[go: up one dir, main page]

JP3657386B2 - Semiconductor manufacturing apparatus and semiconductor manufacturing method - Google Patents

Semiconductor manufacturing apparatus and semiconductor manufacturing method Download PDF

Info

Publication number
JP3657386B2
JP3657386B2 JP11752697A JP11752697A JP3657386B2 JP 3657386 B2 JP3657386 B2 JP 3657386B2 JP 11752697 A JP11752697 A JP 11752697A JP 11752697 A JP11752697 A JP 11752697A JP 3657386 B2 JP3657386 B2 JP 3657386B2
Authority
JP
Japan
Prior art keywords
ring
reaction chamber
detection
furnace
semiconductor manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11752697A
Other languages
Japanese (ja)
Other versions
JPH10294286A5 (en
JPH10294286A (en
Inventor
智志 谷山
秀宏 柳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Denki Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Kokusai Denki Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc, Kokusai Denki Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP11752697A priority Critical patent/JP3657386B2/en
Publication of JPH10294286A publication Critical patent/JPH10294286A/en
Publication of JPH10294286A5 publication Critical patent/JPH10294286A5/ja
Application granted granted Critical
Publication of JP3657386B2 publication Critical patent/JP3657386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は半導体製造工程の前処理工程に属する拡散、化学気相成長を行う為の半導体製造装置及び半導体製造方法に関するものである。
【0002】
【従来の技術】
半導体製造工程の処理工程の1つに拡散、化学気相成長工程があり、斯かる処理を行う装置として縦型反応炉がある。
【0003】
図2により、縦型炉を具備した縦型半導体製造装置の概略を説明する。
【0004】
筐体1内部の後部上方に縦型炉2が設けられ、該縦型炉2の下方にボートエレベータ3が設けられている。該ボートエレベータ3の昇降スライダ4には前記縦型炉2の一部を成す炉口蓋5が取付けられ、該炉口蓋5にはボートキャップ6を介して石英製のボート7が載置される。該ボート7には被処理物であるウェーハ8が水平姿勢で多段に装填され保持されている。
【0005】
前記ボートエレベータ3の前方にウェーハ移載機9が設けられ、該ウェーハ移載機9の更に前方に遮熱シャッタ10を介在してカセット棚11が設けられている。
【0006】
該カセット棚11はウェーハカセット12を所要数収納し、前記ウェーハ8の半導体製造装置への搬入、搬出は前記ウエーハカセット12に装填した状態で行われる。
【0007】
前記ボートエレベータ3は前記ウェーハ8が装填されたボート7を前記縦型炉2に装入し、又、前記ボート7を装入することで前記炉口蓋5が前記縦型炉2の炉口部を閉塞する。前記縦型炉2内で前記ウェーハ8に所要の処理がなされ、処理が完了すると前記ボートエレベータ3により前記ボート7が引出される。
【0008】
前記ボート7引出し直後は、該ボート7及び前記ウェーハ8は高温となっており、前記遮熱シャッタ10は前記カセット棚11の前記ウェーハ8への熱影響を防止する。又、前記ウェーハ移載機9は未処理ウェーハを前記カセット棚11から前記ボート7へ移載し、処理ウェーハを前記ボート7から前記カセット棚11へ移載する。
【0009】
次に従来の縦型炉2について図3により説明する。
【0010】
図中13は均熱管であり、該均熱管13の内部には石英製の反応管14が同心に配設され、該反応管14により反応室15が画成されている。前記均熱管13の周囲を囲繞する様に筒状のヒータ16が同心に設けられ、該ヒータ16はヒータベース17に立設され、該ヒータベース17には座受け18を介してリング座19が固着され、該リング座19に前記均熱管13が立設されている。
【0011】
前記反応管14は下端に外鍔状のフランジ部20を有し、該フランジ部20の外周端と上端を覆うフランジカバー21と、前記フランジ部20の下面外周端部に当接するフランジ受けリング22とにより、前記フランジ部20は挾持されている。前記フランジカバー21内部には全周に亘り断面が横長の矩形の第1冷却水路23が同心で2重に形成され、該第1冷却水路23には図示しない冷却水供給管が接続されている。
【0012】
前記反応管14の下端開口部を閉塞可能な炉口蓋5は脚柱24を介して前記ボートエレベータ3の前記昇降スライダ4に支持される。前記脚柱24にボート受台25が嵌着され、該ボート受台25上にキャップ受けリング26が同心に固着される。キャップ受けリング26の上面にはベース27が同心に配設され、該ベース27は周縁部を前記ベース27の板厚より僅かに厚い環状のOリング押え28により挾持され、該Oリング押え28は前記キャップ受けリング26に固着されている。前記ベース27の上面には外周縁に沿って、全周に亘り溝29が刻設され、該溝29にOリング30が嵌入され、前記フランジ部20と前記Oリング押え28は前記Oリング30を介在させて、気密に密着可能となっている。又、前記キャップ受けリング26の内部には全周に亘り同心に外側部分と内側部分に2重に断面が横長の矩形の第2冷却水路31が形成され、該第2冷却水路31には図示しない冷却水供給管が接続されている。
【0013】
前記ヒータベース17下面に前記フランジ受けリング22下端迄の前記反応管14の周囲を覆う様、板金製のスカベンジャ32が設けられ、該スカベンジャ32の内周端は前記フランジ受けリング22の外周端に近接して設けられ、前記スカベンジャ32には図示しないダクトが連通されている。
【0014】
前記ボートエレベータ3により前記昇降スライダ4が昇降することで前記ボート7の前記反応室15への装入、引出しが行われ、前記炉口蓋5により前記反応管14下端開口部が閉塞されることにより、前記反応室15内は気密に保たれる。該反応室15内で処理中発生するNO、NOX ガス等が前記反応管14下端開口部から漏出した場合にガスの漏出を検知できる様、処理中、前記スカベンジャ32内を前記ダクト(図示せず)を介して吸引する。
【0015】
【発明が解決しようとする課題】
上記した従来の反応炉では前記Oリング30だけで炉口部開閉部分の気密性を保っている為、該反応室15内のガスが該炉口部開閉部分より漏出する可能性がある。又、漏出しても検知する迄にある程度時間が掛かり、漏出確認後、ガスの供給を停止させた時には既にガスが半導体装置内に充満した状態となっており、漏出箇所の特定が困難となる為、復旧に長時間を要するという問題点があった。
【0016】
又、漏出を抑制し、而も漏出があった場合に直ちに検出を可能とするものに図4に示すものがある。これは、前記ベース27の上面に全周に亘り2条の同心の第1Oリング溝33、第2Oリング溝34を刻設し、該第1Oリング溝33、第2Oリング溝34にそれぞれ第1Oリング35と第2Oリング36を嵌設し、前記フランジ部20と前記べ−ス27間を前記第1Oリング35、第2Oリング36を介して気密に保ち、該第1Oリング35と第2Oリング36との間に形成した空隙37に吸引管38を連通し、該吸引管38を介して前記空隙37内を真空引きすることにより該空隙37内を負圧とし、炉口部から外部へガスが漏出するのを防止するものである。しかし、この場合には、炉口部の構造が複雑となり生産コストが上昇し、又、メンテナンスも困難となるという問題があった。
【0017】
本発明は斯かる実情に鑑み、炉口部から外部へガスが漏出することを防止し、又、ガスの漏出を瞬時に検知することができ、メンテナンスの容易化を図ろうとするものである。
【0018】
【課題を解決するための手段】
