[go: up one dir, main page]

JP3594418B2 - Light receiving element - Google Patents

Light receiving element Download PDF

Info

Publication number
JP3594418B2
JP3594418B2 JP22677196A JP22677196A JP3594418B2 JP 3594418 B2 JP3594418 B2 JP 3594418B2 JP 22677196 A JP22677196 A JP 22677196A JP 22677196 A JP22677196 A JP 22677196A JP 3594418 B2 JP3594418 B2 JP 3594418B2
Authority
JP
Japan
Prior art keywords
type high
concentration
layer
light receiving
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22677196A
Other languages
Japanese (ja)
Other versions
JPH1070301A (en
JP3594418B6 (en
Inventor
晋 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tottori Sanyo Electric Co Ltd
Priority to JP1996226771A priority Critical patent/JP3594418B6/en
Priority claimed from JP1996226771A external-priority patent/JP3594418B6/en
Publication of JPH1070301A publication Critical patent/JPH1070301A/en
Publication of JP3594418B2 publication Critical patent/JP3594418B2/en
Application granted granted Critical
Publication of JP3594418B6 publication Critical patent/JP3594418B6/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光センサーに好適な電磁シールド効果を有した受光素子に関する。
【0002】
【従来の技術】
従来より赤外線リモコンや短距離光通信の受信部を構成する光センサーに用いられる受光素子においては、例えば実公平5−36181号公報に示されるように、素子の前方に金属メッシュや導電性フィルムを配置してグランド電位に接続し、あるいは素子の表面に透明電極等で電磁シールドを施して、金属ケースに収納したり樹脂モールドを行っていた。
【0003】
一方、受光素子と受光信号処理回路をモノリシックに組み込む場合、特公平7−120761号公報などに示されるように、受光信号処理回路のゲートやソースを形成するときに同時に受光素子の表面に高濃度層を形成し、この高濃度層で配線と同時にシールドをさせようとするものがある。
【0004】
【発明が解決しようとする課題】
しかしながら、受光素子組立て体の中に電磁シールドを埋め込むものはメッシュやフィルムの位置ずれ防止や配線などが煩雑であり、素子表面に透明電極等を設けるとそのシールド用電極と素子表面の間でコンデンサーを形成してしまい、電気容量の増大となって、受信感度が低下し、光通信にあっては通信可能到達距離が著しく短くなるという不都合がある。
【0005】
一方、受光素子と受光信号処理回路をモノリシックに組み込む場合、受光素子に求められる光電気特性に対応する層の深さや不純物濃度と、回路部分に求められるドーパントや不純物濃度が異なり、あるいはこれら受光素子と回路部分の間のマッチングが取れなくなるので、理論的にはシールド層を配線に利用することは可能であるが、光信号の減衰やS/N比低下を生じることとなった。更にこのようなモノリシック受光素子は、製造プロセスが回路部分に制約されるので、受光素子の応答性が悪くなっていた。
【0006】
【課題を解決するための手段】
本発明は上述の点を考慮してなされたもので、低不純物濃度を有したP型導電性の半導体基板を用い、その半導体基板の裏面に設けられたP型高濃度層と、その半導体基板の表面側の略中央部に受光部として設けられたN型高濃度層と、そのN型高濃度層の更に表面にそのN型高濃度層より広い面積で設けられたシート抵抗が低いP型高濃度薄層と、半導体基板の表面においてP型高濃度薄層の周囲を囲繞するP型高濃度層とを設けたもので、受光部表面のP型高濃度薄層がシールド効果を有するPIN受光素子が得られ、さらに、この様な素子の周辺をその受光部表面のP型高濃度薄層と等電位に接続された導電性材料で覆う(包囲する)とより好ましい。
【0007】
【発明の実施の形態】
図1は本発明実施例の受光素子の載置状態の側面模式図、図2はその受光素子の平面図である。これらの図において、1は、抵抗値が500Ωcm以上の低不純物濃度の半導体基板で、厚さ180乃至400μmのP型Siからなる素子基板である。この半導体基板1の抵抗値は、バイアス電圧を印加したときに空乏層が層の厚み全体に広がって受信感度を良好に保つのに有効な値で、好ましくは800〜1200Ωcmである。2は、半導体基板1の表面側の略中央部に受光部として設けられたN型高濃度層で、図の例では略正方形に設けられている。この受光部であるN型高濃度層2は、その表面の一部からN型オーミック電極21が接続されており、例えば燐(P)を深さ1〜5μmに拡散することにより不純物濃度が1×1020cm−3程度に設けられたものである。
【0008】
3は、半導体基板1の裏面に設けられたP型高濃度層で、P型オーミック電極4を設ける場合に必要なもので、ホウ素(B)を拡散し、不純物濃度が略1×1020cm−3となるように設けられている。従って、P型電極を表面側から取り出す場合などにはこのP型高濃度層3は不要である。
【0009】
5は、N型高濃度層2の更に表面に設けられたP型高濃度薄層で、N型高濃度層2の表面側の大部分を覆うようにN型高濃度層2より広い面積で設けられ、深さはN型高濃度層2より浅く、例えば0.5〜2μmである。このようなP型高濃度薄層5は、ホウ素(B)を拡散して得られるが、導電性を得るために例えば表面抵抗が30Ω/ロとなっている。好ましくは、シート抵抗が20KΩ/ロ以下となるように構成されている。そしてP型高濃度薄層5はシールド電極51にオーミック接触している。
【0010】
6は半導体基板1の表面においてP型高濃度薄層5の周囲を囲繞するP型高濃度層で、受光部表面のP型高濃度薄層5と分離され、不純物濃度が略1×1020cm−3で深さが1〜7μmとP型高濃度薄層5よりも深いほうが好ましい。そしてその囲繞P型高濃度層6の上方において、P型高濃度層6を覆うように、前述のシールド電極51を口字状に配置してある。なお表面には、表面保護及び不所望の反射防止のために、二酸化シリコンとか窒化シリコンからなる絶縁膜11が設けてあり、電極21、51がオーミックを取る部分においてはフォトリソグラフィ技術などを用いて透孔が設けてある。
【0011】
この様な受光素子は、導電接着剤7を用いてフレーム8に固着されるが、素子の側面から入射するノイズを対策するために、金属フレームなどの導電性材料9で素子の側面を包囲するのが好ましく、受光部表面のP型高濃度薄層5のシールド電極51と導電性材料9をワイヤボンド線等で接続して等電位面とするのが最も好ましい。
【0012】
