JP3640883B2 - Heater heater control method based on input power - Google Patents
Heater heater control method based on input power Download PDFInfo
- Publication number
- JP3640883B2 JP3640883B2 JP2000393123A JP2000393123A JP3640883B2 JP 3640883 B2 JP3640883 B2 JP 3640883B2 JP 2000393123 A JP2000393123 A JP 2000393123A JP 2000393123 A JP2000393123 A JP 2000393123A JP 3640883 B2 JP3640883 B2 JP 3640883B2
- Authority
- JP
- Japan
- Prior art keywords
- heater
- fuel
- engine
- heating
- input power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車等の車輌のエンジンの燃料供給系に係り、特にエンジンの燃料を加熱するヒータの作動を制御することに係る。
【0002】
【従来の技術】
上記用途のエンジンに於いて、エンジン燃焼室内へ燃料を噴射する燃料噴射弁にヒータを設け、かかるヒータにて燃料噴射弁を加熱することにより燃料を加熱しつつ噴射することは、既に古くから行われており、またかかるヒータの過熱を防いでその耐久性を改善し、また、かかるヒータによる燃料の加熱を大気やエンジンの温度状態或いは燃料の燃焼状態等に基づいて制御する発明も種々提案されている。そのような発明の例は、特開平5−288131号公報、特開平11−148441号公報等に示されている。特に前記後者の公報には、燃料温度やエンジン冷却水温度が所定値以上になると燃料加熱用ヒータを遮断することが記載されている。
【0003】
また本件出願人と同一人の出願にかかわる特願2000−340907号には、エンジンの燃料噴射弁を加熱するヒータの作動を制御する方法として、燃料噴射弁の加熱度が所定のしきい値以上であるか否かを判断し、それが所定のしきい値以上であると判断されたときにはヒータの作動を阻止することが記載されており、燃料噴射弁の加熱度が所定のしきい値に達したことを、燃料噴射弁の温度上昇に伴いその駆動電流波形に変化が生ずること、燃料噴射弁の温度上昇に伴い開弁指示信号に対する燃料噴射量が増大すること、または燃料噴射弁の温度上昇に伴いその作動音が増大することによって判断することが提案されている。
【0004】
【発明が解決しようとする課題】
本発明もまたエンジン燃料をヒータにて加熱するに当ってそれを適正に制御し、エンジン始動性およびエンジン始動時の排気特性を改善するように燃料加熱用ヒータの作動を制御せんとするものであるが、上に例記した公報等に於ける如くヒータによる燃料の加熱度を燃料温度により直接的に検出したり、或いは上記先願の如くヒータにより燃料噴射弁が実際に加熱された結果変化するパラメータの検出によってヒータが実施した加熱の度合を判断してヒータの作動を制御する以前に、ヒータにしかじかの加熱用エネルギを投入すれば、それによって燃料はしかじかの温度に加熱される筈であるとの推定に基づいてヒータの作動をフィードフォワード的に制御することにより、制御の機敏性に於いてより優れたエンジン燃料加熱用ヒータの制御を達成することを課題としている。
【0005】
【課題を解決するための手段】
上記の課題を解決するものとして、本発明は、エンジンの燃料を加熱する電気式ヒータの作動を制御する方法にして、
燃料を所定の加熱度とするために前記ヒータへ投入すべき目標投入電力量を推定し、
前記ヒータへ投入された実効投入電力量が前記目標投入電力量に達したと推定されたとき前記ヒータへの通電を低減するよう修正することを特徴とする方法を提案するものである。
【0006】
上記のヒータ制御方法に於いて、前記ヒータへの通電の低減修正は、その一つの実施例として、通電を停止することであってよい。
【0007】
また、上記のヒータ制御方法に於いて、前記燃料の所定の加熱度はエンジン始動時冷却水温度、吸気温、吸気管負圧、燃料性状、システム燃圧、大気圧、エンジン回転数、クランク角当り燃料噴射弁作動回数、ヒータ周り熱伝導度、の少なくとも一つに応じて修正されてよい。
【0008】
【発明の作用及び効果】
ヒータによるエンジン燃料の加熱は、それが的確に制御されれば、エンジンの冷温始動時にその始動性をよくし、またエンジン始動時の排気特性を改善するのに特に効果を発揮するものである。しかし、かかるエンジン始動時のヒータによる燃料の加熱は、高々十数秒という短時間のものである。一方、熱の伝達は、ヒータ用電流の制御に可能な敏捷性に比してかなり緩やかな現象である。またエンジンが始動すると、燃料の流れには脈動的急変が生ずる。かかる状況では、燃料加熱のためのヒータの作動制御には、燃料温度やヒータ部の加熱度を顧みるフィードバック的制御に増して、燃料の加熱温度を目標としてヒータへ投入すべき電力量を制御するフィードフォワード的制御が適する局面がある。この点に於いて、上記の如くエンジン燃料を加熱する電気式ヒータの作動を制御するに当って、燃料を所定の加熱度とするためにヒータに投入すべき目標投入電力量が推定され、ヒータへ投入された実効投入電力量が該目標投入電力量に達したと推定されたとき、ヒータへの通電が少なくとも低減されるよう修正されれば、エンジン始動時の短期間にエンジン燃料を必要なだけ充分に加熱し且つその加熱が過ぎないようにすることができる。
【0009】
上記の如くヒータによるエンジン燃料の加熱はエンジン始動時の短期間であり、ヒータやそれによって加熱される燃料噴射弁等の燃料通路手段は当然或る程度の熱容量を有するので、上記の如くヒータへ投入された実効投入電力量が目標投入電力量に達したときのヒータへの通電の低減が、停止という要領にて行われても、燃料の加熱に好ましからざる急変が起こることはない。
【0010】
またエンジン始動時に燃料に望まれる加熱度は、エンジン始動時のエンジンの温度、吸気温、吸気管負圧、燃料性状、システム燃圧,大気圧、エンジン回転数、燃料ヒータ周りの熱伝導度等に応じて変化するするので、これらのパラメータの少なくとも一つ、可能ならばより多くのパラメータに応じてそれが修正されれば、エンジン始動時の燃料加熱をより好ましいものにすることができる。これらの各パラメータが燃料に対する加熱度、即ちヒータへの投入電力量に及ぼす影響は図1に示す通りである。
【0011】
即ち、図1に示す通り、エンジン始動時に燃料に望まれる加熱度に対する補正係数としての、エンジンの冷却水温に対する補正係数K1は、エンジンの暖機度が高い程小さくてよく、また同様にエンジンに吸入される空気の温度が高い程燃料に対する加熱度は小さくてよいので、吸気温に対する補正係数K2は吸気温が高い程小さくてよい。また吸気管負圧が大きければ燃料はそれだけ霧化しやすいので、吸気管負圧に対する燃料加熱度の補正係数K3は吸気管負圧の増大につれて小さくされてよい。燃料性状に対する燃料加熱度の補正は、その補正係数K4が燃料の重質度の増大に応じて大きくされるものであってよい。
【0012】
エンジン噴射燃料の加熱は、その度合が過ぎると燃料の気化によって燃料通路内にベーパーロックを起こす虞れがあるが、この可能性は燃料圧力が高ければ高い程弱まるので、システム燃圧に対する燃料加熱度の補正係数K5はシステム燃圧の増大に応じて大きくされてよい。また同様に、もしシステム燃圧に対する燃料加熱度の補正が行なわれないとしても、大気圧が高ければそれだけ燃料通路内にベーパーロックを起こす可能性は低減するので、大気圧に対する燃料加熱度の補正係数K6を図示の如く大気圧の増大に応じて大きくなるように準備しておくのが好ましい。
【0013】
更に、エンジンの回転に対応する燃料の間歇噴射に伴う燃料供給系内に於ける燃料の間歇流動の迅速性は、エンジン回転数の増大に応じて増大し、燃料の間歇流動の迅速性が高い程、燃料の流動性はより高いことが望まれるので、かかる観点からもエンジン回転数に対する燃料加熱度の補正が行なわれるのが好ましく、その補正係数K7はエンジン回転数の増大につれて大きくされるものであってよい。また、かかるエンジン回転数に対する燃料加熱度の補正と同様の理由から、図には示されていないが、燃料噴射弁がグループ噴射のためクランク回転角720°当り2回作動するか、独立噴射のためクランク回転角720°当り1回作動するかによる、燃料供給系内燃料の間歇流動迅速性に対する燃料加熱度の補正も行なわれるのが好ましい。
【0014】
更にまた、上記の通りエンジン始動時のヒータによる燃料の加熱は、高々十数秒という短時間のものであり、ヒータへの電力投入により燃料に生ずる加熱度はヒータ周りの熱伝導度に大きく左右されるので、この違いによる影響も図示の如く熱伝導度に対する補正係数K8として準備されてよい。
【0015】
かくして、今燃料加熱のために単位燃料噴射量当りにヒータへ投入すべき電力量の標準値がWtoであり、燃料噴射量がVfであるとすると、エンジンのその都度の始動時に於ける投入電力量Wtは、上記の如き補正係数K1,K2,...を可能な限り多く用いて
Wt=K1・K2・K3・K4・K5・K6・K7・K8・Wto・Vf
として計算により得られる。図1に示す如き各補正係数についてのマップの設定は、エンジンの各型に対し実験に基づいて行なうことができ、かかるマップをデジタルデータとして保存しまたそれに基づいて投入電力量を計算することは、現今の自動車等の車輌に標準的に組み込まれるマイクロコンピュータを備えた電気式車輌運転制御装置を用いて問題無く行なえる。
【0016】
そして、ヒータへ投入された電力量Weをヒータ通電に於ける電圧×電流の積算値として求め、WeがWtに達したところでヒータへの通電を低減するよう修正すれば、かかるフィードフォワード的制御によって、ヒータに過加を生ぜしめることなく迅速なエンジン始動時燃料加熱を達成することができる。
【0017】
【発明の実施の形態】
図2は本発明による上記の如き燃料加熱用ヒータの作動制御を実施する制御過程を一つの実施例について示すフローチャートである。かかる制御過程によるヒータの作動制御は、図には示されていない電子式車輌運転制御装置のマイクロコンピュータ部に組み込まれたプログラムによってエンジンの始動に伴って開始される。
【0018】
制御が開始されると、先ずステップ10にて上記のエンジン冷却水温、吸気温等々の制御に必要なデータの読込みが行なわれる。次いで制御はステップ20へ進み、読み込まれたデータに基づき燃料を加熱すべき条件が成立しているか否か、即ちヒータ作動が必要か否か、が判断される。答えがイエスのときには、制御はステップ30へ進み、ヒータに燃料加熱のための通電が開始される。
【0019】
ヒータへの通電開始後、制御はステップ40へ進み、ステップ10にて読み込まれたデータによる燃料噴射量に加えて、エンジンの冷却水温、吸気温、吸気管負圧、燃料重質度、システム燃圧、大気圧、エンジン回転数、ヒータ周りの熱伝導度等の少なくとも一つ、できればより多くの事項について補正係数K1,K2,...等の値が上記のマップより求められ、それらに基づいてヒータへ投入すべき目標投入電力量Wtが算出される。
【0020】
次いで制御はステップ50へ進み、同じくステップ10にて読み込まれたデータによるヒータ電流とその電圧の積の時間的積分である実行投入電力量Weが算出される。
【0021】