本発明は、反応室をOリングを介して炉口蓋により気密に閉塞可能とし、炉口蓋と反応室との境界で前記Oリングの外側に前記反応室から漏出したガスの成分を検知する為の検知用流路を設け、該検知用流路に検知ポートを連通させ、該検知ポートより吸引する様構成した半導体製造装置に係り、又前記Oリングは、前記境界で前記検知用流路よりも前記反応室側にのみ設けられた半導体製造装置に係り、又前記Oリングと前記検知用流路の中心側壁面との距離を該検知用流路の外周側壁面と前記炉口蓋外周端との距離より短くした半導体製造装置に係り、又反応室をOリングを介して炉口蓋により気密に閉塞可能とし、該炉口蓋と反応室との境界で前記Oリングの外側に検知用流路を設け、該検知用流路に検知ポートを連通させ、該検知ポートより吸引する様構成し、前記検知用流路の断面形状の前記Oリング側部分を外周側部分より大きくした半導体製造装置にり、又炉口蓋を上昇させ反応室へ被処理物を装填したボートを装入する工程と、前記反応室をOリングを介して前記炉口蓋により気密に閉塞する工程と、前記反応室で前記被処理物を処理する工程と、前記炉口蓋と反応室との境界であって前記Oリングの外側に前記反応室から漏出したガスの成分を検知する為に設けられた検知用流路から検知ポートを介して吸引する工程と、吸引されたガスの成分をガス検知器により検知する工程と、前記被処理物の処理が完了すると前記ボートを前記反応室から引出す工程とを有する半導体製造方法に係るものであり、前記検知用流路内の前記Oリング側の排気抵抗を小さくし、該反応炉から外部へのガスの漏出を防ぎ、ガスの漏出を瞬時に検知する。
【0019】
【発明の実施の形態】
以下、図1を参照しつつ本発明の実施の形態を説明する。
【0020】
図中45は有天筒状のヒータであり、該ヒータ45の内部には石英製の均熱管46、石英製の反応管47が同心多重に配設され、該反応管47により反応室48が画成されている。前記ヒータ45はヒータベース49に立設され、該ヒータベース49には座受け50を介してリング座51が固着され、該リング座51に均熱管46が立設されている。
【0021】
前記反応管47は下端に外鍔状を成すフランジ部52を有し、該フランジ部52を介し前記反応管47が炉口フランジ53に立設されている。該炉口フランジ53の上面には前記反応管47と同心で全周に亘り、第1Oリング溝54が刻設され、該第1Oリング溝54には中心側から第1Oリング55、バックアップ材56が嵌設される。前記フランジ部52は前記炉口フランジ53に固着されるフランジカバー57と炉口フランジ53とで挾持され、前記フランジ部52と前記炉口フランジ53との間は前記第1Oリング55を介して気密にシールされる。前記フランジカバー57内部には円環状の第1冷却水路58が全周に亘り設けられ、該第1冷却水路58には冷却水供給管(図示せず)が接続され、前記炉口フランジ53内部の前記第1Oリング溝54下方には全周に亘り、円環上の第2冷却水路59が設けられ、該第2冷却水路59は図示しない冷却水供給管と接続され、前記炉口フランジ53の下面には全周に亘り、円環状の第1検知用溝60が刻設されている。
【0022】
前記反応管47の下端開口部を閉塞可能な炉口蓋61は脚柱62を介して図示しないボートエレベータの昇降エレベータに支持される。前記脚柱62にボート受台63が嵌着され、該ボート受台63上にキャップ受けリング64が同心に固着され、キャップ受けリング64の上面にはベース65が同心に配設されている。該ベース65は前記炉口フランジ53の下面を前記炉口蓋61が閉塞された時、前記ベース65の外周面が前記炉口フランジ53と非接触で前記反応管47の内面より外側に位置し、且前記ベース65の周縁上面が前記フランジ部52の下面に非接触となる様、前記ベース65の周縁部の厚みは前記炉口フランジ53の厚みより僅かに薄くなっている。
【0023】
前記キャップ受けリング64の上面には全周に亘り、円環状の第2検知用溝66が刻設され、該第2検知用溝66の中心側壁面は前記第1検知用溝60の中心側壁面と同位置であり、前記第2検知用溝66の幅は前記第1検知用溝60の幅より大きく、前記炉口蓋61が前記炉口フランジ53の下面を閉塞した時、前記第1検知用溝60と前記第2検知用溝66により検知用流路67が形成され、該検知用流路67の断面は中心側に凸部を有するL字形を成す。前記炉口フランジ53を貫通する検知ポート68は対称位置に2箇所、前記検知用流路67の段差面から該検知用流路67に連通している。
【0024】
前記キャップ受けリング64の上面で前記第2検知用溝66より中心側、且該第2検知用溝66近傍には全周に亘り第2Oリング溝69が設けられ、該第2Oリング溝69と前記第2検知用溝66中心側壁面との距離は、該第2検知用溝66外周側壁面と前記キャップ受けリング64の外周端との距離より短い。前記第2Oリング溝69内に第2Oリング70が嵌設され、前記炉口フランジ53と前記炉口蓋61は前記第2Oリング70を介して気密に閉塞可能となっている。又、前記キャップ受けリング64の内部で前記第2Oリング溝69の下方直近には、全周に亘り円環状の第3冷却水路71が設けられている。
【0025】
以下、作動を説明する。
【0026】
前記ボートエレベータ(図示せず)により前記炉口蓋61を昇降させることで前記反応室48内へのボート(図示せず)の装入、引出しを行う。
【0027】
前記反応室48へ前記ボート(図示せず)を完全に装入した状態では、前記キャップ受けリング64が前記炉口フランジ53の下面に当接し、前記第2Oリング70が前記炉口フランジ53に密着することにより前記反応室48の内外を気密に保つ。
【0028】
前記検知ポート68を介して図示しないポンプにより前記検知用流路67内が真空引され、負圧に保たれる。吸引されたガスの成分は常時ガス検知器(図示せず)によって検知されている。更に、該検知用流路67の断面形状は前記第2Oリング70側部分が前記検知ポート68を連通させた外周側部分より大きく、該検知用流路67と前記第2Oリング70との距離が短い為、該第2Oリング70側の排気抵抗は小さくなる。従って、前記第2Oリング70の気密性が低下して前記反応室48内のガスが前記検知用流路67内に漏出しても、該検知用流路67内のガスを外部に漏出することがなく、又、吸引されたガスの成分は常時ガス検知器によって検知されているので、ガスの漏出を瞬時に検知する。
【0029】
尚、上記実施の形態に於いては、縦型炉について説明したが、他の反応炉の炉口部に使用してもよい。又、検知用溝は炉口蓋又は炉口フランジのどちらか一方に刻設してもよい。
【0030】
【発明の効果】
以上述べた如く本発明によれば、炉口部開閉部分のOリングの気密性が低下しても外部にガスが漏出することなく、前記検知用流路内へ漏出した場合も瞬時に検知できると共に漏れ箇所の特定も容易で、ガス漏出後の半導体製造装置の復旧、立上げが容易となる。又、気密性を高める為に要する生産コストの上昇を抑え、更に、メンテナンスが容易となる等、種々の優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す断面図である。
【図2】従来の縦型半導体製造装置の概略説明図である。
【図3】従来例を示す断面図である。
【図4】他の従来例を示す断面図である。
【符号の説明】
53 炉口フランジ
57 フランジカバー
60 第1検知用溝
61 炉口蓋
64 キャップ受けリング
65 ベース
66 第2検知用溝
67 検知用流路
68 検知ポート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor manufacturing apparatus and a semiconductor manufacturing method for performing diffusion and chemical vapor deposition belonging to a pretreatment process of a semiconductor manufacturing process .
[0002]
[Prior art]
One of the processing steps of the semiconductor manufacturing process is a diffusion and chemical vapor deposition process, and a vertical reactor is an apparatus for performing such a process.
[0003]
An outline of a vertical semiconductor manufacturing apparatus equipped with a vertical furnace will be described with reference to FIG.
[0004]
A vertical furnace 2 is provided above the rear part inside the housing 1, and a boat elevator 3 is provided below the vertical furnace 2. A furnace mouth lid 5 that forms a part of the vertical furnace 2 is attached to the lift slider 4 of the boat elevator 3, and a quartz boat 7 is placed on the furnace mouth lid 5 via a boat cap 6. In the boat 7, wafers 8 as processing objects are loaded and held in multiple stages in a horizontal posture.
[0005]
A wafer transfer device 9 is provided in front of the boat elevator 3, and a cassette shelf 11 is provided in front of the wafer transfer device 9 with a heat shielding shutter 10 interposed therebetween.
[0006]
The cassette shelf 11 stores a required number of wafer cassettes 12, and the wafer 8 is carried into and out of the semiconductor manufacturing apparatus while being loaded into the wafer cassette 12.
[0007]
The boat elevator 3 is loaded with the boat 7 loaded with the wafers 8 in the vertical furnace 2, and the furnace port lid 5 is placed in the furnace port portion of the vertical furnace 2 by loading the boat 7. Occlude. In the vertical furnace 2, the wafer 8 is subjected to required processing, and when the processing is completed, the boat elevator 3 pulls out the boat 7.
[0008]
Immediately after the boat 7 is pulled out, the boat 7 and the wafer 8 are at a high temperature, and the heat shield shutter 10 prevents the cassette shelf 11 from being affected by heat on the wafer 8. The wafer transfer device 9 transfers unprocessed wafers from the cassette shelf 11 to the boat 7 and transfers processed wafers from the boat 7 to the cassette shelf 11.
[0009]
Next, a conventional vertical furnace 2 will be described with reference to FIG.
[0010]
In the figure, reference numeral 13 denotes a soaking tube. A quartz reaction tube 14 is concentrically disposed inside the soaking tube 13, and a reaction chamber 15 is defined by the reaction tube 14. A cylindrical heater 16 is provided concentrically so as to surround the soaking tube 13, the heater 16 is erected on a heater base 17, and a ring seat 19 is attached to the heater base 17 via a seat receiver 18. The heat equalizing tube 13 is erected on the ring seat 19.
[0011]
The reaction tube 14 has an outer flange-shaped flange portion 20 at the lower end, a flange cover 21 that covers the outer peripheral end and the upper end of the flange portion 20, and a flange receiving ring 22 that abuts the lower surface outer peripheral end portion of the flange portion 20. Thus, the flange portion 20 is clamped. A rectangular first cooling water passage 23 having a horizontally long cross section is formed concentrically and doublely in the flange cover 21, and a cooling water supply pipe (not shown) is connected to the first cooling water passage 23. .
[0012]
A furnace lid 5 capable of closing the lower end opening of the reaction tube 14 is supported by the elevating slider 4 of the boat elevator 3 via a pedestal 24. A boat cradle 25 is fitted on the pedestal 24, and a cap receiving ring 26 is fixed on the boat cradle 25 concentrically. A base 27 is concentrically disposed on the upper surface of the cap receiving ring 26, and the base 27 is held by an annular O-ring presser 28 whose peripheral portion is slightly thicker than the plate thickness of the base 27. The cap receiving ring 26 is fixed. A groove 29 is formed on the upper surface of the base 27 along the outer peripheral edge, and an O-ring 30 is fitted into the groove 29. The flange portion 20 and the O-ring presser 28 are connected to the O-ring 30. It is possible to tightly contact with each other. In addition, a rectangular second cooling water channel 31 having a horizontally long cross section is formed in the cap receiving ring 26 concentrically on the entire outer periphery and inner portion over the entire circumference, and the second cooling water channel 31 is illustrated in the figure. The cooling water supply pipe is not connected.
[0013]
A scavenger 32 made of sheet metal is provided on the lower surface of the heater base 17 so as to cover the periphery of the reaction tube 14 up to the lower end of the flange receiving ring 22, and the inner peripheral end of the scavenger 32 is at the outer peripheral end of the flange receiving ring 22. A duct (not shown) is provided adjacent to the scavenger 32.
[0014]
The boat elevator 3 raises and lowers the elevating slider 4 to load and withdraw the boat 7 into and from the reaction chamber 15, and the furnace opening cover 5 closes the lower end opening of the reaction tube 14. The reaction chamber 15 is kept airtight. During the processing, the inside of the scavenger 32 is connected to the duct (not shown) so that gas leakage can be detected when NO, NOx gas, etc. generated during the processing in the reaction chamber 15 leaks from the lower end opening of the reaction tube 14. A) through.
[0015]
[Problems to be solved by the invention]
In the conventional reaction furnace described above, the gas tightness in the opening / closing portion of the furnace opening is maintained only by the O-ring 30, so that the gas in the reaction chamber 15 may leak from the opening / closing portion of the furnace opening. In addition, it takes a certain amount of time to detect a leak, and when the gas supply is stopped after the leak is confirmed, the gas is already filled in the semiconductor device, making it difficult to identify the leak location. Therefore, there is a problem that it takes a long time to recover.
[0016]
FIG. 4 shows an example in which leakage is suppressed and detection is possible immediately when leakage occurs. This is because two concentric first O-ring grooves 33 and second O-ring grooves 34 are formed on the upper surface of the base 27 over the entire circumference, and the first O-ring grooves 33 and the second O-ring grooves 34 are respectively provided with the first O-ring grooves 33 and the second O-ring grooves 34. A ring 35 and a second O-ring 36 are fitted, and the space between the flange portion 20 and the base 27 is kept airtight via the first O-ring 35 and the second O-ring 36, and the first O-ring 35 and the second O-ring 36 are retained. The suction pipe 38 is communicated with the gap 37 formed between the suction pipe 36 and the inside of the gap 37 is evacuated through the suction pipe 38 to make the inside of the gap 37 a negative pressure. Is to prevent leakage. However, in this case, there is a problem that the structure of the furnace opening is complicated, the production cost increases, and maintenance becomes difficult.
[0017]
In view of such a situation, the present invention prevents gas from leaking from the furnace port portion to the outside, and can instantaneously detect gas leakage, thereby facilitating maintenance.
[0018]
[Means for Solving the Problems]
The present invention, the reaction chamber and can be closed in an airtight manner via an O-ring by a furnace palate, in order to detect the components of the leakage gas from the reaction chamber to the outside of the O-ring at the boundary between the reaction chamber and the furnace palate provided the detection channel, it communicates the detection port on the detected known passage relates to a semiconductor production equipment configured as to be sucked from the sensing port, and the O-ring, the detection channel at the boundary the relates to a semiconductor manufacturing device provided only on the reaction chamber side, and the furnace palate periphery before and Symbol O-ring and the outer peripheral side wall surface of the detection knowledge flow path distance between the center side wall of the detection channel than It relates to a semiconductor manufacturing equipment which is shorter than the distance between the end, also the reaction chamber and can be closed hermetically by a furnace palate through the O-ring, for detecting the outside of the O-ring at the boundary between the reaction chamber and the furnace palate A flow path is provided, and a detection port is communicated with the detection flow path to detect the detection. Configured such that the suction from over preparative, the O-ring Ri engaged largely the semiconductor manufacturing equipment from the outer peripheral side portion of the side portion, the article to be treated into the reaction chamber increases the Mataro palate cross-sectional shape of the detection channel A step of charging a boat loaded with a reaction vessel, a step of airtightly closing the reaction chamber through the O-ring through the furnace port lid, a step of processing the object to be processed in the reaction chamber, and a reaction with the furnace port lid A step of sucking through a detection port from a detection flow path provided to detect a gas component leaked from the reaction chamber at the boundary with the chamber and outside the O-ring; The present invention relates to a semiconductor manufacturing method including a step of detecting a component by a gas detector, and a step of pulling out the boat from the reaction chamber when the processing of the object to be processed is completed , and the O in the detection flow path. Reduce ring side exhaust resistance Prevents leakage of gas to the outside from the reactor, to detect the leakage of gas instantaneously.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
[0020]
In the figure, reference numeral 45 denotes a cylindrical heater. Inside the heater 45, a soaking tube 46 made of quartz and a reaction tube 47 made of quartz are arranged concentrically, and a reaction chamber 48 is formed by the reaction tube 47. It is defined. The heater 45 is erected on a heater base 49, a ring seat 51 is fixed to the heater base 49 via a seat receiver 50, and a heat equalizing tube 46 is erected on the ring seat 51.
[0021]
The reaction tube 47 has a flange portion 52 having an outer casing shape at the lower end, and the reaction tube 47 is erected on the furnace port flange 53 via the flange portion 52. A first O-ring groove 54 is formed on the upper surface of the furnace port flange 53 concentrically with the reaction tube 47 over the entire circumference. The first O-ring groove 54 includes a first O-ring 55 and a backup material 56 from the center side. Is inserted. The flange portion 52 is sandwiched between a flange cover 57 fixed to the furnace port flange 53 and the furnace port flange 53, and the flange portion 52 and the furnace port flange 53 are hermetically sealed via the first O-ring 55. Sealed. An annular first cooling water channel 58 is provided around the entire circumference of the flange cover 57, and a cooling water supply pipe (not shown) is connected to the first cooling water channel 58. Below the first O-ring groove 54, a second cooling water channel 59 on an annular ring is provided over the entire circumference. The second cooling water channel 59 is connected to a cooling water supply pipe (not shown), and the furnace port flange 53 is provided. An annular first detection groove 60 is engraved on the lower surface of the entire surface.
[0022]
A furnace opening 61 capable of closing the lower end opening of the reaction tube 47 is supported by a lift elevator of a boat elevator (not shown) via a pedestal 62. A boat pedestal 63 is fitted on the pedestal 62, and a cap receiving ring 64 is fixed concentrically on the boat receiving base 63, and a base 65 is concentrically disposed on the upper surface of the cap receiving ring 64. When the furnace port lid 61 is closed on the lower surface of the furnace port flange 53, the outer surface of the base 65 is located outside the inner surface of the reaction tube 47 without being in contact with the furnace port flange 53. The thickness of the peripheral edge of the base 65 is slightly smaller than the thickness of the furnace port flange 53 so that the peripheral upper surface of the base 65 is not in contact with the lower surface of the flange 52.
[0023]
An annular second detection groove 66 is formed on the upper surface of the cap receiving ring 64 over the entire circumference, and the central side wall surface of the second detection groove 66 is on the center side of the first detection groove 60. The first detection groove 66 is located at the same position as the wall surface, and the width of the second detection groove 66 is larger than the width of the first detection groove 60, and when the furnace port lid 61 closes the lower surface of the furnace port flange 53. A detection channel 67 is formed by the groove 60 and the second detection groove 66, and the cross section of the detection channel 67 has an L shape having a convex portion on the center side. Two detection ports 68 passing through the furnace port flange 53 communicate with the detection flow path 67 from the stepped surface of the detection flow path 67 at two symmetrical positions.
[0024]
A second O-ring groove 69 is provided on the upper surface of the cap receiving ring 64 at the center side of the second detection groove 66 and in the vicinity of the second detection groove 66. The distance from the central side wall surface of the second detection groove 66 is shorter than the distance between the outer peripheral side wall surface of the second detection groove 66 and the outer peripheral end of the cap receiving ring 64. A second O-ring 70 is fitted in the second O-ring groove 69, and the furnace port flange 53 and the furnace port lid 61 can be hermetically closed via the second O-ring 70. An annular third cooling water channel 71 is provided over the entire circumference of the cap receiving ring 64 and immediately below the second O-ring groove 69.
[0025]
The operation will be described below.
[0026]
A boat (not shown) is loaded and withdrawn into the reaction chamber 48 by raising and lowering the furnace port lid 61 by the boat elevator (not shown).
[0027]
In a state where the boat (not shown) is completely charged into the reaction chamber 48, the cap receiving ring 64 contacts the lower surface of the furnace port flange 53, and the second O-ring 70 contacts the furnace port flange 53. By closely contacting, the inside and outside of the reaction chamber 48 are kept airtight.
[0028]
The inside of the detection flow path 67 is evacuated by a pump (not shown) through the detection port 68 and kept at a negative pressure. The component of the sucked gas is always detected by a gas detector (not shown). Further, the cross-sectional shape of the detection flow path 67 is larger at the second O-ring 70 side part than the outer peripheral side part where the detection port 68 is communicated, and the distance between the detection flow path 67 and the second O-ring 70 is larger. Since it is short, the exhaust resistance on the second O-ring 70 side becomes small. Therefore, even if the gas tightness of the second O-ring 70 is lowered and the gas in the reaction chamber 48 leaks into the detection flow path 67, the gas in the detection flow path 67 leaks to the outside. Moreover, since the component of the sucked gas is always detected by the gas detector, the leakage of the gas is detected instantaneously.
[0029]
In the above embodiment, the vertical furnace has been described. However, the vertical furnace may be used for a furnace port of another reaction furnace. Further, the detection groove may be formed on either the furnace port lid or the furnace port flange.
[0030]
【The invention's effect】
As described above, according to the present invention, even when the airtightness of the O-ring at the opening and closing part of the furnace port portion is reduced, gas can be instantaneously detected even if it leaks into the detection flow path without leaking outside. At the same time, it is easy to specify the leak location, and it becomes easy to restore and start up the semiconductor manufacturing apparatus after the gas leaks. In addition, it exhibits various excellent effects such as suppressing an increase in production cost required for improving airtightness and facilitating maintenance.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the present invention.
FIG. 2 is a schematic explanatory view of a conventional vertical semiconductor manufacturing apparatus.
FIG. 3 is a cross-sectional view showing a conventional example.
FIG. 4 is a cross-sectional view showing another conventional example.
[Explanation of symbols]
53 Furnace port flange 57 Flange cover 60 First detection groove 61 Furnace port cover 64 Cap receiving ring 65 Base 66 Second detection groove 67 Detection flow path 68 Detection port

Claims (5)

反応室をOリングを介して炉口蓋により気密に閉塞可能とし、炉口蓋と反応室との境界で前記Oリングの外側に前記反応室から漏出したガスの成分を検知する為の検知用流路を設け、該検知用流路に検知ポートを連通させ、該検知ポートより吸引する様構成したことを特徴とする半導体製造装置。The reaction chamber and can be closed hermetically by a furnace palate through the O-ring, the detection flow for detecting the component of the leaked gas from the reaction chamber to the outside of the O-ring at the boundary between the reaction chamber and the furnace palate A semiconductor manufacturing apparatus characterized in that a path is provided, a detection port is communicated with the detection flow path, and suction is performed from the detection port. 前記Oリングは、前記境界で前記検知用流路よりも前記反応室側にのみ設けられた請求項1の半導体製造装置。  The semiconductor manufacturing apparatus according to claim 1, wherein the O-ring is provided only on the reaction chamber side with respect to the detection flow path at the boundary. 前記Oリングと前記検知用流路の中心側壁面との距離を該検知用流路の外周側壁面と前記炉口蓋外周端との距離より短くした請求項1の半導体製造装置。  The semiconductor manufacturing apparatus according to claim 1, wherein a distance between the O-ring and a central side wall surface of the detection flow path is shorter than a distance between an outer peripheral side wall surface of the detection flow path and the outer peripheral end of the furnace cover. 反応室をOリングを介して炉口蓋により気密に閉塞可能とし、該炉口蓋と反応室との境界で前記Oリングの外側に検知用流路を設け、該検知用流路に検知ポートを連通させ、該検知ポートより吸引する様構成し、前記検知用流路の断面形状の前記Oリング側部分を外周側部分より大きくしたことを特徴とする半導体製造装置。 The reaction chamber can be hermetically closed with a furnace lid through an O-ring, and a detection channel is provided outside the O-ring at the boundary between the furnace lid and the reaction chamber, and a detection port communicates with the detection channel. is allowed to configure such that the suction from the sensing port, a semiconductor manufacturing apparatus is characterized in that the O-ring portion of the cross-sectional shape of the detection channel is greater than the outer peripheral portion. 炉口蓋を上昇させ反応室へ被処理物を装填したボートを装入する工程と、前記反応室をOリングを介して前記炉口蓋により気密に閉塞する工程と、前記反応室で前記被処理物を処理する工程と、前記炉口蓋と反応室との境界であって前記Oリングの外側に前記反応室から漏出したガスの成分を検知する為に設けられた検知用流路から検知ポートを介して吸引する工程と、吸引されたガスの成分をガス検知器により検知する工程と、前記被処理物の処理が完了すると前記ボートを前記反応室から引出す工程とを有することを特徴とする半導体製造方法。  A step of raising a furnace lid and charging a boat loaded with an object into the reaction chamber; a step of airtightly closing the reaction chamber via the O-ring through the furnace port lid; and the object to be processed in the reaction chamber Through a detection port from a detection flow path provided to detect a gas component leaked from the reaction chamber at the boundary between the furnace lid and the reaction chamber and outside the O-ring. And a step of detecting a component of the sucked gas by a gas detector, and a step of pulling out the boat from the reaction chamber when the processing of the object to be processed is completed. Method.
JP11752697A 1997-04-21 1997-04-21 Semiconductor manufacturing apparatus and semiconductor manufacturing method Expired - Lifetime JP3657386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11752697A JP3657386B2 (en) 1997-04-21 1997-04-21 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11752697A JP3657386B2 (en) 1997-04-21 1997-04-21 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Publications (3)

Publication Number Publication Date
JPH10294286A JPH10294286A (en) 1998-11-04
JPH10294286A5 JPH10294286A5 (en) 2005-02-24
JP3657386B2 true JP3657386B2 (en) 2005-06-08

Family

ID=14713977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11752697A Expired - Lifetime JP3657386B2 (en) 1997-04-21 1997-04-21 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP3657386B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680350B2 (en) * 2000-06-26 2011-05-11 東京エレクトロン株式会社 Single wafer processing equipment

Also Published As

Publication number Publication date
JPH10294286A (en) 1998-11-04

Similar Documents

Publication Publication Date Title
KR100246115B1 (en) Processing apparatus in low pressure and its method
KR100491128B1 (en) Method for making semiconductor apparatus and wafer processing apparatus
TW480568B (en) A device for treating substrates and a method for the same
US5997651A (en) Heat treatment apparatus
JP2007242791A (en) Substrate processing equipment
JPH08195354A (en) Heat treatment furnace for semiconductor manufacturing equipment
US5445521A (en) Heat treating method and device
JP2001015440A (en) Semiconductor manufacturing method and apparatus
JP3657386B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
CN113053785B (en) Semiconductor processing equipment
JP3449636B2 (en) Semiconductor manufacturing equipment
JP2002009010A (en) Thermal treatment and method
JP3269881B2 (en) Semiconductor manufacturing equipment
JP3305817B2 (en) Semiconductor manufacturing apparatus and wafer processing method
JP2007073746A (en) Substrate processing equipment
JP3785247B2 (en) Semiconductor manufacturing equipment
JP2691159B2 (en) Vertical heat treatment equipment
JP3320505B2 (en) Heat treatment apparatus and method
JPH06168904A (en) Vertical reactor
JP4364962B2 (en) Substrate processing apparatus and substrate processing method
JP2009016532A (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2003209064A (en) Semiconductor manufacturing equipment
JP3463785B2 (en) Sealing device and processing device
JP4490636B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
TW202335086A (en) Leakage detection device, method for manufacturing semiconductor device, substrate treatment method, and program

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

EXPY Cancellation because of completion of term