かかる構成において、受光素子はいわゆるPINフォトダイオードを形成し、受光感度が高く取れる構成となっており、しかも効果的な電磁シールド効果をもたらすことができる。図3は、この受光部表面のP型高濃度薄層6の表面抵抗値と、この受光素子を赤外線受光モジュールに組み込んだときの信号到達距離の相関図であり、受光部表面のP型高濃度薄層6の表面抵抗値が10KΩ/ロ以下で特に優れた効果があることを示している。また、テレビ受像機とインバータ螢光灯をノイズ源として配置してノイズ耐性を調べた。その結果、本発明の受光素子をそのまま使用した場合、ロット平均でノイズ源から16mmはなれた場所で受光モジュールの出力にノイズの影響が現れたが、受光素子の周囲に導電性材料9を設けた場合、受光モジュールをノイズ源ケース(外箱)に当接させても、その出力にノイズの影響は現れなかった。
【0013】
【発明の効果】
以上の如く、本発明はPINフォトダイオードとしての高感度な受光素子特性を保ち、しかも、表面に電磁ーシールド層、電磁シールドリング電極、対向リング層等々を有し、組立てに支障を与えないで効率良く電磁シールドを行うことができた。
【図面の簡単な説明】
【図1】本発明実施例の受光素子の載置状態の側面模式図である。
【図2】本発明実施例の受光素子の平面図である。
【図3】P型高濃度薄層6の表面抵抗値と信号到達距離の相関図である。
【符号の説明】
1 半導体基板
2 N型高濃度層(受光部)
3 P型高濃度層
4 P型オーミック電極
5 P型高濃度薄層
6 P型高濃度層
7 導電接着剤
8 フレーム
9 導電性材料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light receiving element having an electromagnetic shielding effect suitable for an optical sensor.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a light receiving element used for an infrared remote controller or an optical sensor constituting a receiving unit for short-range optical communication, for example, as shown in Japanese Utility Model Publication No. 5-36181, a metal mesh or a conductive film is provided in front of the element. They are arranged and connected to a ground potential, or the surface of the element is electromagnetically shielded with a transparent electrode or the like, and is housed in a metal case or resin-molded.
[0003]
On the other hand, when the light receiving element and the light receiving signal processing circuit are monolithically incorporated, as described in Japanese Patent Publication No. Hei 7-120762, the high density light is applied to the surface of the light receiving element at the same time when the gate and the source of the light receiving signal processing circuit are formed. In some cases, a layer is formed and this high-concentration layer attempts to shield simultaneously with wiring.
[0004]
[Problems to be solved by the invention]
However, when the electromagnetic shield is embedded in the light receiving element assembly, it is complicated to prevent misalignment and wiring of the mesh and film, and when a transparent electrode is provided on the element surface, a capacitor is placed between the shielding electrode and the element surface. Is formed, the electric capacity is increased, the receiving sensitivity is reduced, and in the case of optical communication, there is a disadvantage that the communicable range is significantly shortened.
[0005]
On the other hand, when the light receiving element and the light receiving signal processing circuit are monolithically integrated, the depth and impurity concentration of the layer corresponding to the photoelectric characteristics required for the light receiving element are different from the dopant and impurity concentration required for the circuit portion, or these light receiving elements It is theoretically possible to use the shield layer for the wiring, since the matching between the circuit and the circuit portion cannot be obtained. However, the attenuation of the optical signal and the decrease in the S / N ratio are caused. Further, in such a monolithic light receiving element, the response of the light receiving element is deteriorated because the manufacturing process is restricted to the circuit portion.
[0006]
[Means for Solving the Problems]