次いで制御はステップ60へ進み、WeがWtに達したか否かが判断される。そして未だそれに至らず、答えがノーである間、制御はステップ10の前に戻り、随時読み込みデータを更新しつつヒータへの通電を続ける。
【0022】
こうしてヒータへの通電を行ないつつステップ10〜60を通って制御を続けると、やがてWeはWtに達し、ステップ60の答えはノーよりイエスに転ずるので、ここでヒータへの通電は低減方向へ修正されればよい。図2の実施例では、ヒータへの通電はここで停止される。かくして一回のヒータ作動制御は終了する。
【0023】
図3は本発明による上記の如き燃料加熱用ヒータの作動制御を実施する制御過程を他の一つの実施例について示す図2と同様のフローチャートである。図3に於いて、図2に於けるステップと同様の制御を行なうステップは図2に於けると同じステップ番号にて示されている。この実施例に於いては、ステップ10にて、図2の実施例に於けるデータに加えて、燃料供給システムの燃料圧力を加圧すべき指令の有無が読み込まれ、その指令が出ているときには、ステップ25にてシステムの燃料の加圧が行なわれる。かかるシステム燃料の加圧は、勿論補正係数K5の変化によって目標投入電力量Wtに反映される。この場合、ステップ70にてヒータへの通電が停止された後、加圧したシステム燃料圧力を元に戻すには幾分かの緩衝時間をとるのが好ましいので、ステップ80にて所定の時間経過をとり、それを待ってステップ90にてシステム燃料圧力が通常圧に戻され、ここで一回のヒータ制御が終了する。
【0024】
以上に於いては本発明をいくつかのパラメータに対するヒータへの投入電力量補正の例と制御過程に関する二つの実施例について詳細に説明したが、これらの実施例について本発明の範囲内にて種々の修正が可能であることは当業者にとって明らかであろう。
【図面の簡単な説明】
【図1】本発明に於いて着目するエンジン始動時燃料加熱に望まれる加熱度に対するエンジンの温度状態、吸気温、吸気管負圧、燃料性状、システム燃圧、大気圧、エンジン回転数、ヒータ周りの熱伝導度の影響を示すマップ。
【図2】本発明による燃料加熱用ヒータの作動制御を実施する制御過程を一つの実施例について示すフローチャート。
【図3】本発明による燃料加熱用ヒータの作動制御を実施する制御過程を他の一つの実施例について示すフローチャート。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel supply system for an engine of a vehicle such as an automobile, and more particularly to controlling the operation of a heater for heating the fuel of the engine.
[0002]
[Prior art]
In the engine for the above-mentioned use, it has been practiced for a long time to provide a fuel injection valve for injecting fuel into the engine combustion chamber and to inject fuel while heating the fuel injection valve with such a heater. In addition, various inventions have been proposed in which overheating of the heater is prevented and its durability is improved, and heating of the fuel by the heater is controlled based on the atmosphere, the engine temperature state, the fuel combustion state, or the like. ing. Examples of such inventions are shown in Japanese Patent Application Laid-Open Nos. 5-288131 and 11-148441. In particular, the latter publication describes that the fuel heating heater is shut off when the fuel temperature or the engine coolant temperature exceeds a predetermined value.
[0003]
In Japanese Patent Application No. 2000-340907, which is filed by the same applicant as the present applicant, as a method for controlling the operation of a heater for heating the fuel injection valve of the engine, the heating degree of the fuel injection valve exceeds a predetermined threshold value. It is described that the operation of the heater is prevented when it is determined that the fuel injection valve is greater than or equal to a predetermined threshold value, and the heating degree of the fuel injection valve is set to the predetermined threshold value. That the drive current waveform changes with the temperature rise of the fuel injection valve, the fuel injection amount with respect to the valve opening instruction signal increases with the temperature rise of the fuel injection valve, or the temperature of the fuel injection valve It has been proposed to make a judgment based on an increase in the operating sound as it rises.
[0004]
[Problems to be solved by the invention]
The present invention also controls the operation of the fuel heater so that the engine fuel is heated properly by the heater and is controlled appropriately so as to improve the engine startability and the exhaust characteristics at engine start. However, as described in the above publications, etc., the degree of fuel heating by the heater is directly detected by the fuel temperature, or the fuel injection valve is actually heated by the heater as in the previous application. If the heating energy is input to the heater before the heater operation is controlled by determining the degree of heating performed by the heater by detecting the parameter, the fuel is heated to the specific temperature. By controlling the heater operation in a feed-forward manner based on the estimation that the engine is heated, it is possible to control the heater for engine fuel heating, which is superior in control agility. Is an object of the present invention to achieve.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a method for controlling the operation of an electric heater for heating engine fuel,
Estimating a target input power amount to be input to the heater in order to make the fuel have a predetermined heating degree,
The present invention proposes a method characterized in that when the effective input power amount input to the heater is estimated to have reached the target input power amount, the heater is energized to be reduced.
[0006]
In the heater control method described above, the reduction correction of energization to the heater may be to stop energization as one embodiment.
[0007]
In the heater control method described above, the predetermined heating degree of the fuel is determined by the engine starting coolant temperature, intake air temperature, intake pipe negative pressure, fuel properties, system fuel pressure, atmospheric pressure, engine speed, and crank angle. The correction may be made according to at least one of the number of times of operation of the fuel injection valve and the thermal conductivity around the heater.
[0008]
[Action and effect of the invention]
The heating of the engine fuel by the heater is particularly effective in improving the startability when the engine is cold and improving the exhaust characteristics when starting the engine, if it is accurately controlled. However, the heating of the fuel by the heater at the time of starting the engine is a short time of at most ten and several seconds. On the other hand, heat transfer is a rather gradual phenomenon compared to the agility that can be controlled by the heater current. Further, when the engine is started, a pulsating sudden change occurs in the fuel flow. In such a situation, the operation control of the heater for heating the fuel is performed by controlling the amount of electric power to be input to the heater with the fuel heating temperature as a target, in addition to the feedback control in consideration of the fuel temperature and the heating degree of the heater unit. There is a situation where feedforward control is suitable. In this respect, in controlling the operation of the electric heater that heats the engine fuel as described above, a target input power amount to be input to the heater in order to make the fuel a predetermined heating degree is estimated, and the heater When it is estimated that the effective input electric energy input to the target electric input electric energy has been reached, the engine fuel is required in a short period of time when the engine is started if it is corrected so that the energization to the heater is at least reduced. Can be heated sufficiently and not to be overheated.
[0009]
As described above, the heating of the engine fuel by the heater is a short period when the engine is started, and the fuel passage means such as the heater and the fuel injection valve heated by the heater naturally has a certain heat capacity. Even if the reduction of energization to the heater when the input effective input electric energy reaches the target input electric energy is performed in a manner of stopping, there is no sudden change unfavorable for heating the fuel.
[0010]
In addition, the degree of heating desired for the fuel when starting the engine depends on the engine temperature, intake air temperature, intake pipe negative pressure, fuel properties, system fuel pressure, atmospheric pressure, engine speed, thermal conductivity around the fuel heater, etc. Since it varies accordingly, fuel heating at engine start-up can be made more favorable if it is modified in response to at least one of these parameters, possibly more. The influence of each of these parameters on the degree of heating of the fuel, that is, the amount of electric power supplied to the heater is as shown in FIG.
[0011]
That is, as shown in FIG. 1, the correction coefficient K1 for the engine coolant temperature as the correction coefficient for the heating degree desired for the fuel at the time of starting the engine may be smaller as the engine warm-up degree is higher. The higher the temperature of the intake air, the smaller the degree of heating with respect to the fuel. Therefore, the correction coefficient K2 for the intake air temperature may be smaller as the intake air temperature is higher. Further, if the intake pipe negative pressure is large, the fuel is more easily atomized. Therefore, the fuel heating degree correction coefficient K3 for the intake pipe negative pressure may be decreased as the intake pipe negative pressure increases. The correction of the fuel heating degree with respect to the fuel property may be such that the correction coefficient K4 is increased in accordance with the increase in the fuel heavyness.
[0012]
If the degree of heating of the engine-injected fuel is too high, vaporization of the fuel may cause vapor lock in the fuel passage, but this possibility becomes weaker as the fuel pressure increases. The correction coefficient K5 may be increased as the system fuel pressure increases. Similarly, even if the fuel heating degree is not corrected for the system fuel pressure, the higher the atmospheric pressure, the less the possibility of causing vapor lock in the fuel passage. It is preferable to prepare K6 so as to increase as the atmospheric pressure increases as shown in the figure.
[0013]
Further, the rapidity of the intermittent flow of fuel in the fuel supply system accompanying the intermittent injection of fuel corresponding to the rotation of the engine increases as the engine speed increases, and the rapidity of the intermittent flow of fuel is high. As the fuel fluidity is desired to be higher, it is preferable to correct the fuel heating degree with respect to the engine speed from this point of view, and the correction coefficient K7 increases as the engine speed increases. It may be. Although not shown in the figure for the same reason as the correction of the fuel heating degree with respect to the engine speed, the fuel injection valve operates twice per 720 ° of the crank rotation angle for group injection, or independent injection is not performed. Therefore, it is preferable that the fuel heating degree is corrected for the intermittent flow rapidity of the fuel in the fuel supply system, depending on whether the crank is operated once per 720 °.
[0014]
Furthermore, as described above, the heating of the fuel by the heater at the time of starting the engine is a short time of at least a few tens of seconds, and the degree of heating generated in the fuel when the power is supplied to the heater is greatly influenced by the thermal conductivity around the heater. Therefore, the influence of this difference may also be prepared as a correction coefficient K8 for thermal conductivity as shown in the figure.
[0015]
Thus, assuming that the standard value of the amount of electric power to be supplied to the heater per unit fuel injection amount for the fuel heating is Wto and the fuel injection amount is Vf, the input electric power at each engine start-up The amount Wt is determined by the correction coefficients K1, K2,. . . Wt = K1, K2, K3, K4, K5, K6, K7, K8, Wto, Vf
As obtained by calculation. The setting of the map for each correction coefficient as shown in FIG. 1 can be performed based on experiments for each type of engine, and it is possible to store such a map as digital data and calculate the input power amount based on it. This can be done without problems by using an electric vehicle operation control device equipped with a microcomputer that is built in a standard vehicle such as an automobile.
[0016]
Then, the amount of electric power We supplied to the heater is obtained as an integrated value of voltage x current in the heater energization, and if the correction is made so as to reduce the energization to the heater when We reaches Wt, this feedforward control Thus, rapid fuel heating at the time of engine start can be achieved without causing excessive heating in the heater.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 is a flowchart showing a control process for controlling the operation of the fuel heating heater as described above according to the present invention. The heater operation control according to such a control process is started when the engine is started by a program incorporated in the microcomputer section of the electronic vehicle operation control apparatus (not shown).
[0018]
When the control is started, first, in step 10, data necessary for the control of the engine cooling water temperature, the intake air temperature, etc. is read. Next, the control proceeds to step 20, and it is determined whether or not a condition for heating the fuel is satisfied based on the read data, that is, whether or not the heater operation is necessary. When the answer is yes, control proceeds to step 30 and energization of the heater for heating the fuel is started.
[0019]
After starting energization of the heater, the control proceeds to step 40, and in addition to the fuel injection amount based on the data read in step 10, the engine coolant temperature, intake air temperature, intake pipe negative pressure, fuel severity, system fuel pressure , Atmospheric pressure, engine speed, thermal conductivity around the heater, etc., if possible, correction factors K1, K2,. . . Are obtained from the above map, and based on these values, the target input power amount Wt to be input to the heater is calculated.
[0020]
Next, the control proceeds to step 50, where an execution input power amount We which is a temporal integration of the product of the heater current and the voltage based on the data read in step 10 is calculated.
[0021]
Control then proceeds to step 60, where it is determined whether We has reached Wt. And while it has not yet reached that and the answer is no, control returns to before step 10 and continues energizing the heater while updating the read data as needed.
[0022]
If the control is continued through steps 10 to 60 while the heater is energized in this way, We reaches Wt and the answer to step 60 turns from yes to no, so the energization to the heater is corrected in the decreasing direction. It only has to be done. In the embodiment of FIG. 2, the energization of the heater is stopped here. Thus, one heater operation control is completed.
[0023]
FIG. 3 is a flowchart similar to FIG. 2 showing another embodiment of the control process for controlling the operation of the fuel heater according to the present invention. In FIG. 3, the steps for performing the same control as the steps in FIG. 2 are indicated by the same step numbers as in FIG. In this embodiment, in step 10, in addition to the data in the embodiment of FIG. 2, the presence or absence of a command to pressurize the fuel pressure of the fuel supply system is read, and when that command is issued In step 25, the fuel of the system is pressurized. Such pressurization of the system fuel is naturally reflected in the target input power amount Wt by the change of the correction coefficient K5. In this case, after the energization of the heater is stopped in
[0024]
In the above, the present invention has been described in detail with respect to several examples of the correction of the input electric energy to the heater with respect to several parameters, and two embodiments relating to the control process. However, these embodiments are not limited within the scope of the present invention. It will be apparent to those skilled in the art that these modifications are possible.
[Brief description of the drawings]
FIG. 1 shows the engine temperature state, intake air temperature, intake pipe negative pressure, fuel properties, system fuel pressure, atmospheric pressure, engine speed, and heater surroundings with respect to the degree of heating desired for fuel heating at the time of starting the engine. A map showing the effect of thermal conductivity.
FIG. 2 is a flowchart showing a control process for performing operation control of a fuel heating heater according to the present invention in one embodiment.
FIG. 3 is a flowchart showing a control process for performing operation control of a fuel heating heater according to another embodiment of the present invention.
Claims (3)
燃料を所定の加熱度とするために前記ヒータへ投入すべき目標投入電力量を推定し、
前記ヒータへ投入された実行投入電力量が前記目標投入電力量に達したと推定されたとき前記ヒータへの通電を低減するよう修正することを特徴とする方法。In the method of controlling the operation of the electric heater that heats the engine fuel,
Estimating a target input power amount to be input to the heater in order to make the fuel have a predetermined heating degree,
A method of correcting to reduce energization to the heater when it is estimated that the execution input power amount input to the heater has reached the target input power amount.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000393123A JP3640883B2 (en) | 2000-12-25 | 2000-12-25 | Heater heater control method based on input power |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000393123A JP3640883B2 (en) | 2000-12-25 | 2000-12-25 | Heater heater control method based on input power |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002195110A JP2002195110A (en) | 2002-07-10 |
| JP3640883B2 true JP3640883B2 (en) | 2005-04-20 |
Family
ID=18858994
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000393123A Expired - Fee Related JP3640883B2 (en) | 2000-12-25 | 2000-12-25 | Heater heater control method based on input power |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3640883B2 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7032576B2 (en) * | 2002-05-10 | 2006-04-25 | Philip Morris Usa Inc. | Capillary heating control and fault detection system and methodology for fuel system in an internal combustion engine |
| DE10256453A1 (en) * | 2002-12-03 | 2004-06-24 | Robert Bosch Gmbh | metering |
| JP4718522B2 (en) * | 2007-07-17 | 2011-07-06 | 愛三工業株式会社 | PCV valve control device |
| JP6152685B2 (en) * | 2013-04-09 | 2017-06-28 | トヨタ自動車株式会社 | Fuel injection amount control device |
| KR101510008B1 (en) * | 2013-12-13 | 2015-04-07 | 현대자동차주식회사 | Controlling method and apparatus for heating in fuel filter |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH10238424A (en) * | 1997-02-21 | 1998-09-08 | Denso Corp | Fuel injector |
-
2000
- 2000-12-25 JP JP2000393123A patent/JP3640883B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2002195110A (en) | 2002-07-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN108474306B (en) | Engine block accelerated warm-up and test maintenance method, engine block and components | |
| JP4956555B2 (en) | Apparatus and method for controlling at least one glow plug of an automobile | |
| JP3824828B2 (en) | Engine control device | |
| US5656190A (en) | Controller for a heater for an air-fuel ratio sensor and a method thereof | |
| JP4127471B2 (en) | Cooling system control device for internal combustion engine | |
| WO2020085031A1 (en) | Heater energization control device | |
| JP3640883B2 (en) | Heater heater control method based on input power | |
| JP4007385B2 (en) | Exhaust gas sensor control device | |
| JP5815752B2 (en) | Method and control device for setting and adjusting temperature in glow plug | |
| JP4600389B2 (en) | Temperature control device for heating means | |
| JP4062285B2 (en) | Heat storage system | |
| JP2010096042A (en) | Engine cooling device | |
| JP3275672B2 (en) | Air-fuel ratio sensor heater control device | |
| JP2008261236A (en) | Device and system for controlling internal combustion engine | |
| CN110621863B (en) | engine speed control | |
| US20190376439A1 (en) | Engine cooling apparatus | |
| JP5817661B2 (en) | Electric pump control device for combustion engine cooling | |
| JP6590297B2 (en) | Engine cooling system | |
| JPH04292571A (en) | Fuel feed device | |
| JP3900914B2 (en) | Engine temperature detection method based on engine coolant temperature | |
| JP5125755B2 (en) | Control device for internal combustion engine | |
| JP4941538B2 (en) | Engine waste heat control device | |
| JP3715195B2 (en) | Operation permission control method for heater for heating fuel injection valve | |
| CN117108383B (en) | Method for controlling an electronic compressor and an electronic catalyst to reduce emissions from an internal combustion engine | |
| JP3812237B2 (en) | Diesel engine start assist device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041217 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050111 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050119 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080128 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090128 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090128 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100128 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110128 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110128 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120128 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120128 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130128 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130128 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140128 Year of fee payment: 9 |
|
| LAPS | Cancellation because of no payment of annual fees |