[go: up one dir, main page]

JP3646268B2 - Toner manufacturing method, electrophotographic developer using formed toner, and electrophotographic image forming method - Google Patents

Toner manufacturing method, electrophotographic developer using formed toner, and electrophotographic image forming method Download PDF

Info

Publication number
JP3646268B2
JP3646268B2 JP14482294A JP14482294A JP3646268B2 JP 3646268 B2 JP3646268 B2 JP 3646268B2 JP 14482294 A JP14482294 A JP 14482294A JP 14482294 A JP14482294 A JP 14482294A JP 3646268 B2 JP3646268 B2 JP 3646268B2
Authority
JP
Japan
Prior art keywords
toner
magnetic
mixing
production example
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14482294A
Other languages
Japanese (ja)
Other versions
JPH0815906A (en
Inventor
弘 山崎
次男 阿部
美明 小泉
義彰 小林
明三 白勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP14482294A priority Critical patent/JP3646268B2/en
Publication of JPH0815906A publication Critical patent/JPH0815906A/en
Application granted granted Critical
Publication of JP3646268B2 publication Critical patent/JP3646268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Description

【0001】
【産業上の利用分野】
本発明は電子写真用トナーの製造方法とそれにより得られたトナーに関し、非接触現像方式に有利なトナーを供給するものである。
【0002】
【従来の技術】
電子写真に於ける非接触現像方式として、感光体に対向し且つ間隙をおいて、トナーを供給するための担持体とトナー層の厚みを規制するための部材(例えば、磁性ブレード、規制棒、ウレタンブレード、燐青銅板等)を有する現像機を設け、該担持体表面の現像領域に20〜500μmのトナーの薄層を形成し、高圧の交番電界下に帯電したトナーを感光体の電荷を有する部分に飛翔付着せしめるものがある。これは例えば、電子写真方式でフルカラー画像を形成する方法として、感光体上に逐次単色のカラートナーを現像し重ね合わせてフルカラー画像を形成した後に定着支持体としての紙等に転写してカラー画像を形成する方法に適用されるものであり、機械本体の構造を小型化できる利点があって、例えば特公平2-28865号等に記載の方法が提案されている。
【0003】
この方法において、交番電界の付与は、トナーの飛翔の規制、十分に帯電していないトナーの回収性等の要請によるものであるが、飛翔するトナー層中に低抵抗物質が存在すると、導通により感光体表面上は電場のリークが起こり、画像欠陥を引き起こすという問題を有する。
【0004】
【発明が解決しようとする課題】
本発明は上記の事情によりなされたものであり、その目的は、非接触状態で交番電界を印加して現像を行うにあたって、画像欠陥の発生を防止できる電子写真用の現像剤を提供することにある。
【0005】
【課題を解決するための手段】
本発明の上記目的は、
少なくとも樹脂及び着色剤を予備混合し、混練、粉砕、分級して着色粒子を得た後に、無機微粒子を添加混合する際に
) 少なくとも樹脂と着色剤とを混練し、体積平均粒径50〜2000μmの着色粒子に粗粉砕した後に磁場による選別を行い、更に粉砕分級し、無機微粒子を添加混合する、
) 無機微粒子を添加混合すると同時に磁場による選別を行う、及び
) 無機微粒子を添加混合した後に磁場による選別を行う
から選ばれる少なくとも1つを行うことを特徴とするトナーの製造方法により得られたトナーと、キャリアとからなり、該トナーの、キャリアの体積平均粒径(Dc)に対し1.0Dc〜10Dcの最大長軸径で106Ωcm以下の抵抗値を有する磁性粒子の含有率が100g中に10個以下である電子写真用現像剤、感光体に対向し且つ間隙をおいて、トナーを供給するための担持体とトナー層の厚みを規制するための部材を有する現像機を設け、前記電子写真用現像剤を用いて、該担持体表面の現像領域に20〜500μmのトナーの薄層を形成し、交番電界を印加して帯電したトナーを感光体の電荷を有する部分に飛翔付着せしめる電子写真画像の形成方法、
によって達成される。
【0006】
即ち、本発明者らは、樹脂・着色剤等を予備混合し、混練、粉砕、分級して着色粒子を得た後に、無機微粒子からなる外添剤を添加混合する通常のトナーを作製する方法に用いられる各工程の装置が、金属からなる部材で構成されていることに着目し、装置の摩砕や摩耗により装置内で発生した金属粉或いは金属酸化物の粉体がトナーに混入することにより低抵抗物質(一般に鉄等の磁性粒子)となると考え、予備混合工程時、混練後の粗粉砕時、外添剤混合時及び外添剤混合後から選ばれる工程の少なくとも1つに磁場による選別工程(以下、磁気選別工程とも言う。)を設け、キャリア粒子の体積平均粒径(Dc)に対して1.0Dc〜10Dcの長軸径を有し、抵抗が106Ωcm以下である磁性粒子がトナー100g中に10個以下の含有量とすることによって本発明に至ったものである。
【0007】
以下本発明について詳しく解説する。
【0008】
本発明において磁気選別工程は、外部から磁性異物が混入する恐れのある開口部のある工程や、装置の摩砕や摩耗により生成する装置内部の磁性異物を除去することを目的として、設置位置を組み合わせる。低抵抗物質は一般的に鉄等の磁性粒子が主成分であることから、トナーの低抵抗物質は磁気選別工程によって除去することが可能である。
【0009】
予備混合工程では原材料の投入時や予備混合時の撹拌により磁性異物の混入が起こりえるので磁気選別工程を設けることが有利である。混練装置内部では大きなストレスが存在すること、粗粉砕装置の摩砕や摩耗、開口部の存在等の理由により磁性異物の混入を防止するために、混練後の粗粉砕工程で磁気選別工程を設けることが有利である。又、外添剤投入口が開口部であること、混練中に着色粒子中に取り込まれ、粉砕等によって遊離した磁性粒子を除去できることにより、外添剤混合時や外添剤混合後に磁気選別工程を設けることが有利である。尚、混練時に取り込まれる磁性粒子は粉砕や分級の段階で除去することは困難で、外添剤を添加して流動性を付与して初めて外部磁場を効果的に作用せしめることができる。
【0010】
磁気選別工程は各工程内部に設置され、各材料の搬送経路中に磁気選別装置を設置することで工程が構成される。磁気選別装置としては磁場が2000〜6000ガウスのものが好ましい。具体的には、永久磁石で構成され、棒状の磁石を工程配管内部に1本以上存在させるとよい。好ましくは2本以上を組み合わせて用いることであり、更には組み合わせた磁石を2段以上同一部所に設置するのがよい。その1例を図1に示す。
【0011】
選別すべき磁性粒子について解説する。
【0012】
キャリアの輸送能に起因して導通に関与する磁性粒子の大きさは決められる。本発明者らの研究によると、キャリアの輸送能を計るパラメータとしては体積平均粒径Dcを採用することが可能で、輸送されるトナー粒子の該粒径に対する大きさの比で評価することができる。磁性粒子の最大長軸径が1.0Dc未満であると現像時に交番電界で流動状態となり電荷の導通に影響を与えない。一方、それが10Dcを越える磁性粒子は大きいために現像部位へ搬送されることがなく問題にはならない。従って、キャリアによって輸送され得る最大長軸径1.0Dc〜10Dcの磁性粒子を除去すればよい。このような粒子は通常の製造においてはトナー100g中に製造装置の摩滅や摩砕及び外部からの混入により30個程度は含有されてしまう。外部からの混入は装置を設置している工程内で発生する錆や振動で発生する砕片が大きな要因となっている。このような磁性粒子をトナー100g中に10個以下とすることにより有効に導通を防止することができる。この個数以上になると長期に渡った現像においての蓄積により導通問題を発生する。
【0013】
尚、ここで言う抵抗値は体積抵抗の値であり、本発明においては、圧縮充填法による測定によるものとする。具体的には次のようにして測定する。
測定環境によって値が変動することを防止するために、常温常湿(20℃/50%RH)の環境下に試料を24時間放置し、常温常湿環境で測定を行う。粉体1.0gを内径が1.7cmの硬質ガラス製中空シリンダーに充填し、シリンダー両端より20Kgf/cm2の圧力をかけ試料を圧縮充填し、この両端にDC1000Vの電圧を印加し抵抗値を測定する。
【0014】
予備混合工程で使用できる工程装置としては、V型混合機、ヘンシェルミキサー、ナウターミキサー等が挙げられる。混練工程では二軸混練装置等が使用され、粗粉砕工程ではハンマーミル等が使用され、混練されたものを体積平均粒径50〜2000μmになるように粗粉砕する。粉砕及び分級工程ではジェット粉砕装置、エルボージェット、クリプトロン等により粉砕され、気流によって所定の粒径に分級される。
【0015】
この様にして得られた着色粒子に対して無機微粒子等からなる外添剤(例えばシリカ等の流動化剤)を添加混合する。この場合にはヘンシェルミキサー、V型混合機、ナウターミキサー、レディゲミキサー等が使用できる。
【0016】
本発明のトナーの製造方法による代表的なプロセスとして
1)予備混合工程→混練工程→粗粉砕工程→磁気選別工程→粉砕・分級工程→外添剤混合工程
2)予備混合工程→混練工程→粗粉砕工程→粉砕・分級工程→外添剤混合工程→磁気選別工程
3)予備混合工程→混練工程→粗粉砕工程→粉砕・分級工程→外添剤混合及び磁気選別工程
4)予備混合工程→磁気選別工程→混練工程→粗粉砕工程→磁気選別工程→粉砕・分級工程→外添剤混合工程→磁気選別工程
5)予備混合工程→磁気選別工程→混練工程→粗粉砕工程→磁気選別工程→粉砕・分級工程→外添剤混合及び磁気選別工程
等が挙げられるが、これらに限定されるものではない。
【0017】
本発明のトナーの製造方法が適用できる現像剤への制限は特になく、通常非接触現像に用いる現像剤がすべて対象となる。
【0018】
トナーは樹脂と着色剤と必要に応じてその他の添加剤とを含有した着色粒子に無機微粒子等を添加混合したもので、通常体積平均で1〜30μm(好ましくは5〜20μm)の粒径を有するものである。
【0019】
用いる樹脂は従来公知の、例えば、スチレン系樹脂、アクリル系樹脂、スチレン-アクリル系樹脂、ポリエステル系樹脂等が挙げられる。着色剤としても従来公知の、カーボンブラック、ニグロシン染料、アニリンブルー、カルコイルブルー、クロムイエロー、ウルトラマリンブルー、デュポンオイルレッド、キノリンイエロー、メチレンブルークロライド、フタロシアニンブルー、マラカイトグリーンオクサレート、ローズベンガル等が挙げられる。例えば黒トナーにはカーボンブラック、ニグロシン染料等が用いられ、イエロートナー、マゼンタトナー、シアントナーにはピグメントブルー15:3、ピグメントブルー15、ピグメントブルー15:6、ピグメントブルー68、ピグメントレッド48:3、ピグメントレッド122、ピグメントレッド212、ピグメントレッド57:1、ピグメントイエロー17、ピグメントイエロー81、ピグメントイエロー154等(いずれもカラーインデックス名)の顔料が好適に用いられる。
【0020】
その他の添加剤としては例えばサリチル酸誘導体,アゾ系金属錯体等の荷電制御剤、低分子量ポリオレフィン,カルナウバワックス等の定着性改良剤等が挙げられる。又、無機微粒子等の外添剤としてはシリカ、酸化チタン、酸化アルミニウム、チタン酸バリウム、チタン酸ストロンチウム等の平均一次粒子径が5〜1000nmのものが使用され、これらは疎水化されていてもよい。無機微粒子の添加量としては着色粒子に対して通常0.1〜5.0重量%である。
【0021】
トナーにはクリーニング助剤として数平均一次粒子径が0.1〜2.0μmのスチレン-アクリル樹脂微粒子やステアリン酸亜鉛の様な高級脂肪酸金属塩を添加してもよい。クリーニング助剤の添加量としては着色粒子に対して0.01〜1.0重量%程度である。
【0022】
二成分現像剤を構成するキャリアとしては鉄、フェライト等の磁性材料粒子表面を樹脂等によって被覆した樹脂被覆キャリアあるいは、樹脂と磁性粉とを混合して得られる樹脂分散型キャリアのいずれを使用してもよい。キャリアの平均粒径は体積平均粒径で20〜150μmが好ましく、更に好ましくは30〜100μmである。ここに、体積平均粒径はコールターカウンター(コールター社製)或いはHELOS(SYMPATIC社製)を用いて湿式法にて測定した値である。
【0023】
本発明に用いるキャリアは、交番電界を印加して用いるものであるので高抵抗であることを要し、体積抵抗が1010Ωcm以上のものが好適である。
【0024】
現像機のトナー担持体表面の現像領域に20〜500μmのトナーの薄層を形成するには、磁性ブレード、現像剤規制棒、ウレタンブレード、燐青銅板等を用いる。押圧するときの押圧力としては、小さすぎると規制力が不足するために搬送が不安定になり、大きすぎると現像剤に対するストレスが大きくなるため現像剤の耐久性が劣化することから、1〜15gf/mmが好ましく、更には3〜10gf/mmである。
【0025】
担持体は、内部に磁石を内蔵せしめ、表面はアルミニウムや酸化処理したアルミニウム又はステンレスで構成する。その大きさとしては、直径が小さすぎると現像剤の混合が不足してトナーに対して帯電付与を行うに充分な混合を確保することが困難となり、直径が大きすぎると現像剤に対する遠心力が大きくなりトナーの飛散の問題が生ずることから、直径10〜40mmφが好適である。
【0026】
担持体と感光体表面の間隙は現像剤層よりも大きいことが必要で、現像剤層よりも間隙が10μm以上広いことが好ましい。更には15〜200μm大きいことが好ましい。
【0027】
本発明においては、現像バイアスとしてのDC成分に加えて、交番電界としてのACバイアスを印加するが、交番電界としては周波数1000〜3000Hzで、電圧はピークからピーク(Vp-p)の絶対値で500〜2000Vが好適である。
【0028】
【実施例】
以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。
【0029】
実施例1
《トナー作製》
製造例1(プロセス▲1▼)