The present invention has been made in view of the above points, and uses a P-type conductive semiconductor substrate having a low impurity concentration, a P-type high-concentration layer provided on the back surface of the semiconductor substrate, and a semiconductor substrate having the same structure. N-type high-concentration layer provided as a light-receiving portion at a substantially central portion on the surface side of P, and a P-type low-sheet-resistance P-type layer provided on the surface of the N-type high-concentration layer with a larger area than the N-type high-concentration layer A PIN having a high-concentration thin layer and a P-type high-concentration layer surrounding the periphery of the P-type high-concentration thin layer on the surface of the semiconductor substrate. More preferably, a light receiving element is obtained, and the periphery of such an element is covered (enclosed) with a conductive material connected to the P-type high-concentration thin layer on the surface of the light receiving portion at the same potential.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic side view of a mounted state of a light receiving element according to an embodiment of the present invention, and FIG. 2 is a plan view of the light receiving element. In these figures, reference numeral 1 denotes a low-impurity-concentration semiconductor substrate having a resistance value of 500 Ωcm or more, which is an element substrate made of P-type Si having a thickness of 180 to 400 μm. The resistance value of the semiconductor substrate 1 is a value that is effective for maintaining a good reception sensitivity because the depletion layer spreads over the entire thickness of the layer when a bias voltage is applied, and is preferably 800 to 1200 Ωcm. Reference numeral 2 denotes an N-type high-concentration layer provided as a light receiving portion at a substantially central portion on the front surface side of the semiconductor substrate 1, and is provided in a substantially square shape in the example of FIG. An N-type ohmic electrode 21 is connected to a part of the surface of the N-type high-concentration layer 2 serving as a light-receiving portion. For example, the impurity concentration is 1 by diffusing phosphorus (P) to a depth of 1 to 5 μm. It is provided at about × 10 20 cm −3 .
[0008]
Reference numeral 3 denotes a P-type high-concentration layer provided on the back surface of the semiconductor substrate 1, which is necessary when the P-type ohmic electrode 4 is provided, diffuses boron (B), and has an impurity concentration of about 1 × 10 20 cm. -3 . Therefore, the P-type high-concentration layer 3 is unnecessary when the P-type electrode is taken out from the surface side.
[0009]
Reference numeral 5 denotes a P-type high-concentration thin layer further provided on the surface of the N-type high-concentration layer 2, which has a larger area than the N-type high-concentration layer 2 so as to cover most of the surface side of the N-type high-concentration layer 2. It is shallower than the N-type high concentration layer 2 and has a depth of, for example, 0.5 to 2 μm. Such a P-type high-concentration thin layer 5 is obtained by diffusing boron (B), and has a surface resistance of, for example, 30 Ω / b in order to obtain conductivity. Preferably, the sheet resistance is set to be 20 KΩ / b or less. The P-type high-concentration thin layer 5 is in ohmic contact with the shield electrode 51.
[0010]
Reference numeral 6 denotes a P-type high-concentration layer surrounding the periphery of the P-type high-concentration thin layer 5 on the surface of the semiconductor substrate 1, which is separated from the P-type high-concentration thin layer 5 on the light-receiving portion surface, and has an impurity concentration of about 1 × 10 20. It is preferable that the depth is 1-7 μm at cm −3 , which is deeper than the P-type high-concentration thin layer 5. Above the surrounding P-type high-concentration layer 6, the above-mentioned shield electrode 51 is arranged in a square shape so as to cover the P-type high-concentration layer 6. An insulating film 11 made of silicon dioxide or silicon nitride is provided on the surface for protecting the surface and preventing undesired reflection. In a portion where the electrodes 21 and 51 take ohmic contact, a photolithography technique or the like is used. A through hole is provided.
[0011]
Such a light receiving element is fixed to a frame 8 using a conductive adhesive 7, but in order to prevent noise incident from the side of the element, the side of the element is surrounded by a conductive material 9 such as a metal frame. It is most preferable that the shield electrode 51 of the P-type high-concentration thin layer 5 on the light receiving section surface and the conductive material 9 are connected by a wire bond wire or the like to form an equipotential surface.
[0012]
In such a configuration, the light receiving element forms a so-called PIN photodiode, and is configured to have high light receiving sensitivity, and can provide an effective electromagnetic shielding effect. FIG. 3 is a correlation diagram between the surface resistance value of the P-type high-concentration thin layer 6 on the light-receiving portion surface and the signal reach when the light-receiving element is incorporated in the infrared light receiving module. The surface resistance value of the thin concentration layer 6 is 10 KΩ / b or less, which indicates that there is a particularly excellent effect. In addition, the TV receiver and the inverter fluorescent lamp were arranged as noise sources, and the noise resistance was examined. As a result, when the light-receiving element of the present invention was used as it was, the influence of noise appeared on the output of the light-receiving module at a location 16 mm away from the noise source on a lot average, but the conductive material 9 was provided around the light-receiving element. In this case, even when the light receiving module was brought into contact with the noise source case (outer box), the output did not show any influence of noise.
[0013]
【The invention's effect】
As described above, the present invention maintains high-sensitivity light-receiving element characteristics as a PIN photodiode, and has an electromagnetic shield layer, an electromagnetic shield ring electrode, an opposing ring layer, etc. on its surface, so that it does not hinder assembly and is efficient. Electromagnetic shielding was successfully performed.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a mounted state of a light receiving element according to an embodiment of the present invention.
FIG. 2 is a plan view of a light receiving element according to an embodiment of the present invention.
FIG. 3 is a correlation diagram between a surface resistance value of a P-type high-concentration thin layer 6 and a signal reaching distance.
[Explanation of symbols]
1 semiconductor substrate 2 N-type high concentration layer (light receiving section)
3 P-type high concentration layer 4 P-type ohmic electrode 5 P-type high concentration thin layer 6 P-type high concentration layer 7 Conductive adhesive 8 Frame 9 Conductive material

Claims (1)

低不純物濃度を有したP型導電性の半導体基板を用い、その半導体基板の裏面に設けられたP型高濃度層と、その半導体基板の表面側の略中央部に受光部として設けられたN型高濃度層と、そのN型高濃度層の更に表面に該N型高濃度層より広い面積で設けられたシート抵抗が低いP型高濃度薄層と、半導体基板の表面においてP型高濃度薄層の周囲を囲繞する囲繞P型高濃度層と、前記P型高濃度薄層に接触したシールド電極とを具備し、前記シールド電極は、前記囲繞P型高濃度層を覆うように配置したことを特徴とする受光素子。A P-type conductive semiconductor substrate having a low impurity concentration is used, a P-type high concentration layer provided on the back surface of the semiconductor substrate, and an N-type light-receiving portion provided substantially at the center on the front surface side of the semiconductor substrate. -Type high-concentration layer, a P-type high-concentration thin layer having a lower sheet resistance provided on the surface of the N-type high-concentration layer over a larger area than the N-type high-concentration layer, and a P-type high-concentration layer on the surface of the semiconductor substrate. A surrounding P-type high-concentration layer surrounding the thin layer; and a shield electrode in contact with the P-type high-concentration thin layer. The shield electrode is arranged to cover the surrounding P-type high-concentration layer. receiving element, characterized in that.
JP1996226771A 1996-08-28 Light receiving element Expired - Fee Related JP3594418B6 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1996226771A JP3594418B6 (en) 1996-08-28 Light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1996226771A JP3594418B6 (en) 1996-08-28 Light receiving element

Publications (3)

Publication Number Publication Date
JPH1070301A JPH1070301A (en) 1998-03-10
JP3594418B2 true JP3594418B2 (en) 2004-12-02
JP3594418B6 JP3594418B6 (en) 2005-02-16

Family

ID=

Also Published As

Publication number Publication date
JPH1070301A (en) 1998-03-10

Similar Documents

Publication Publication Date Title
US4318115A (en) Dual junction photoelectric semiconductor device
US20040061152A1 (en) Semiconductor photosensor device
JP2011071484A (en) Semiconductor light detecting element and semiconductor device
US5291054A (en) Light receiving module for converting light signal to electric signal
JP3594418B2 (en) Light receiving element
JPH0691228B2 (en) Semiconductor device
JP3594418B6 (en) Light receiving element
JP2001358357A (en) Semiconductor receiver
JP3490959B2 (en) Light receiving element and light receiving module
KR20080069981A (en) Detector device and detector element
JP2998646B2 (en) Light receiving operation element
JP3609544B6 (en) Receiver
JP3609544B2 (en) Receiver
JP3696177B2 (en) Light receiving module for optical remote control
JP3696094B2 (en) Light receiving module
JP3583815B2 (en) Light receiving element
JP3516342B2 (en) Light receiving module for optical remote control
JP3831639B2 (en) Light receiving element and light receiving module
JP2004260227A (en) Light receiving element and light receiving device
JP2004055743A (en) Photodetector and photodetector module
JPS6222273B2 (en)
JP3986267B2 (en) Light receiving element and light receiving device
JPH10270742A5 (en)
JP2002164565A (en) Photoelectric conversion device
JP4036850B2 (en) Receiver module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees