JP3507278B2 - Electroplating method - Google Patents
Electroplating methodInfo
- Publication number
- JP3507278B2 JP3507278B2 JP14542697A JP14542697A JP3507278B2 JP 3507278 B2 JP3507278 B2 JP 3507278B2 JP 14542697 A JP14542697 A JP 14542697A JP 14542697 A JP14542697 A JP 14542697A JP 3507278 B2 JP3507278 B2 JP 3507278B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- electrode
- anode
- electroplating
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 33
- 238000009713 electroplating Methods 0.000 title claims description 25
- 238000007747 plating Methods 0.000 claims description 54
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 claims description 22
- 229910000457 iridium oxide Inorganic materials 0.000 claims description 22
- 229910052759 nickel Inorganic materials 0.000 claims description 22
- 239000003054 catalyst Substances 0.000 claims description 20
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 12
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 12
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 11
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 11
- 229910001887 tin oxide Inorganic materials 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 claims description 2
- 150000002503 iridium Chemical class 0.000 claims description 2
- 150000003481 tantalum Chemical class 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 33
- 238000000354 decomposition reaction Methods 0.000 description 16
- 239000000460 chlorine Substances 0.000 description 14
- 229910052801 chlorine Inorganic materials 0.000 description 13
- 239000000126 substance Substances 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- -1 chlorine ions Chemical class 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 239000010405 anode material Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 3
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229910001453 nickel ion Inorganic materials 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- KERTUBUCQCSNJU-UHFFFAOYSA-L nickel(2+);disulfamate Chemical compound [Ni+2].NS([O-])(=O)=O.NS([O-])(=O)=O KERTUBUCQCSNJU-UHFFFAOYSA-L 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 235000019353 potassium silicate Nutrition 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- DANYXEHCMQHDNX-UHFFFAOYSA-K trichloroiridium Chemical compound Cl[Ir](Cl)Cl DANYXEHCMQHDNX-UHFFFAOYSA-K 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical class [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- UUWCBFKLGFQDME-UHFFFAOYSA-N platinum titanium Chemical compound [Ti].[Pt] UUWCBFKLGFQDME-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid group Chemical group S(N)(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 description 1
- OEIMLTQPLAGXMX-UHFFFAOYSA-I tantalum(v) chloride Chemical compound Cl[Ta](Cl)(Cl)(Cl)Cl OEIMLTQPLAGXMX-UHFFFAOYSA-I 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Electroplating And Plating Baths Therefor (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、いわゆるスルファ
ミン酸めっき浴を使用して主に電子部品及び鋼板などに
対し、ニッケル電気めっきを行う場合のめっき方法に関
し、特にスルファミン酸の分解抑制能力を具備した不溶
性金属電極からなる陽極を用いるめっき方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plating method for performing nickel electroplating mainly on electronic parts and steel plates using a so-called sulfamic acid plating bath, and particularly, it has a capability of suppressing sulfamic acid decomposition. The present invention relates to a plating method using an anode composed of the above insoluble metal electrode.
【0002】[0002]
【従来の技術】電子部品など特に精密を要する部品に対
するニッケルめっきには、通常スルファミン酸を含むめ
っき液を使用している。これは、このめっき液を使用す
ると、めっきの付きまわり性が良好で精密めっきに適す
るばかりでなく、めっき皮膜中に腐食性の高い塩素イオ
ンなどが残らないなどの特性を有するためである。2. Description of the Related Art A plating solution containing sulfamic acid is usually used for nickel plating of electronic parts such as electronic parts which require particularly high precision. This is because, when this plating solution is used, not only the plating throwing power is good and it is suitable for precision plating, but also chlorine ions, which are highly corrosive, do not remain in the plating film.
【0003】このスルファミン酸を含むめっき液を使用
するニッケルめっきでは、陽極として、通常はニッケル
金属を用いており、ニッケル金属は、めっきの進行に応
じてニッケルが液中に徐々に溶け出るいわゆる溶性陽極
を形成する。このような陽極は、ニッケルの溶解電位で
用いられるので、めっき液中の他の成分の分解がない、
めっき液中のニッケルイオンは、陰極材表面にめっき被
着して減少するが、減少した分のニッケルイオンは陽極
から補給されるなどの特徴があるとされ、これらの点か
らニッケル電極は陽極として最も望ましいと考えられて
きていた。In nickel plating using a plating solution containing sulfamic acid, nickel metal is usually used as an anode. Nickel metal is a so-called solubility in which nickel gradually dissolves in the solution as the plating progresses. Form the anode. Since such an anode is used at the dissolution potential of nickel, there is no decomposition of other components in the plating solution,
Nickel ions in the plating solution are reduced by plating on the surface of the cathode material, but the reduced nickel ions are said to be replenished from the anode.From these points, the nickel electrode serves as the anode. Was considered the most desirable.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うな溶性陽極においても、現実には次のような問題があ
る。すなわち、電流密度が高くなるとニッケル陽極の表
面に不働態化が起こり、めっき液中へのニッケルの円滑
な溶解は望めなくなる。加えて電流はその不働態層を通
して流れるため、陽極での過電圧が大きくなる。つま
り、抵抗損が大きくなるので種々の問題が起こる。However, even such a soluble anode has the following problems in reality. That is, when the current density becomes high, passivation occurs on the surface of the nickel anode, and smooth dissolution of nickel in the plating solution cannot be expected. In addition, the current flows through the passivation layer, which increases the overvoltage at the anode. That is, the resistance loss becomes large, and various problems occur.
【0005】すなわち、この場合には、めっき電圧(浴
電圧)が高くなる。過電圧の上昇に伴うめっき電圧の上
昇によりめっき液中のスルファミン酸の分解が著しくな
り、正常なめっき操業ができ難くなるという問題点を持
っていた。更に、不働体の生成速度は一定しないので、
陽極から溶出するニッケル量に変化があり、めっき液の
成分コントロールは困難であるという問題を合わせ持っ
ていた。さらに、不働態化皮膜がめっき液中で脱落すれ
ばスライムが生成し、そのスライムがニッケル電着皮膜
に共析して製品不良の原因となるという問題点があっ
た。ニッケル電着皮膜へのスライムの共析を回避するに
は、しばしばアノードバッグを使用することが行われて
いるが、そのようにするとニッケル陽極からニッケルを
溶解させてこれをめっき液中に補給することは困難にな
る。結局定時的にめっき操作を止め、ニッケル陽極を補
給するという煩雑な操作をしなければならないという問
題があった。That is, in this case, the plating voltage (bath voltage) becomes high. There is a problem that the sulfamic acid in the plating solution is decomposed remarkably due to the increase in the plating voltage due to the increase in the overvoltage, which makes it difficult to operate the plating normally. Furthermore, since the rate of generation of passive bodies is not constant,
There was also a problem that it was difficult to control the components of the plating solution because the amount of nickel eluted from the anode changed. Furthermore, if the passivation film falls off in the plating solution, slime is generated, and the slime is co-deposited on the nickel electrodeposition film, causing a product defect. Anode bags are often used to avoid the co-deposition of slime on the nickel electrodeposition coating, and doing so dissolves nickel from the nickel anode and replenishes it in the plating solution. Things will be difficult. After all, there was a problem that the plating operation had to be stopped at regular intervals and a complicated operation of replenishing the nickel anode had to be performed.
【0006】これらの問題を解決しようとして、陽極に
不溶性電極である白金めっきチタン電極を使用すること
も試みられている。白金めっきチタン電極は不溶性であ
り、スライムの生成や電極自身の溶解による極間距離の
拡大という問題は起こらない。ただ、不溶性電極を用い
てニッケルめっきを行う場合における陽極反応は酸素発
生反応であるために、陽極電位が高くなる。これに加
え、白金めっきチタン電極を使用した場合には酸素過電
圧が600〜800mVもあるので、これを加えた陽極
電位が一層高くなる。In order to solve these problems, it has been attempted to use a platinum-plated titanium electrode which is an insoluble electrode for the anode. Since the platinum-plated titanium electrode is insoluble, there is no problem that the distance between the electrodes is increased due to the formation of slime or the dissolution of the electrode itself. However, when nickel plating is performed using an insoluble electrode, the anodic reaction is an oxygen generation reaction, and therefore the anodic potential becomes high. In addition to this, when a platinum-plated titanium electrode is used, the oxygen overvoltage is as high as 600 to 800 mV, so the anode potential added with this becomes even higher.
【0007】したがって、この場合には電解電圧の上昇
はもちろんのこと、めっき液中のスルファミン酸などの
有機物の分解も早まるという問題点があった。更に電位
が高いので、この種のめっき液中に塩化ニッケルが含ま
れる場合には塩素イオンが解離し、その一部が塩素ガス
となって排出される。塩素ガスを排出すれると、その強
い酸化作用でめっき液中の有機物の分解が促進し、めっ
き槽の腐食の原因ともなるなどの問題点があった。また
有機物や塩素イオンを含むめっき液中では白金めっき電
極はその消耗が激しく、寿命が短いという問題点があっ
た。Therefore, in this case, not only the electrolytic voltage rises but also the decomposition of organic substances such as sulfamic acid in the plating solution is accelerated. Since the potential is even higher, when nickel chloride is contained in this type of plating solution, chlorine ions are dissociated, and a part thereof is discharged as chlorine gas. When chlorine gas is discharged, there is a problem that the strong oxidizing action accelerates the decomposition of organic substances in the plating solution, which causes corrosion of the plating tank. Further, there is a problem in that the platinum-plated electrode is greatly worn out and has a short life in a plating solution containing organic substances and chlorine ions.
【0008】本発明は、叙上の問題点を解決するために
なされたものであり、スルファミン酸を含むニッケルめ
っき液中において特に耐食性及び耐久性に優れ、高電流
密度で操業してもスルファミン酸の分解が少なく、長期
に渡って安定的に操業が可能な陽極を用いる電気めっき
方法を提供することを目的とするものである。The present invention has been made in order to solve the above-mentioned problems, and is particularly excellent in corrosion resistance and durability in a nickel plating solution containing sulfamic acid, and even when operating at a high current density, sulfamic acid is used. It is an object of the present invention to provide an electroplating method using an anode that is less likely to decompose and can be stably operated for a long period of time.
【0009】[0009]
【課題を解決するための手段】本発明は、以下の手段に
よりその課題を解決した。
(1)スルファミン酸を含むめっき浴を用いてニッケル
の電気めっきを行うに当たり、陽極として、酸化イリジ
ウムを主体とし残部が酸化タンタル又は酸化スズからな
る電極触媒層を有する不溶性金属電極を用いることを特
徴とする電気めっき方法。
(2)前記不溶性金属電極が、チタン基材上に、酸化イ
リジウムが60〜90mol%で、残部が酸化タンタル
又は酸化スズよりなる酸化物被覆の電極触媒層を形成し
たものであることを特徴とする前記(1)記載の電気め
っき方法。The present invention has solved the problem by the following means. (1) When electroplating nickel using a plating bath containing sulfamic acid, an insoluble metal electrode having an electrode catalyst layer mainly composed of iridium oxide and the balance being tantalum oxide or tin oxide is used as an anode. And the electroplating method. (2) The insoluble metal electrode is characterized by forming an oxide-coated electrode catalyst layer of iridium oxide of 60 to 90 mol% and the balance of tantalum oxide or tin oxide on a titanium base material. The electroplating method according to (1) above.
【0010】(3)前記不溶性金属電極が、その酸化物
被覆の電極触媒層を、イリジウム塩とタンタル塩又はス
ズ塩を含む溶液からの熱分解法により作製したものであ
ることを特徴とする前記(1)又は(2)記載の電気め
っき方法。
(4)前記不溶性金属電極の表面には多孔質隔膜を設け
ることにより、陽極とめっき液との接触を抑制すること
を特徴とする前記(1)〜(3)のいずれか1項記載の
電気めっき方法。
(5)前記多孔質隔膜がシリカを含む絶縁性物質からな
ることを特徴とする前記(4)記載の電気めっき方法。(3) The insoluble metal electrode is characterized in that the oxide-coated electrode catalyst layer is produced by a thermal decomposition method from a solution containing an iridium salt and a tantalum salt or a tin salt. The electroplating method according to (1) or (2). (4) The electricity according to any one of (1) to (3), wherein a contact between the anode and the plating solution is suppressed by providing a porous diaphragm on the surface of the insoluble metal electrode. Plating method. (5) The electroplating method according to (4), wherein the porous diaphragm is made of an insulating material containing silica.
【0011】[0011]
【発明の実施の形態】次に、本発明の実施の形態を説明
する。本発明の場合、めっき液中に設ける陽極の基材は
原則としてチタンがよい。チタン基材の形状は、板状、
棒状、エキスパンド状、多孔板状等の形状を採りうる。
基材表面は、グリッドブラストやショットブラスト処理
を施して実表面積をできるだけ大きくしたものであるこ
とが望ましい。BEST MODE FOR CARRYING OUT THE INVENTION Next, embodiments of the present invention will be described. In the case of the present invention, the base material of the anode provided in the plating solution is preferably titanium in principle. The titanium base material has a plate shape,
It may have a rod shape, an expanded shape, a perforated plate shape, or the like.
It is desirable that the surface of the base material is subjected to grid blasting or shot blasting so that the actual surface area is as large as possible.
【0012】基材表面には不溶性の陽極触媒層を構成す
る電極物質で被覆し、例えば塗布・熱分解により形成す
る。不溶性の陽極物質としては次に示す複合酸化物を使
用する。具体的には、酸化イリジウムと酸化タンタルと
の複合酸化物、又は酸化イリジウムと酸化スズとの複合
酸化物を使用する。酸化イリジウムの組成比は、複合酸
化物全体の中で50モル%以上、望ましくは60〜90
モル%とするとよい。酸化イリジウムの組成比が50モ
ル%より少ないと、電極としての反応点が少なくなるた
めか、酸素発生過電圧が上昇する場合があり、これによ
り有機物の分解が促進されるおそれがあって余り好まし
くない。The surface of the base material is coated with an electrode material which constitutes an insoluble anode catalyst layer, and is formed, for example, by coating and thermal decomposition. The following complex oxides are used as the insoluble anode material. Specifically, a composite oxide of iridium oxide and tantalum oxide or a composite oxide of iridium oxide and tin oxide is used. The composition ratio of iridium oxide is 50 mol% or more in the whole composite oxide, preferably 60 to 90.
It is good to set it as mol%. If the composition ratio of iridium oxide is less than 50 mol%, the oxygen generation overvoltage may increase, possibly because the number of reaction points as an electrode decreases, which may accelerate the decomposition of organic substances, which is not preferable. .
【0013】しかも、めっき液中に塩化ニッケルが含ま
れている場合、酸化イリジウムの割合が少なくても塩素
発生反応に対する触媒的作用はそれほど損なわれない。
しかし、酸素発生過電圧が上昇するので相対的に塩素発
生反応は促進される場合があり、その点からも余り好ま
しくない。また、酸化イリジウムの組成割合が90モル
%より大きくなると、この場合もやはり酸素発生の過電
圧が高くなり、塩化ニッケルが含まれている場合、塩素
発生反応の促進が起り、余り好ましくない。Moreover, when the plating solution contains nickel chloride, the catalytic action for the chlorine generation reaction is not so impaired even if the proportion of iridium oxide is small.
However, since the oxygen generation overvoltage increases, the chlorine generation reaction may be relatively promoted, which is also not very preferable. Further, when the composition ratio of iridium oxide is more than 90 mol%, the overvoltage of oxygen generation also becomes high in this case as well, and when nickel chloride is contained, the chlorine generation reaction is accelerated, which is not preferable.
【0014】このような不溶性金属電極の製法としては
熱分解法が最適である。熱分解法というのは、本電極物
質を構成する金属塩を含む溶液を基材金属上に塗布し、
これを空気中で450℃〜650℃で熱分解するという
方法である。熱分解法の他にも、例えばゾルゲル法など
予め酸化物ないし水酸化物としたものを電極基材上にバ
インダーなどを用いて担持する方法や、反応性PVD
(真空蒸着)法やCVD(化学蒸着)法で被覆する方法
がある。熱分解法以外のこれらでも特に問題はないが、
熱分解法以外は一般に被覆の結晶性がよくなり、化学的
に安定化するためか、熱分解法以外の作製法を使用した
不溶性金属電極は、めっき液中で陽極として用いた場合
に酸素発生の過電圧を上昇させる傾向にある。そのた
め、有機物の分解を促進する傾向があり、できれば熱分
解法で形成したものであることが望ましい。The thermal decomposition method is the most suitable method for producing such an insoluble metal electrode. The thermal decomposition method is a method of applying a solution containing a metal salt that constitutes the electrode material onto a base metal,
This is a method of thermally decomposing this in air at 450 ° C to 650 ° C. In addition to the thermal decomposition method, for example, a method such as a sol-gel method in which an oxide or hydroxide is previously supported on an electrode substrate by using a binder or the like, or reactive PVD
There is a method of coating with a (vacuum vapor deposition) method or a CVD (chemical vapor deposition) method. There is no particular problem with these other than thermal decomposition method,
Probably because the crystallinity of the coating is generally good except for the thermal decomposition method and it is chemically stabilized, an insoluble metal electrode using a manufacturing method other than the thermal decomposition method generates oxygen when used as an anode in the plating solution. Tends to increase the overvoltage of. Therefore, it tends to accelerate the decomposition of organic substances, and if possible, it is preferably formed by a thermal decomposition method.
【0015】不溶性金属電極の表面には有機物や塩素イ
オンの拡散を防ぐ目的で多孔質の隔膜を貼るとよい。不
溶性金属電極の表面に貼る隔膜は、いわゆる濾布などの
膜でもよいが、多孔質の絶縁層などを熱分解などの方法
で設けても良い。例えば、水ガラスやシリカなどを用
い、絶縁性と耐食性のある多孔質の薄い被覆膜を設け、
陽極とめっき液との接触を抑制するとよい。A porous diaphragm may be attached to the surface of the insoluble metal electrode for the purpose of preventing diffusion of organic substances and chlorine ions. The membrane attached to the surface of the insoluble metal electrode may be a membrane such as a so-called filter cloth, but a porous insulating layer or the like may be provided by a method such as thermal decomposition. For example, using water glass or silica, provide a porous thin coating film with insulation and corrosion resistance,
It is preferable to suppress contact between the anode and the plating solution.
【0016】電極物質の溶出又は崩壊によるめっき液中
のスライムを防止するため、めっき液中の電極は耐食性
が十分に高いことが必要とされる。いわゆるDSEと呼
ばれる白金族金属酸化物を含む電極物質を全金属表面に
被覆した電極は、極めて高い耐久性を有し、本発明の目
的の達成には最適である。本発明は、この特性、特に電
気化学的特性を本目的に合致するようにした電極を使う
ことにより、従来の問題点の解消を図ったものである。In order to prevent slime in the plating solution due to elution or disintegration of the electrode material, the electrode in the plating solution is required to have sufficiently high corrosion resistance. An electrode in which an all-metal surface is coated with an electrode material containing a platinum group metal oxide, so-called DSE, has extremely high durability and is optimal for achieving the object of the present invention. The present invention is intended to solve the conventional problems by using an electrode whose characteristics, particularly electrochemical characteristics, are matched with the object of the present invention.
【0017】本発明では、DSE型電極のうち酸素発生
反応で影響を受けない安定な酸化イリジウムを主電極触
媒物質とすることにより、不溶性金属電極としての十分
な耐久性を陽極に与えた。更にめっき液中のスルファミ
ン酸などの有機物の分解を最小限にするためには、陽極
電位を出来るだけ低くすること、可能であれば陽極表面
にこれらの有機物が接触する機会を最小限とすることが
必要である。まためっき液中に塩素イオンが含まれてい
る場合、それを酸化させて塩素を発生させないために
は、やはり酸素発生電位が低いこと、塩素発生の過電圧
ができるだけ大きいことが必要である。本発明は、酸化
イリジウム電極触媒物質を主体として鋭意検討した結
果、酸化イリジウムと酸化タンタルとの複合酸化物、並
びに酸化イリジウムと酸化錫との複合酸化物被覆が最適
であることが分かり、更にその組成を特定することによ
り目的とする特性が得られることが判明して完成した。In the present invention, of the DSE type electrodes, stable iridium oxide which is not affected by the oxygen generation reaction is used as the main electrode catalyst substance, so that the anode has sufficient durability as an insoluble metal electrode. Furthermore, in order to minimize the decomposition of organic substances such as sulfamic acid in the plating solution, keep the anode potential as low as possible, and if possible, minimize the chance of these organic substances coming into contact with the anode surface. is necessary. Further, when chlorine ions are contained in the plating solution, it is necessary that the oxygen generation potential is low and the chlorine generation overvoltage is as large as possible in order to oxidize the chlorine ions and not generate chlorine. The present invention, as a result of intensive studies mainly on the iridium oxide electrocatalyst material, it was found that a complex oxide of iridium oxide and tantalum oxide, and a complex oxide coating of iridium oxide and tin oxide are the most suitable. It was found that the desired characteristics could be obtained by specifying the composition, and it was completed.
【0018】不溶性金属電極の表面には有機物や塩素イ
オンの拡散を防ぐ目的で多孔質の隔膜を貼るとよい。電
極表面に水ガラスや多孔質シリカ等の絶縁薄層等、耐食
性被覆を設けると、拡散律速となるスルファミン酸の分
解や塩素ガスの発生などが更に抑制できる。A porous diaphragm may be attached to the surface of the insoluble metal electrode for the purpose of preventing diffusion of organic substances and chlorine ions. When a corrosion-resistant coating such as an insulating thin layer of water glass or porous silica is provided on the electrode surface, the decomposition of sulfamic acid, which is the diffusion-controlling agent, and the generation of chlorine gas can be further suppressed.
【0019】[0019]
【実施例】以下、実施例により説明するがそれに限定さ
れないことは言うまでもない。
(実施例1〜10)チタン基材(50×50mm)の表
面をグリッドブラスト処理し、熱蓚酸による酸洗を行っ
た。その後、塩化イリジウムと塩化タンタル、及び塩化
イリジウムと塩化スズをそれぞれ各塩酸溶媒に溶解し、
金属換算で100g/リットル濃度の金属塩溶液を得
た。このようにして得られたその金属塩溶液を上記のチ
タン基材表面に塗布し、次いで、これを100℃で10
分間乾燥した後、500℃の電気炉中で20分間熱処理
することにより、酸化イリジウム(60〜90mol %)
と酸化タンタル(40〜10mol %)及び酸化スズ(4
0〜10mol %)の混合酸化物よりなる触媒層をチタン
基材表面に得た。EXAMPLES Examples will be described below, but it goes without saying that the present invention is not limited thereto. (Examples 1 to 10) The surface of a titanium base material (50 x 50 mm) was grid-blasted and pickled with hot oxalic acid. After that, iridium chloride and tantalum chloride, and iridium chloride and tin chloride are dissolved in each hydrochloric acid solvent,
A metal salt solution having a concentration of 100 g / liter in terms of metal was obtained. The metal salt solution thus obtained is applied to the surface of the titanium substrate, which is then applied at 100 ° C. for 10 hours.
After drying for 1 minute, heat treatment for 20 minutes in an electric furnace at 500 ° C gives iridium oxide (60-90 mol%)
And tantalum oxide (40-10 mol%) and tin oxide (4
A catalyst layer composed of 0 to 10 mol% of mixed oxide was obtained on the surface of the titanium substrate.
【0020】このような、金属塩溶液の塗布、乾燥、熱
処理操作を繰り返し、次のような不溶性金属電極を作製
した。すなわち、酸化イリジウムの割合が60、70、
80、90mol %であり、これに対応して酸化タンタル
の割合が40、30、20、10mol %となる電極物質
層を有する不溶性金属電極、あるいは酸化タンタルの代
わりに酸化スズの割合が40、30、20、10mol %
となる電極物質層を有する不溶性金属電極をそれぞれ作
製した。酸化イリジウムだけの付着量は全て15g/m
2 とした。The following application of the metal salt solution, drying and heat treatment were repeated to prepare the following insoluble metal electrode. That is, the ratio of iridium oxide is 60, 70,
80, 90 mol% and correspondingly, an insoluble metal electrode having an electrode material layer having a tantalum oxide ratio of 40, 30, 20, 10 mol%, or a tin oxide ratio of 40, 30 instead of tantalum oxide. , 20, 10 mol%
Each insoluble metal electrode having an electrode material layer that becomes The amount of iridium oxide alone is 15g / m
2
【0021】作製した不溶性金属電極は、それぞれ実施
例1〜8で電気めっき用の陽極材に供した。別に、酸化
イリジウムの割合が70mol %となる電極触媒層を有す
る不溶性金属電極については次のように処理したものを
製造した。すなわち、残部として酸化タンタルを含むも
の、又は酸化スズを含むものについて電極触媒層の表面
に約10g/m2 のシリカを塗布した。シリカの塗布
は、表面に予め水溶性コロイダルシリカを塗布し、オー
ブン中150℃で20分間乾燥させることで行った。シ
リカ塗布をしたものは実施例9、10で電気めっき用の
陽極材に供した。The prepared insoluble metal electrode was used as an anode material for electroplating in Examples 1 to 8, respectively. Separately, an insoluble metal electrode having an electrode catalyst layer having an iridium oxide content of 70 mol% was processed as follows. That is, about 10 g / m 2 of silica was applied to the surface of the electrode catalyst layer for those containing tantalum oxide or tin oxide as the balance. The application of silica was performed by applying water-soluble colloidal silica on the surface in advance and drying it in an oven at 150 ° C. for 20 minutes. The one coated with silica was used as an anode material for electroplating in Examples 9 and 10.
【0022】一方、上記実施例と同様の方法で、チタン
基材上に酸化イリジウムの割合が100%の電極触媒層
を形成させて電極を作製し、これを比較例1で電気めっ
き用の陽極材に供した。また、酸化イリジウム30mol
%、酸化タンタルまたは酸化スズ70mol %含む各混合
酸化物からなる電極触媒層を有する電極を作製し、これ
を比較例2、3で電気めっき用の陽極材に供した。な
お、酸化イリジウムだけの付着量はいずれも15g/m
2 とした。また、白金被覆厚約3μmの市販の白金チタ
ン電極を用意し、比較例4で電気めっき用の陽極材に供
した。On the other hand, an electrode was prepared by forming an electrode catalyst layer having an iridium oxide content of 100% on a titanium substrate in the same manner as in the above-mentioned example, and in Comparative Example 1, this was used as an anode for electroplating. Used for wood. Also, 30 mol of iridium oxide
%, Tantalum oxide, or 70 mol% of tin oxide, an electrode having an electrode catalyst layer made of each mixed oxide was prepared, and this was used as an anode material for electroplating in Comparative Examples 2 and 3. The amount of iridium oxide deposited was 15 g / m
2 Further, a commercially available platinum-titanium electrode having a platinum coating thickness of about 3 μm was prepared and used as an anode material for electroplating in Comparative Example 4.
【0023】上記のようにして作成した各電極は、次の
ようにして電気めっき用の陽極に供した。すなわち、電
気めっき槽内に銅板(50×50mm)の陰極から30
mm離した位置に陽極として取り付けた。スルファミン
酸ニッケル300g/リットル、塩化ニッケル30g/
リットル、ほう酸30g/リットルを含有する合成ニッ
ケルめっき液を電気めっき槽に入れ、陽極電流密度20
A/dm2 、液温度50℃で1000時間の電気めっき
を行った。陰極は定期的に交換し、めっき液中で消費し
たニッケルイオンは水酸化ニッケル塩を投入することで
補給した。Each of the electrodes prepared as described above was used as an anode for electroplating as follows. That is, from the cathode of the copper plate (50 x 50 mm) to the electroplating tank,
It was mounted as an anode at a position separated by mm. Nickel sulfamate 300 g / liter, nickel chloride 30 g /
A synthetic nickel plating solution containing liter and 30 g / liter of boric acid was placed in an electroplating bath to obtain an anode current density of 20.
Electroplating was performed at A / dm 2 and a liquid temperature of 50 ° C. for 1000 hours. The cathode was periodically replaced, and nickel ions consumed in the plating solution were replenished by adding nickel hydroxide salt.
【0024】電気めっきは各陽極材ごとに1000時間
行い、終了後、めっき液中の硫酸イオン濃度を硫酸バリ
ウム重量法により分析し、それをスルファミン酸の分解
率(%)に換算した。また、電極触媒の消耗率(%)を
蛍光X線分析装置(理学電気株式会社/3511−S)
の検量線法より求めた。各電極毎のめっき処理の結果を
スルファミン酸の分解率と電極触媒の消耗率として表1
に示した。The electroplating was carried out for each anode material for 1000 hours, and after the completion, the sulfate ion concentration in the plating solution was analyzed by the barium sulfate gravimetric method and converted into the decomposition rate (%) of sulfamic acid. In addition, the consumption rate (%) of the electrode catalyst was measured by a fluorescent X-ray analyzer (Rigaku Denki Co., Ltd./3511-S).
It was determined by the calibration curve method of. Table 1 shows the results of the plating treatment for each electrode as the decomposition rate of sulfamic acid and the consumption rate of the electrode catalyst.
It was shown to.
【0025】[0025]
【表1】 [Table 1]
【0026】表1から実施例1〜8はスルファミン酸の
分解率が16〜22%、触媒の消耗率は3〜7%である
ことが分かった。更に、実施例9、10ではスルファミ
ン酸の分解率、触媒の消耗率ともに2%に更に激減して
いることが分かった。それに対して比較例は、分解率、
消耗率共に大きく、特に白金めっきチタン電極を使用し
た比較例では、分解率、消耗率共に極めて大きかった。From Table 1, it was found that in Examples 1 to 8, the decomposition rate of sulfamic acid was 16 to 22% and the catalyst consumption rate was 3 to 7%. Furthermore, in Examples 9 and 10, both the decomposition rate of sulfamic acid and the exhaustion rate of the catalyst were further reduced to 2%. On the other hand, in the comparative example, the decomposition rate,
The wear rate was large, and particularly in the comparative example using the platinum-plated titanium electrode, both the decomposition rate and the wear rate were extremely large.
【0027】本実施例で使用した各電極は、スルファミ
ン酸ニッケルを電解質として含むニッケルめっき液の陽
極として使用した場合、白金めっき電極に比べて酸素発
生電位が約300mV低下し、スルファミン酸の分解率
(%)は1/3以下に低減できた。更に、触媒の消耗率
(%)は、白金めっき電極に比べて1/8以下に減少で
き、長期に渡り安定しためっき操業が可能となる。When each electrode used in this example was used as an anode of a nickel plating solution containing nickel sulfamate as an electrolyte, the oxygen generation potential was reduced by about 300 mV as compared with a platinum-plated electrode, and the decomposition rate of sulfamic acid was decreased. (%) Could be reduced to 1/3 or less. Further, the consumption rate (%) of the catalyst can be reduced to 1/8 or less of that of the platinum-plated electrode, which enables stable plating operation for a long period of time.
【0028】[0028]
【発明の効果】本発明の電気めっき方法は、陽極材表面
に電極触媒層すなわち酸化イリジウムを主体としその他
にも酸化タンタル又は酸化スズを含む電極触媒層で被覆
した不溶性金属電極を使用するから、長期間に渡る安定
しためっき操作が可能になる。特にスルファミン酸等の
有機物の分解が少なく、めっき液中に塩化ニッケルを含
む場合でも塩素の発生は実質的にほとんどない。耐食性
及び耐久性に優れ、高電流密度で操業してもスライム等
の発生は実質的にほとんどない。めっき液の汚染は極め
て少なく、電子部品のめっき等特に精密を要する用途に
最適である。The electroplating method of the present invention uses an insoluble metal electrode in which the surface of the anode material is mainly composed of an electrode catalyst layer, that is, iridium oxide, and which is covered with an electrode catalyst layer containing tantalum oxide or tin oxide. Enables stable plating operation over a long period of time. In particular, decomposition of organic substances such as sulfamic acid is small, and chlorine is practically hardly generated even when nickel chloride is contained in the plating solution. It has excellent corrosion resistance and durability, and even when it is operated at a high current density, slime, etc. are practically scarcely generated. The contamination of the plating solution is extremely small, and it is most suitable for applications that require precision, such as plating of electronic parts.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−122988(JP,A) 特開 昭62−103387(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25D 17/10 101 C25D 3/12 102 C25D 17/12 ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-6-122988 (JP, A) JP-A-62-103387 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C25D 17/10 101 C25D 3/12 102 C25D 17/12
Claims (5)
ニッケルの電気めっきを行うに当たり、陽極として、酸
化イリジウムを主体とし残部が酸化タンタル又は酸化ス
ズからなる電極触媒層を有する不溶性金属電極を用いる
ことを特徴とする電気めっき方法。1. When performing electroplating of nickel using a plating bath containing sulfamic acid, an insoluble metal electrode having an electrode catalyst layer mainly composed of iridium oxide and the balance being tantalum oxide or tin oxide is used as an anode. And an electroplating method.
に、酸化イリジウムが60〜90mol%で、残部が酸
化タンタル又は酸化スズよりなる酸化物被覆の電極触媒
層を形成したものであることを特徴とする請求項1記載
の電気めっき方法。2. The insoluble metal electrode is formed by forming an oxide-coated electrode catalyst layer containing iridium oxide of 60 to 90 mol% and the balance of tantalum oxide or tin oxide on a titanium base material. The electroplating method according to claim 1, which is characterized in that.
の電極触媒層を、イリジウム塩とタンタル塩又はスズ塩
を含む溶液からの熱分解法により作製したものであるこ
とを特徴とする請求項1又は請求項2記載の電気めっき
方法。3. The insoluble metal electrode is characterized in that the oxide-coated electrode catalyst layer is produced by a thermal decomposition method from a solution containing an iridium salt and a tantalum salt or a tin salt. The electroplating method according to claim 1 or claim 2.
膜を設けることにより、陽極とめっき液との接触を抑制
することを特徴とする請求項1〜3のいずれか1項記載
の電気めっき方法。4. The electroplating according to claim 1, wherein a contact between the anode and the plating solution is suppressed by providing a porous diaphragm on the surface of the insoluble metal electrode. Method.
質からなることを特徴とする請求項4記載の電気めっき
方法。5. The electroplating method according to claim 4, wherein the porous diaphragm is made of an insulating material containing silica.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14542697A JP3507278B2 (en) | 1997-06-03 | 1997-06-03 | Electroplating method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP14542697A JP3507278B2 (en) | 1997-06-03 | 1997-06-03 | Electroplating method |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH10330998A JPH10330998A (en) | 1998-12-15 |
| JP3507278B2 true JP3507278B2 (en) | 2004-03-15 |
Family
ID=15384982
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP14542697A Expired - Fee Related JP3507278B2 (en) | 1997-06-03 | 1997-06-03 | Electroplating method |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3507278B2 (en) |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6527939B1 (en) * | 1999-06-28 | 2003-03-04 | Eltech Systems Corporation | Method of producing copper foil with an anode having multiple coating layers |
| JP2001234382A (en) * | 2000-02-16 | 2001-08-31 | Memory Tec Kk | Method and device for electrocasting nickel |
| JP4846740B2 (en) * | 2008-01-23 | 2011-12-28 | 旭鍍金株式会社 | Plating product manufacturing method and electroplating method |
| ITMI20111132A1 (en) * | 2011-06-22 | 2012-12-23 | Industrie De Nora Spa | ANODE FOR EVOLUTION OF OXYGEN |
| WO2023100381A1 (en) * | 2021-12-02 | 2023-06-08 | ディップソール株式会社 | Method and system for electroplating article with metal |
| JP7233793B1 (en) * | 2021-12-02 | 2023-03-07 | ディップソール株式会社 | Method and system for electroplating articles with metal |
-
1997
- 1997-06-03 JP JP14542697A patent/JP3507278B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH10330998A (en) | 1998-12-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR950011405B1 (en) | Cathode for electrolysis and process for producing the same | |
| US6251254B1 (en) | Electrode for chromium plating | |
| US5882723A (en) | Durable electrode coatings | |
| JP3188361B2 (en) | Chrome plating method | |
| CN85108093A (en) | The electrode that is used for electrochemical process, the method and the application of electrode in electrolyzer of making this electrode | |
| EP2098616A1 (en) | Cathode for hydrogen generation | |
| JPH0694597B2 (en) | Electrode used in electrochemical process and manufacturing method thereof | |
| JP4354821B2 (en) | Electrode for electrolysis in acidic media | |
| CN101225527A (en) | Electrode for hydrogen generation and process for preparation thereof | |
| WO2012036196A1 (en) | Electrolysis electrode, positive electrode for producing ozone electrolysis, positive electrode for producing persulfate electrolysis, and positive electrode for chromium electrolytic oxidation | |
| EP0129734B1 (en) | Preparation and use of electrodes | |
| JPH08296079A (en) | Active cathode and manufacturing method thereof | |
| JP2000256898A (en) | Copper plating method of wafer | |
| US5035789A (en) | Electrocatalytic cathodes and methods of preparation | |
| US4584085A (en) | Preparation and use of electrodes | |
| JP2006193768A (en) | Cathode for hydrogen generation | |
| JP3507278B2 (en) | Electroplating method | |
| US4221643A (en) | Process for the preparation of low hydrogen overvoltage cathodes | |
| US4067783A (en) | Gold electroplating process | |
| JPH0841671A (en) | Electrolytical reduction of disulfide compound | |
| US5665218A (en) | Method of producing an oxygen generating electrode | |
| JP6753195B2 (en) | Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode | |
| JP4578348B2 (en) | Electrode for hydrogen generation | |
| JP4115575B2 (en) | Activated cathode | |
| JPH0633481B2 (en) | Electrolytic cathode and method of manufacturing the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031210 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031218 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071226 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081226 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081226 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091226 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101226 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101226 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111226 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111226 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121226 Year of fee payment: 9 |
|
| LAPS | Cancellation because of no payment of annual fees |