ポリエステル樹脂100重量部とイエロー顔料(C.I.ピグメントイエロー17)10重量部と低分子量ポリプロピレン3重量部とをまず5000ガウスの磁場を印加した経路を通過させる磁気選別工程を経てヘンシェルミキサーに投入し予備混合した。ついでエクストルーダーにより混練し、ついでハンマーミルにて粗粉砕し、ジェットミルにて粉砕し気流分級機にて分級し体積平均粒径が9.1μmのイエロー着色粒子を得た。次いで疎水性シリカ(数平均一次粒径12nm)を1.0重量%加えヘンシェルミキサーにて混合し、本発明のトナーを得た。これを「Yトナー1」とする。
【0030】
製造例2(プロセス▲1▼)
イエロー顔料に代えてマゼンタ顔料(C.I.ピグメントレッド122)を用いた他は製造例1と同様にして体積平均粒径が8.7μmのマゼンタ着色粒子を得た。更に、製造例1と同様にして疎水性シリカを混合し本発明のトナーを得た。これを「Mトナー1」とする。
【0031】
製造例3(プロセス▲1▼)
イエロー顔料に代えてシアン顔料(C.I.ピグメントブルー12:3)を用いた他は製造例1と同様にして体積平均粒径が8.8μmのシアン着色粒子を得た。更に、製造例1と同様にして疎水性シリカを混合し本発明のトナーを得た。これを「Cトナー1」とする。
【0032】
製造例4(プロセス▲1▼)
イエロー顔料に代えてカーボンブラックを用いた他は製造例1と同様にして体積平均粒径が9.0μmの黒着色粒子を得た。更に、製造例1と同様にして疎水性シリカを混合し本発明のトナーを得た。これを「黒トナー1」とする。
【0033】
製造例5(プロセス▲2▼)
5000ガウスの磁気選別工程を予備混合の前からハンマーミル粗粉砕の後に移設した他は製造例1と同様にして本発明のトナーを得た。これを「Yトナー2」とする。
【0034】
製造例6(プロセス▲2▼)
5000ガウスの磁気選別工程を予備混合の前からハンマーミル粗粉砕の後に移設した他は製造例2と同様にして本発明のトナーを得た。これを「Mトナー2」とする。
【0035】
製造例7(プロセス▲2▼)
5000ガウスの磁気選別工程を予備混合の前からハンマーミル粗粉砕の後に移設した他は製造例3と同様にして本発明のトナーを得た。これを「Cトナー2」とする。
【0036】
製造例8(プロセス▲2▼)
5000ガウスの磁気選別工程を予備混合の前からハンマーミル粗粉砕の後に移設した他は製造例4と同様にして本発明のトナーを得た。これを「黒トナー2」とする。
【0037】
製造例9(プロセス▲3▼)
5000ガウスの磁気選別工程を予備混合の前から疎水性シリカ混合後に移設した他は製造例1と同様にして本発明のトナーを得た。これを「Yトナー3」とする。
【0038】
製造例 10 (プロセス▲3▼)
5000ガウスの磁気選別工程を予備混合の前から疎水性シリカ混合後に移設した他は製造例2と同様にして本発明のトナーを得た。これを「Mトナー3」とする。
【0039】
製造例 11 (プロセス▲3▼)
5000ガウスの磁気選別工程を予備混合の前から疎水性シリカ混合後に移設した他は製造例3と同様にして本発明のトナーを得た。これを「Cトナー3」とする。
【0040】
製造例 12 (プロセス▲3▼)
5000ガウスの磁気選別工程を予備混合の前から疎水性シリカ混合後に移設した他は製造例4と同様にして本発明のトナーを得た。これを「黒トナー3」とする。
【0041】
製造例 13 (プロセス▲5▼)
5000ガウスの磁気選別工程を予備混合の後、ハンマーミル粗粉砕工程の後及び疎水性シリカ混合後に設置した他は製造例1と同様にして本発明のトナーを得た。これを「Yトナー4」とする。
【0042】
製造例 14 (プロセス▲5▼)
5000ガウスの磁気選別工程を予備混合の後、ハンマーミル粗粉砕工程の後及び疎水性シリカ混合後に設置した他は製造例2と同様にして本発明のトナーを得た。これを「Mトナー4」とする。
【0043】
製造例 15 (プロセス▲5▼)
5000ガウスの磁気選別工程を予備混合の後、ハンマーミル粗粉砕工程の後及び疎水性シリカ混合後に設置した他は製造例3と同様にして本発明のトナーを得た。これを「Cトナー4」とする。
【0044】
製造例 16 (プロセス▲5▼)
5000ガウスの磁気選別工程を予備混合の後、ハンマーミル粗粉砕工程の後及び疎水性シリカ混合後に設置した他は製造例4と同様にして本発明のトナーを得た。これを「黒トナー4」とする。
【0045】
製造例 17 (プロセス▲4▼)
5000ガウスの磁気選別工程を予備混合の前から疎水性シリカと着色粒子を混合するための装置に移設した他は製造例1と同様にして本発明のトナーを得た。これを「Yトナー5」とする。
【0046】
製造例 18 (プロセス▲4▼)
5000ガウスの磁気選別工程を予備混合の前から疎水性シリカと着色粒子を混合するための装置に移設した他は製造例2と同様にして本発明のトナーを得た。これを「Mトナー5」とする。
【0047】
製造例 19 (プロセス▲4▼)
5000ガウスの磁気選別工程を予備混合の前から疎水性シリカと着色粒子を混合するための装置に移設した他は製造例3と同様にして本発明のトナーを得た。これを「Cトナー5」とする。
【0048】
製造例 20 (プロセス▲4▼)
5000ガウスの磁気選別工程を予備混合の前から疎水性シリカと着色粒子を混合するための装置に移設した他は製造例4と同様にして本発明のトナーを得た。これを「黒トナー5」とする。
【0049】
比較製造例1
5000ガウスの磁気選別工程を設けなかったことを除いて、製造例1と同様にして比較用トナーを得た。これを「比較用Yトナー1」とする。
【0050】
比較製造例2
5000ガウスの磁気選別工程を設けなかったことを除いて、製造例2と同様にして比較用トナーを得た。これを「比較用Mトナー1」とする。
【0051】
比較製造例3
5000ガウスの磁気選別工程を設けなかったことを除いて、製造例3と同様にして比較用トナーを得た。これを「比較用Cトナー1」とする。
【0052】
比較製造例4
5000ガウスの磁気選別工程を設けなかったことを除いて、製造例4と同様にして比較用トナーを得た。これを「比較用黒トナー1」とする。
【0053】
《磁性粒子の含有率の測定》
得られた各トナーからそれぞれ100g採取し、磁石にて磁性粒子を分離してその個数を数えた。一方、各トナーから多量に回収した磁性粒子の体積抵抗を測定した結果は10〜103Ωcmであった。又、磁性粒子の形状を走査型電子顕微鏡で観察した結果、そのサイズは長軸径で55〜450μmであった。各トナーの磁性粒子含有率を以下に示す。
【0054】
トナー種 磁性粒子個数/トナー100g
Yトナー1 5
Mトナー1 4
Cトナー1 5
黒トナー1 5
Yトナー2 6
Mトナー2 4
Cトナー2 4
黒トナー2 4
Yトナー3 4
Mトナー3 5
Cトナー3 2
黒トナー3 3
Yトナー4 1
Mトナー4 0
Cトナー4 1
黒トナー4 1
Yトナー5 2
Mトナー5 1
Cトナー5 2
黒トナー5 1
比較用Yトナー1 20
比較用Mトナー1 24
比較用Cトナー1 31
比較用黒トナー1 33
《現像剤調製》
得られた各トナーを、フェライト粒子表面をスチレン-アクリル樹脂で被覆した体積平均粒径が45μmの樹脂被覆フェライトキャリア(体積抵抗1013Ωcm)に添加してトナー濃度が7%の現像剤を調製した。
【0055】
《現像剤の評価》
コニカ(株)製カラー複写機9028を改造し、積層型有機感光体を使用して、以下に示す条件で、50%の画素率のフルカラー画像を常温低湿(20℃/15%RH)環境で1万枚複写して、画像上に発生する画像欠陥を観察した。
【0056】
感光体表面電位 :−550V
DCバイアス :−250V
ACバイアス :Vp-p;−50〜−450V
交番電界周波数 :1800Hz
感光体−担持体間隙:300μm
押圧規制力 :10gf/mm
押圧規制棒 :SUS416(磁性ステンレス)製、直径3mm
現像剤層厚 :150μm
現像スリーブ直径 :20mm
各現像剤の画像欠陥の発生枚数を以下に示す。
【0057】

Figure 0003646268
【0058】
【発明の効果】
本発明により、非接触状態で交番電界を印加して現像を行うにあたって、画像欠陥の発生を防止できる。
【図面の簡単な説明】
【図1】本発明の製造方法に係る磁気選別装置の設置例。
【符号の説明】
1 棒磁石
2 輸送配管[0001]
[Industrial application fields]
The present invention relates to a method for producing a toner for electrophotography and a toner obtained by the method, and supplies a toner advantageous for a non-contact development system.
[0002]
[Prior art]
As a non-contact developing method in electrophotography, a member for supplying toner and a member for regulating the thickness of the toner layer (for example, a magnetic blade, a regulating rod, A developing machine having a urethane blade, phosphor bronze plate, etc.), a thin layer of 20 to 500 μm toner is formed in the developing area of the surface of the carrier, and the toner charged under a high-voltage alternating electric field is charged to the photoreceptor. There are those that fly and adhere to the parts that they have. For example, as a method of forming a full-color image by an electrophotographic method, a single color toner is successively developed and superimposed on a photoconductor to form a full-color image, which is then transferred to a paper or the like as a fixing support. The method described in Japanese Patent Publication No. 2-28885 has been proposed, for example.
[0003]
In this method, the application of an alternating electric field is due to restrictions on the flying of the toner, demands for recovering the toner that is not sufficiently charged, etc., but if a low-resistance substance is present in the flying toner layer, it is caused by conduction. There is a problem that an electric field leaks on the surface of the photoconductor, causing an image defect.
[0004]
[Problems to be solved by the invention]
The present invention has been made under the circumstances described above, and an object of the present invention is to provide an electrophotographic developer capable of preventing the occurrence of image defects when developing by applying an alternating electric field in a non-contact state. is there.
[0005]
[Means for Solving the Problems]
The above object of the present invention is to
When premixing at least a resin and a colorant, kneading, pulverizing, and classifying to obtain colored particles, when adding and mixing inorganic fine particles ,
1 ) At least a resin and a colorant are kneaded, coarsely pulverized into colored particles having a volume average particle diameter of 50 to 2000 μm, then subjected to selection by a magnetic field, further pulverized and classified, and inorganic fine particles are added and mixed.
2 ) Addition and mixing of inorganic fine particles and selection by magnetic field at the same time, and
3 ) At least one selected from selection by magnetic field after addition and mixing of inorganic fine particles, and a toner obtained by a toner manufacturing method, wherein the volume of the carrier of the toner is obtained. For electrophotographic developers and photoreceptors, the content of magnetic particles having a maximum major axis diameter of 1.0 Dc to 10 Dc and a resistance value of 10 6 Ωcm or less with respect to the average particle diameter (Dc) is 10 or less per 100 g. A developing device having a carrier for supplying toner and a member for regulating the thickness of the toner layer is provided opposite to each other with a gap, and the surface of the carrier is developed using the developer for electrophotography. A method for forming an electrophotographic image in which a thin layer of toner of 20 to 500 μm is formed in a region, and an alternating electric field is applied to cause the charged toner to fly and adhere to the charged portion of the photoreceptor;
Achieved by:
[0006]
That is, the present inventors preliminarily mixed a resin, a colorant, etc., kneaded, pulverized, classified to obtain colored particles, and then a method for producing a normal toner in which external additives composed of inorganic fine particles are added and mixed. Focusing on the fact that each process device used in the manufacturing process is composed of metal members, metal powder or metal oxide powder generated in the device due to grinding or wear of the device is mixed into the toner. Is considered to be a low-resistance material (generally magnetic particles such as iron), and at least one of the steps selected from the preliminary mixing step, coarse pulverization after kneading, external additive mixing, and external additive mixing depends on the magnetic field Magnetic particles having a sorting step (hereinafter also referred to as a magnetic sorting step), having a major axis diameter of 1.0 Dc to 10 Dc with respect to the volume average particle diameter (Dc) of the carrier particles, and a resistance of 10 6 Ωcm or less The amount of toner is less than 10 in 100g of toner. Invented.
[0007]
The present invention will be described in detail below.
[0008]
In the present invention, the magnetic sorting step is a step with an opening where magnetic foreign matter may be mixed in from the outside, or for the purpose of removing the magnetic foreign matter inside the device that is generated by grinding or wear of the device. combine. Since the low-resistance material is generally composed mainly of magnetic particles such as iron, the low-resistance material of the toner can be removed by a magnetic sorting process.
[0009]
In the pre-mixing step, magnetic foreign matters can be mixed by stirring at the time of charging raw materials or pre-mixing, so it is advantageous to provide a magnetic sorting step. In order to prevent magnetic foreign matter from being mixed due to the presence of large stress inside the kneading machine, grinding and wear of the coarse grinding machine, presence of openings, etc., a magnetic sorting process is provided in the coarse grinding process after kneading. It is advantageous. In addition, the magnetic additive process is performed at the time of mixing the external additive or after mixing the external additive by removing the magnetic particles that are taken into the colored particles during kneading and released by pulverization, etc. It is advantageous to provide Incidentally, it is difficult to remove the magnetic particles taken in at the time of kneading at the stage of pulverization or classification, and an external magnetic field can be effectively applied only after adding an external additive to impart fluidity.
[0010]
The magnetic sorting process is installed inside each process, and the process is configured by installing a magnetic sorting device in the transport path of each material. The magnetic sorting device preferably has a magnetic field of 2000 to 6000 gauss. Specifically, it is good to have one or more rod-shaped magnets in the process piping, which are composed of permanent magnets. Preferably, two or more magnets are used in combination, and two or more magnets in combination are preferably installed at the same location. One example is shown in FIG.
[0011]
The magnetic particles to be sorted are explained.
[0012]
The size of the magnetic particles involved in conduction is determined by the carrier transport ability. According to the study by the present inventors, the volume average particle diameter Dc can be adopted as a parameter for measuring the carrier transport ability, and it can be evaluated by the ratio of the size of the toner particles to be transported to the particle diameter. it can. If the maximum major axis diameter of the magnetic particles is less than 1.0 Dc, the magnetic particles will flow in an alternating electric field during development and will not affect the conduction of electric charges. On the other hand, since magnetic particles exceeding 10 Dc are large, they are not transported to the development site, which is not a problem. Therefore, magnetic particles having a maximum major axis diameter of 1.0 Dc to 10 Dc that can be transported by the carrier may be removed. In normal production, about 30 particles are contained in 100 g of toner due to wear or grinding of the production apparatus and external mixing. The mixing from the outside is largely caused by rust generated in the process of installing the device and debris generated by vibration. By making the number of such magnetic particles 10 or less in 100 g of toner, conduction can be effectively prevented. When this number is exceeded, conduction problems occur due to accumulation in development over a long period of time.
[0013]
In addition, the resistance value said here is a value of volume resistance, and shall be based on the measurement by the compression filling method in this invention. Specifically, the measurement is performed as follows.
In order to prevent the value from fluctuating depending on the measurement environment, leave the sample in a normal temperature and normal humidity (20 ° C / 50% RH) environment for 24 hours and perform measurement in a normal temperature and normal humidity environment. A hard glass hollow cylinder with an inner diameter of 1.7 cm is filled with 1.0 g of powder, a pressure of 20 kgf / cm 2 is applied from both ends of the cylinder, the sample is compressed and filled, and a voltage of 1000 VDC is applied to both ends to measure the resistance value. .
[0014]
Examples of the process apparatus that can be used in the preliminary mixing process include a V-type mixer, a Henschel mixer, and a Nauter mixer. In the kneading step, a biaxial kneader or the like is used, and in the coarse pulverizing step, a hammer mill or the like is used, and the kneaded material is coarsely pulverized so as to have a volume average particle size of 50 to 2000 μm. In the pulverization and classification step, the particles are pulverized by a jet pulverizer, an elbow jet, a kryptron, etc., and classified to a predetermined particle size by an air flow.
[0015]
An external additive composed of inorganic fine particles (for example, a fluidizing agent such as silica) is added to and mixed with the colored particles thus obtained. In this case, a Henschel mixer, a V-type mixer, a Nauter mixer, a Redige mixer, etc. can be used.
[0016]
As a representative process by the toner production method of the present invention ,
1) Preliminary mixing step → kneading step → coarse pulverizing step → magnetic sorting step → pulverizing / classifying step → external additive mixing step
2) Pre-mixing process-> kneading process-> coarse pulverizing process-> pulverizing / classifying process-> external additive mixing process-> magnetic sorting process
3) Pre-mixing process-> kneading process-> coarse pulverizing process-> pulverizing / classifying process-> external additive mixing and magnetic sorting process
4) Pre-mixing process-> magnetic sorting process-> kneading process-> coarse grinding process-> magnetic sorting process-> grinding / classifying process-> external additive mixing process-> magnetic sorting process
5) Preliminary mixing step → magnetic sorting step → kneading step → coarse pulverizing step → magnetic sorting step → pulverization / classification step → external additive mixing and magnetic sorting step, etc., but are not limited thereto.
[0017]
There is no particular limitation on the developer to which the toner production method of the present invention can be applied, and all the developers that are usually used for non-contact development are targeted.
[0018]
The toner is a mixture of colored particles containing a resin, a colorant, and other additives as necessary, with inorganic fine particles added, and usually has a volume average particle size of 1 to 30 μm (preferably 5 to 20 μm). I have it.
[0019]
Examples of the resin used include conventionally known resins such as styrene resins, acrylic resins, styrene-acrylic resins, and polyester resins. Also known as colorants are carbon black, nigrosine dye, aniline blue, calcoil blue, chrome yellow, ultramarine blue, DuPont oil red, quinoline yellow, methylene blue chloride, phthalocyanine blue, malachite green oxalate, rose bengal, etc. Can be mentioned. For example, carbon black and nigrosine dye are used for black toner, and pigment blue 15: 3, pigment blue 15, pigment blue 15: 6, pigment blue 68, pigment red 48: 3 are used for yellow toner, magenta toner, and cyan toner. Pigment Red 122, Pigment Red 212, Pigment Red 57: 1, Pigment Yellow 17, Pigment Yellow 81, Pigment Yellow 154 and the like (all are color index names) are preferably used.
[0020]
Examples of other additives include a charge control agent such as a salicylic acid derivative and an azo metal complex, and a fixability improving agent such as a low molecular weight polyolefin and carnauba wax. Further, as external additives such as inorganic fine particles, silica, titanium oxide, aluminum oxide, barium titanate, strontium titanate and the like having an average primary particle diameter of 5 to 1000 nm are used, and these may be hydrophobized. Good. The addition amount of the inorganic fine particles is usually 0.1 to 5.0% by weight with respect to the colored particles.
[0021]
To the toner, a styrene-acrylic resin fine particle having a number average primary particle size of 0.1 to 2.0 μm or a higher fatty acid metal salt such as zinc stearate may be added as a cleaning aid. The addition amount of the cleaning aid is about 0.01 to 1.0% by weight with respect to the colored particles.
[0022]
As the carrier constituting the two-component developer, either a resin-coated carrier in which the surface of a magnetic material such as iron or ferrite is coated with a resin or a resin-dispersed carrier obtained by mixing a resin and magnetic powder is used. May be. The average particle size of the carrier is preferably 20 to 150 μm, more preferably 30 to 100 μm in terms of volume average particle size. Here, the volume average particle diameter is a value measured by a wet method using a Coulter counter (Coulter) or HELOS (SYMPATIC).
[0023]
Since the carrier used in the present invention is used by applying an alternating electric field, it needs to have a high resistance, and preferably has a volume resistance of 10 10 Ωcm or more.
[0024]
A magnetic blade, a developer regulating rod, a urethane blade, a phosphor bronze plate, or the like is used to form a thin layer of toner having a thickness of 20 to 500 μm in the developing region on the surface of the toner carrier of the developing machine. If the pressure is too small, the regulation force is insufficient and the conveyance becomes unstable. If the pressure is too large, the stress on the developer increases and the durability of the developer deteriorates. 15 gf / mm is preferable, and further 3 to 10 gf / mm.
[0025]
The carrier has a magnet built inside, and the surface is made of aluminum, oxidized aluminum or stainless steel. As for the size, if the diameter is too small, mixing of the developer is insufficient and it becomes difficult to ensure sufficient mixing for charging the toner, and if the diameter is too large, the centrifugal force on the developer is insufficient. A diameter of 10 to 40 mmφ is preferable because the toner becomes large and causes a problem of toner scattering.
[0026]
The gap between the carrier and the photoreceptor surface needs to be larger than the developer layer, and the gap is preferably 10 μm or more wider than the developer layer. Further, it is preferably 15 to 200 μm larger.
[0027]
In the present invention, an AC bias as an alternating electric field is applied in addition to a DC component as a developing bias. The alternating electric field has a frequency of 1000 to 3000 Hz, and the voltage is an absolute value from peak to peak (Vp-p). 500-2000V is suitable.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this.
[0029]
Example 1
<Toner preparation>
Production Example 1 (Process (1))
First, 100 parts by weight of polyester resin, 10 parts by weight of yellow pigment (CI Pigment Yellow 17) and 3 parts by weight of low molecular weight polypropylene are first put into a Henschel mixer through a magnetic selection process through a path to which a magnetic field of 5000 gauss is applied, and premixed. did. Subsequently, the mixture was kneaded with an extruder, then coarsely pulverized with a hammer mill, pulverized with a jet mill, and classified with an air classifier to obtain yellow colored particles having a volume average particle diameter of 9.1 μm. Next, 1.0% by weight of hydrophobic silica (number average primary particle size 12 nm) was added and mixed with a Henschel mixer to obtain the toner of the present invention. This is referred to as “Y toner 1”.
[0030]
Production Example 2 (Process (1))
Magenta colored particles having a volume average particle diameter of 8.7 μm were obtained in the same manner as in Production Example 1 except that a magenta pigment (CI Pigment Red 122) was used instead of the yellow pigment. Further, hydrophobic silica was mixed in the same manner as in Production Example 1 to obtain the toner of the present invention. This is referred to as “M toner 1”.
[0031]
Production Example 3 (Process (1))
Cyan-colored particles having a volume average particle diameter of 8.8 μm were obtained in the same manner as in Production Example 1 except that a cyan pigment (CI Pigment Blue 12: 3) was used instead of the yellow pigment. Further, hydrophobic silica was mixed in the same manner as in Production Example 1 to obtain the toner of the present invention. This is referred to as “C toner 1”.
[0032]
Production Example 4 (Process (1))
Black colored particles having a volume average particle size of 9.0 μm were obtained in the same manner as in Production Example 1 except that carbon black was used in place of the yellow pigment. Further, hydrophobic silica was mixed in the same manner as in Production Example 1 to obtain the toner of the present invention. This is referred to as “black toner 1”.
[0033]
Production Example 5 (Process (2))
A toner of the present invention was obtained in the same manner as in Production Example 1 except that the magnetic selection process of 5000 Gauss was transferred after the preliminary grinding and before the premixing. This is referred to as “Y toner 2”.
[0034]
Production Example 6 (Process (2))
A toner of the present invention was obtained in the same manner as in Production Example 2, except that the magnetic selection process of 5000 gauss was transferred after pre-mixing and after roughing the hammer mill. This is referred to as “M toner 2”.
[0035]
Production Example 7 (Process (2))
The toner of the present invention was obtained in the same manner as in Production Example 3, except that the magnetic selection process of 5000 gauss was transferred after pre-mixing and after hammer mill coarse pulverization. This is referred to as “C toner 2”.
[0036]
Production Example 8 (Process (2))
The toner of the present invention was obtained in the same manner as in Production Example 4 except that the magnetic selection process of 5000 gauss was transferred after pre-mixing and after roughing the hammer mill. This is referred to as “black toner 2”.
[0037]
Production Example 9 (Process (3))
A toner of the present invention was obtained in the same manner as in Production Example 1, except that the magnetic selection process of 5000 Gauss was transferred from before premixing to after hydrophobic silica mixing. This is referred to as “Y toner 3”.
[0038]
Production Example 10 (Process (3))
A toner of the present invention was obtained in the same manner as in Production Example 2, except that the magnetic selection process of 5000 gauss was transferred from before the premixing to after the hydrophobic silica mixing. This is referred to as “M toner 3”.
[0039]
Production Example 11 (Process (3))
A toner of the present invention was obtained in the same manner as in Production Example 3, except that the magnetic selection process of 5000 Gauss was transferred from before premixing to after hydrophobic silica mixing. This is designated as “C toner 3”.
[0040]
Production Example 12 (Process (3))
A toner of the present invention was obtained in the same manner as in Production Example 4 except that the magnetic selection process of 5000 gauss was transferred from before premixing to after mixing with hydrophobic silica. This is referred to as “black toner 3”.
[0041]
Production Example 13 (Process (5))
A toner of the present invention was obtained in the same manner as in Production Example 1 except that a magnetic separation process of 5000 gauss was installed after the preliminary mixing, after the hammer mill coarse grinding process and after the hydrophobic silica mixing. This is designated as “Y toner 4”.
[0042]
Production Example 14 (Process (5))
A toner of the present invention was obtained in the same manner as in Production Example 2, except that a magnetic separation process of 5000 gauss was installed after the preliminary mixing, after the hammer mill coarse pulverization process and after the hydrophobic silica mixing. This is referred to as “M toner 4”.
[0043]
Production Example 15 (Process (5))
A toner of the present invention was obtained in the same manner as in Production Example 3, except that a magnetic separation process of 5000 Gauss was installed after the preliminary mixing, after the hammer mill coarse grinding process and after the hydrophobic silica mixing. This is designated as “C toner 4”.
[0044]
Production Example 16 (Process (5))
A toner of the present invention was obtained in the same manner as in Production Example 4, except that a magnetic separation process of 5000 gauss was installed after the preliminary mixing, after the hammer mill coarse grinding process and after the hydrophobic silica mixing. This is referred to as “black toner 4”.
[0045]
Production Example 17 (Process (4))
A toner of the present invention was obtained in the same manner as in Production Example 1 except that the 5000 gauss magnetic sorting step was transferred to the apparatus for mixing the hydrophobic silica and the colored particles before the premixing. This is designated as “Y toner 5”.
[0046]
Production Example 18 (Process (4))
The toner of the present invention was obtained in the same manner as in Production Example 2, except that the 5000 gauss magnetic sorting step was transferred to the apparatus for mixing the hydrophobic silica and the colored particles before the premixing. This is designated as “M toner 5”.
[0047]
Production Example 19 (Process (4))
A toner of the present invention was obtained in the same manner as in Production Example 3, except that the magnetic selection process of 5000 Gauss was transferred to an apparatus for mixing hydrophobic silica and colored particles before premixing. This is designated as “C toner 5”.
[0048]
Production Example 20 (Process (4))
The toner of the present invention was obtained in the same manner as in Production Example 4 except that the 5000 gauss magnetic sorting step was transferred to the apparatus for mixing the hydrophobic silica and the colored particles before the premixing. This is referred to as “black toner 5”.
[0049]
Comparative production example 1
A comparative toner was obtained in the same manner as in Production Example 1 except that the 5000 Gauss magnetic sorting step was not provided. This is referred to as “comparative Y toner 1”.
[0050]
Comparative production example 2
A comparative toner was obtained in the same manner as in Production Example 2, except that the 5000 Gauss magnetic sorting step was not provided. This is referred to as “comparative M toner 1”.
[0051]
Comparative production example 3
A comparative toner was obtained in the same manner as in Production Example 3 except that the 5000 Gauss magnetic sorting step was not provided. This is referred to as “comparative C toner 1”.
[0052]
Comparative production example 4
A comparative toner was obtained in the same manner as in Production Example 4 except that the 5000 Gauss magnetic sorting step was not provided. This is referred to as “comparative black toner 1”.
[0053]
<Measurement of magnetic particle content>
100 g of each of the obtained toners was collected, and magnetic particles were separated with a magnet and counted. On the other hand, as a result of the volume resistivity was measured in the large amount of collected magnetic particles from each toner was 10 to 10 3 [Omega] cm. Moreover, as a result of observing the shape of the magnetic particles with a scanning electron microscope, the size was 55 to 450 μm in major axis diameter. The magnetic particle content of each toner is shown below.
[0054]
Toner type Number of magnetic particles / toner 100g
Y toner 1 5
M Toner 1 4
C Toner 1 5
Black toner 1 5
Y toner 2 6
M Toner 2 4
C Toner 2 4
Black toner 2 4
Y toner 3 4
M toner 3 5
C toner 3 2
Black toner 3 3
Y toner 4 1
M toner 4 0
C toner 4 1
Black toner 4 1
Y toner 5 2
M toner 5 1
C toner 5 2
Black toner 5 1
Y toner for comparison 1 20
M toner for comparison 1 24
C toner for comparison 1 31
Comparative black toner 1 33
<< Developer preparation >>
Each toner obtained is added to a ferrite-coated ferrite carrier (volume resistance: 10 13 Ωcm) having a volume average particle diameter of 45 μm with the surface of the ferrite particles coated with styrene-acrylic resin to prepare a developer having a toner concentration of 7%. did.
[0055]
<Evaluation of developer>
A color copier 9028 made by Konica Co., Ltd. was modified and a multilayer organic photoconductor was used to produce a full color image with a pixel rate of 50% in a room temperature and low humidity (20 ° C / 15% RH) environment under the conditions shown below. 10,000 copies were copied and image defects generated on the images were observed.
[0056]
Photoconductor surface potential: -550V
DC bias: -250V
AC bias: Vp-p; -50 to -450V
Alternating electric field frequency: 1800Hz
Photoconductor-carrier gap: 300 μm
Pressure regulating force: 10gf / mm
Pressure regulating rod: Made of SUS416 (magnetic stainless steel), 3mm in diameter
Developer layer thickness: 150 μm
Development sleeve diameter: 20mm
The number of image defects generated in each developer is shown below.
[0057]
Figure 0003646268
[0058]
【The invention's effect】
According to the present invention, it is possible to prevent the occurrence of image defects when developing by applying an alternating electric field in a non-contact state.
[Brief description of the drawings]
FIG. 1 shows an installation example of a magnetic sorting apparatus according to the manufacturing method of the present invention.
[Explanation of symbols]
1 Bar magnet 2 Transport piping

