ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 and dissolving lithium hexafluorophosphate at 1 mol / l was used.
[0020]
As an encapsulating bag, the various bonding films shown in Table 1 were cut into a rectangle of 70 mm x 135 mm, and two of them were laminated with the fourth layer facing each other, and the three sides of the rectangle were each sealed with a width of 5 mm. And heat-sealed in a bag.
[0021]
As the lead wire, a 0.1 × 4 mm aluminum rectangular conductor was used for the positive electrode, and a 0.1 × 4 mm copper rectangular conductor was used for the negative electrode. One provided with an insulating layer was used.
[0022]
[Table 1]
Figure 0003562129
[0023]
[Table 2]
Figure 0003562129
[0024]
The test battery as described above was prepared by combining the encapsulating bag using the bonding film shown in Table 1 and the lead wire using the insulation shown in Table 2 as shown in Table 3.
[0025]
[Table 3]
Figure 0003562129
[0026]
【The invention's effect】
The effects of the present invention were confirmed in a constant temperature and constant humidity test as follows. That is, the test battery prepared as described above was placed in a 60 ° C., 95% RH constant temperature and humidity chamber, and after holding for 720 hours, a change in weight and a measurement of the water concentration in the solvent by the Karl Fischer method were performed. Was evaluated for electrolyte barrier properties and water vapor barrier properties.
[0027]
In Comparative Examples 1, 2, 5, 6, 7, 8, and 9, liquid leakage was observed.
The other evaluation results were as shown in Table 4. That is, in the comparative example, whether the electrolyte volatilization amount is large or the liquid leaks out, the electrolyte barrier property is insufficient, or the moisture concentration is large, and the water vapor barrier property is insufficient. Was either. However, in each of Example 1 and Example 2, the electrolyte volatilization amount was small and the water concentration was small, so that both the electrolyte barrier property and the water vapor barrier property were good. The effect of using polyolefin and providing a maleic acid polyolefin layer directly on the conductor of the lead wire was confirmed.
[0028]
[Table 4]
Figure 0003562129
[0029]
Also, the lead wire was put in the encapsulating bag, and the same heat-sealed with a width of 10 mm was also subjected to a constant temperature and constant humidity test. Those using the laminated films A and B had electrolyte barrier properties. It is excellent in both water vapor barrier properties. In the case of using the laminated films C and D, the resin dissolves to cause liquid leakage. It was confirmed that even if not, either or both of the electrolyte barrier property and the water vapor barrier property were insufficient.
[0030]
Furthermore, the effect on the conductor shape of the lead wire was also confirmed. In other words, in this example, a rectangular conductor was used.However, when a lead wire having a round wire as a conductor was sealed in the heat seal portion of the encapsulating bag, maleic polyolefin was used as a material for the seal portion, and the lead wire conductor was placed directly above the lead wire conductor. It was also confirmed that the use of a lead wire on which a maleic polyolefin layer was formed did not provide sufficient sealing reliability.
[Brief description of the drawings]
FIG. 1 shows a non-aqueous electrolyte battery using a sealed bag and a lead wire of the present invention.
FIG. 2 schematically shows the inside of an enclosing bag.
FIG. 3 shows a cross section of an enclosing bag.
FIG. 4 is an enlarged view of a heat sealing portion of the enclosing bag.
[Explanation of symbols]
1, 1 ': Lead wire conductor 2, 2': Lead wire insulation 3: Encapsulation bag 4: Sealing portion of the encapsulation bag 5, 5 ': Electrode 6: Diaphragm 7: Positive electrode current collector 7': Negative electrode current collector Body 8: positive electrode active material 8 ': negative electrode active material 9: aluminum foil 10: maleic polyolefin layer 11: insulating outer layer 12: maleic polyolefin layer 14: PE layer 15: PET layer

Claims (3)

正極、負極、電解質等および前記正極と前記負極と接続したリード線を封入袋にて封入し、前記リード線夫々の一部を外部に取り出してなる非水電解質電池において、前記リード線の導体直上のみにマレイン酸変成ポリオレフィン層を設けたことを特徴とする非水電解質電池用リード線。In a non-aqueous electrolyte battery in which a positive electrode, a negative electrode, an electrolyte and the like and a lead wire connected to the positive electrode and the negative electrode are sealed in a sealing bag, and a part of each of the lead wires is taken out to the outside, the lead wire is directly above the conductor. A lead wire for a non-aqueous electrolyte battery, wherein a maleic acid-modified polyolefin layer is provided only on the lead wire. 正極、負極、電解質等および請求項1に記載のリード線を封入袋にて封入し、前記リード線夫々の一部を外部に取り出してなる非水電解質電池において、前記封入袋のヒートシール部がマレイン酸変成ポリオレフィンよりなることを特徴とする非水電解質電池用封入袋。A positive electrode, a negative electrode, an electrolyte and the like, and the lead wire according to claim 1 are sealed in a sealing bag, and a part of each of the lead wires is taken out to the outside. A sealed bag for non-aqueous electrolyte batteries, comprising a maleic acid-modified polyolefin. 請求項1に記載のリード線であって、前記導体の形状が平角であることを特徴とする非水電解質電池用リード線。The lead wire according to claim 1, wherein the conductor has a rectangular shape.
JP09861696A 1996-04-19 1996-04-19 Encapsulation bags and lead wires for non-aqueous electrolyte batteries Expired - Lifetime JP3562129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09861696A JP3562129B2 (en) 1996-04-19 1996-04-19 Encapsulation bags and lead wires for non-aqueous electrolyte batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09861696A JP3562129B2 (en) 1996-04-19 1996-04-19 Encapsulation bags and lead wires for non-aqueous electrolyte batteries

Publications (2)

Publication Number Publication Date
JPH09283101A JPH09283101A (en) 1997-10-31
JP3562129B2 true JP3562129B2 (en) 2004-09-08

Family

ID=14224511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09861696A Expired - Lifetime JP3562129B2 (en) 1996-04-19 1996-04-19 Encapsulation bags and lead wires for non-aqueous electrolyte batteries

Country Status (1)

Country Link
JP (1) JP3562129B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064307A (en) * 2009-11-11 2011-05-18 住友电气工业株式会社 Lead member, electrical storage device with lead member, and method for manufacturing lead member
WO2012014737A1 (en) 2010-07-27 2012-02-02 住友電気工業株式会社 Electrical component, nonaqueous-electrolyte cell, and lead wire and sealable container both for use therein
US9585276B2 (en) 2011-03-04 2017-02-28 Sumitomo Electric Industries, Ltd. Electrical part, nonaqueous electrolyte cell, and lead wire and sealable container for use therein

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI258426B (en) * 1999-08-27 2006-07-21 Mitsui Chemicals Inc Laminated product, process for its production and use thereof
KR100407109B1 (en) * 2000-09-28 2003-11-28 주식회사 이스퀘어텍 Pitch-coated Electrode Tap and Production Method Thereof
US8338317B2 (en) 2011-04-06 2012-12-25 Infineon Technologies Ag Method for processing a semiconductor wafer or die, and particle deposition device
US11063315B2 (en) 2016-05-10 2021-07-13 Dic Corporation Laminating adhesive, laminate using the same, and secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064307A (en) * 2009-11-11 2011-05-18 住友电气工业株式会社 Lead member, electrical storage device with lead member, and method for manufacturing lead member
WO2012014737A1 (en) 2010-07-27 2012-02-02 住友電気工業株式会社 Electrical component, nonaqueous-electrolyte cell, and lead wire and sealable container both for use therein
US8859138B2 (en) 2010-07-27 2014-10-14 Sumitomo Electric Industries, Ltd. Electrical part, nonaqueous electrolyte cell, and lead wire and sealable container which are used therein
US9585276B2 (en) 2011-03-04 2017-02-28 Sumitomo Electric Industries, Ltd. Electrical part, nonaqueous electrolyte cell, and lead wire and sealable container for use therein

Also Published As

Publication number Publication date
JPH09283101A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
JPH09288998A (en) Non-aqueous electrolyte battery
CN1082259C (en) Non-aqueous electrolyte cell
JP3505905B2 (en) Non-aqueous electrolyte battery
JP3825593B2 (en) Manufacturing method of package
JP4138172B2 (en) Electrochemical device and manufacturing method thereof
JP3240965B2 (en) Enclosure bag for non-aqueous electrolyte battery and method of manufacturing the same
JP2003346779A (en) Non-aqueous secondary battery
JP3588225B2 (en) Thin sealed battery
JP3379417B2 (en) Enclosure bag for non-aqueous electrolyte batteries
JP3632062B2 (en) Thin polymer battery
JP3911849B2 (en) Non-aqueous electrolyte battery
JP3562129B2 (en) Encapsulation bags and lead wires for non-aqueous electrolyte batteries
JP3137061B2 (en) Non-aqueous electrolyte battery
JP4021592B2 (en) Electrochemical devices
JP3869668B2 (en) Electrochemical device and manufacturing method thereof
JP2010033888A (en) Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP3460529B2 (en) Non-aqueous electrolyte battery
JP3601283B2 (en) Non-aqueous electrolyte battery
JP2004319098A (en) Electrochemical cell and method for manufacturing the same
JPH1140114A (en) Non-aqueous electrolyte battery
JP3092123B1 (en) Enclosure bag for non-aqueous electrolyte batteries
JP2006032206A (en) Nonaqueous electrolyte battery and lead wire for nonaqueous electrolyte battery
JPH09274896A (en) Non-aqueous electrolyte battery
JP4068785B2 (en) Electrochemical element
JPH09270250A (en) Lead wire for non-aqueous electrolyte battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term