Claims (2)

少なくとも樹脂及び着色剤を予備混合し、混練、粉砕、分級して着色粒子を得た後に、無機微粒子を添加混合する際に
) 少なくとも樹脂と着色剤とを混練し、体積平均粒径50〜2000μmの着色粒子に粗粉砕した後に磁場による選別を行い、更に粉砕分級し、無機微粒子を添加混合する、
) 無機微粒子を添加混合すると同時に磁場による選別を行う、及び
) 無機微粒子を添加混合した後に磁場による選別を行う
から選ばれる少なくとも1つを行う製造方法で得られたトナーと、キャリアとからなり、該トナーの、キャリアの体積平均粒径(Dc)に対し1.0Dc〜10Dcの最大長軸径で106Ωcm以下の抵抗値を有する磁性粒子の含有率が100g中に10個以下であることを特徴とする電子写真用現像剤。
When premixing at least a resin and a colorant, kneading, pulverizing, and classifying to obtain colored particles, when adding and mixing inorganic fine particles ,
1 ) At least a resin and a colorant are kneaded, coarsely pulverized into colored particles having a volume average particle diameter of 50 to 2000 μm, then subjected to selection by a magnetic field, further pulverized and classified, and inorganic fine particles are added and mixed.
2 ) Addition and mixing of inorganic fine particles and simultaneous selection by magnetic field, and
3 ) A toner obtained by a production method in which at least one selected from selection by a magnetic field is performed after adding and mixing inorganic fine particles, and a carrier, and the toner has a volume average particle diameter (Dc) of the carrier. A developer for electrophotography, wherein the content of magnetic particles having a maximum major axis diameter of 1.0 Dc to 10 Dc and a resistance value of 10 6 Ωcm or less is 10 or less per 100 g.
感光体に対向し且つ間隙をおいて、トナーを供給するための担持体とトナー層の厚みを規制するための部材を有する現像機を設け、請求項1に記載の電子写真用現像剤を用いて、該担持体表面の現像領域に20〜500μmのトナーの薄層を形成し、交番電界を印加して帯電したトナーを感光体の電荷を有する部分に飛翔付着せしめることを特徴とする電子写真画像の形成方法。  The developer for electrophotography according to claim 1, wherein a developing machine is provided which has a carrier for supplying toner and a member for regulating the thickness of the toner layer, facing the photoreceptor and having a gap. Forming a thin layer of toner of 20 to 500 μm in the developing area of the surface of the carrier, and applying the alternating electric field to cause the charged toner to fly and adhere to the charged portion of the photoreceptor. Image forming method.
JP14482294A 1994-06-27 1994-06-27 Toner manufacturing method, electrophotographic developer using formed toner, and electrophotographic image forming method Expired - Fee Related JP3646268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14482294A JP3646268B2 (en) 1994-06-27 1994-06-27 Toner manufacturing method, electrophotographic developer using formed toner, and electrophotographic image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14482294A JP3646268B2 (en) 1994-06-27 1994-06-27 Toner manufacturing method, electrophotographic developer using formed toner, and electrophotographic image forming method

Publications (2)

Publication Number Publication Date
JPH0815906A JPH0815906A (en) 1996-01-19
JP3646268B2 true JP3646268B2 (en) 2005-05-11

Family

ID=15371266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14482294A Expired - Fee Related JP3646268B2 (en) 1994-06-27 1994-06-27 Toner manufacturing method, electrophotographic developer using formed toner, and electrophotographic image forming method

Country Status (1)

Country Link
JP (1) JP3646268B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333337B1 (en) 2002-02-01 2014-07-23 Ricoh Company, Ltd. Image forming apparatus with a two-component type developer
JP6024316B2 (en) * 2012-09-07 2016-11-16 株式会社リコー Toner manufacturing apparatus and toner manufacturing method

Also Published As

Publication number Publication date
JPH0815906A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
JP2008070570A (en) Developing device, image forming apparatus
US6517985B2 (en) Electrophotographic developer and process for forming image
JP4113304B2 (en) Image forming method, toner, and image forming apparatus
JP3646268B2 (en) Toner manufacturing method, electrophotographic developer using formed toner, and electrophotographic image forming method
JP3726592B2 (en) Electrostatic charge developing carrier, electrostatic charge image developer, and image forming method
JPH07271090A (en) Magnetic toner, manufacturing method thereof, and electrophotographic method
JP2003270888A (en) Electrophotographic image forming apparatus and developer
JPH06258870A (en) Electrostatic charge image developing toner and its manufacture
JP3598439B2 (en) Toner for developing electrostatic image and image forming method
JPH08123073A (en) Electrostatic charge image developing toner, two-component developer and image forming method
JP3867933B2 (en) Electrophotographic toner manufacturing method, electrophotographic developer, and electrophotographic image forming method using the same
EP3596549B1 (en) Toner, production method of toner, image forming method, image forming apparatus, and process cartridge
JP2007178467A (en) Color image forming apparatus and method
JP3008838B2 (en) Image forming method and image forming apparatus
JPH1020560A (en) Electrophotographic toner, its production and image forming method using the toner
JP2000122337A (en) Positive charge type toner for developing electrostatic latent image
JPH0862887A (en) Electrostatic charge image developing toner and image forming method
JPH09138528A (en) Developer
JPH07306544A (en) Developer for electrostatic charge image and image forming method
JP3741469B2 (en) Electrostatic charge image developer and image forming method
JP3175902B2 (en) Non-magnetic one-component developer
JP3992228B2 (en) One-component non-magnetic toner and developing device
JPH07248642A (en) Two-constituent developer for developing electrostatic charge image and image forming method
JP5365388B2 (en) Electrophotographic developer, electrophotographic developer cartridge, process cartridge, and image forming apparatus
JPH0962103A (en) Image forming method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040817

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees