JP3683716B2 - Thermal insulation structure of NMR probe - Google Patents
Thermal insulation structure of NMR probe Download PDFInfo
- Publication number
- JP3683716B2 JP3683716B2 JP25214398A JP25214398A JP3683716B2 JP 3683716 B2 JP3683716 B2 JP 3683716B2 JP 25214398 A JP25214398 A JP 25214398A JP 25214398 A JP25214398 A JP 25214398A JP 3683716 B2 JP3683716 B2 JP 3683716B2
- Authority
- JP
- Japan
- Prior art keywords
- nmr probe
- heat insulating
- nmr
- probe
- insulating structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Thermal Insulation (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、温度可変型のNMRプローブで用いられる断熱構造に関する。
【0002】
【従来の技術】
NMRプローブで温度可変測定を実現するためには、試料を加熱および/または冷却する機構と共に、充分な性能を持った断熱構造が必要である。
【0003】
図1は、固体のNMRスペクトルを測定するためのMASプローブの断熱構造を示したものである。MASプローブは、図示しない超伝導磁石の軸心に沿って穿設された筒状穴に嵌挿され、MASプローブの中心軸と超電導磁石が作る静磁場の軸とが一致するように設置される。
【0004】
MASプローブのハウジング1は、超伝導磁石が作る静磁場の軸方向に対して54.7゜傾いた方向に回転軸を持ち、極めて高速(数キロヘルツ〜十数キロヘルツ)に回転させることにより、高分解能の固体NMRスペクトルを得る構造になっている。
【0005】
固体NMRスペクトルの試料温度依存性を測定するためには、MASプローブの下方から、温度制御されたVTエア2を導入し、ハウジング1全体の温度を制御する必要がある。そのためには、外界との熱のやり取りを抑えることが不可欠であり、ガラス製の真空二重管3で外界からハウジングを断熱してやる必要があった。
【0006】
【発明が解決しようとする課題】
ところが、断熱のために用いられているガラス真空二重管3は、機械的な衝撃に弱いため、MASプローブの組み立て作業中や客先での使用中に、しばしば破損事故が発生している。また、ガラス真空二重管3は、製造が難しいために高価であり、しかも真空不良の製造トラブルがしばしば発生するという問題があった。
【0007】
一方、ガラス真空二重管3の代替技術としては、テフロンシートを断熱構造として使用することも可能であるが、テフロンシートの場合、厚みの設定が難しく、厚すぎればNMRのバックグラウンドの信号源となり、薄すぎれば断熱が不充分になるという問題があった。
【0008】
本発明の目的は、上述した点に鑑み、NMRのバックグラウンド信号の発生源となる心配がなく、しかも断熱性に優れた断熱構造を提供することにある。
【0009】
【課題を解決するための手段】
この目的を達成するため、請求項1の発明にかかるNMRプローブの断熱構造は、NMRプローブによる温度可変測定に際し、NMRプローブの試料室の周囲に電気良導体層で覆った熱絶縁体層を配置して、NMRプローブ内部と外界とを断熱すると共に、該熱絶縁体層を覆った電気良導体層を接地電位に接続したことを特徴としている。
【0010】
また、請求項2の発明にかかるNMRプローブの断熱構造は、前記NMRプローブが固体試料測定用のMASプローブであることを特徴としている。
【0011】
また、請求項3の発明にかかるNMRプローブの断熱構造は、前記電気良導体層が金属メッキで構成されていることを特徴としている。
【0012】
また、請求項4の発明にかかるNMRプローブの断熱構造は、前記熱絶縁体層が耐熱樹脂で構成されていることを特徴としている。
【0015】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を説明する。図2は、本発明にかかるNMRプローブの断熱構造を示したものである。図中、図1と同じ構成要素については、図1と同じ番号を付して説明する。
【0016】
図中、1はMASプローブのハウジングである。該ハウジング1は、MASプローブの中心軸から54.7゜傾いた方向に回転軸を持ち、測定試料を高速回転させる。ハウジング1の下方からは、試料温度を制御するためのVTエア2が供給される構造になっている。これにより、ハウジング1を含むMASプローブの内部構造の温度を自由に制御することが可能になる。
【0017】
該ハウジング1の周囲には、従来、ガラス真空二重管3が配置されていた場所に、錫などで全面をメッキされた、耐熱樹脂製の筒状の断熱材4が配置されている。この金属メッキは、断熱材の端部で、外部の金属筒などにアース接続されている。
【0018】
温度制御されたVTエア2は、該断熱材4で囲まれた内側を満たしながら、NMRの試料をハウジング1ごと加熱および/または冷却する。このとき、MASプローブから外界への熱伝導、または外界からMASプローブへの熱伝導は、断熱材4によって遮断される。
【0019】
断熱材4の表面に施された金属メッキは、熱伝導率が高いにもかかわらず、厚みが薄いため、実際の熱伝導量は極めて少ない。また、NMR信号検出部から放出される高周波は、金属メッキを経由してアースに流れるため、断熱材4を構成する耐熱樹脂は高周波の照射を受けず、バックグラウンド信号の原因となる恐れは全くない。これは、金属メッキが、高周波に対するシールドとして働いていることを示すものである。
【0020】
このような断熱構造の断熱性能は、ガラス真空二重管3の場合と比較すると若干劣るものの、実用には充分に耐え得るだけの断熱性能を持ち、かつ、ガラス真空二重管3よりも機械的には遥かに頑丈であり、しかも、価格的には極めて安価に製造することができる。
【0021】
尚、断熱材4は、熱伝導率の低い材質ならば、何でも良い。また、メッキは、電気伝導率の高い材質ならば、何でも良い。
【0023】
【発明の効果】
以上述べたごとく、本発明のNMRプローブの断熱構造を用いれば、従来のガラス真空二重管を用いた断熱構造の欠点であった機械的な脆さと原価の高さを克服することができ、しかも、実用に耐えるだけの断熱性能を得ることができる。
【図面の簡単な説明】
【図1】 従来のNMRプローブの断熱構造を示す図である。
【図2】 本発明のNMRプローブの断熱構造の一実施例を示す図である。
【符号の説明】
1・・・ハウジング、2・・・VTエア、3・・・ガラス真空二重管、4・・・断熱材。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat insulating structure used in a temperature variable type NMR probe.
[0002]
[Prior art]
In order to realize variable temperature measurement with an NMR probe, a heat insulating structure having sufficient performance is required together with a mechanism for heating and / or cooling a sample.
[0003]
FIG. 1 shows an adiabatic structure of a MAS probe for measuring a solid NMR spectrum. The MAS probe is fitted into a cylindrical hole drilled along the axis of a superconducting magnet (not shown), and is installed so that the central axis of the MAS probe and the axis of the static magnetic field created by the superconducting magnet coincide. .
[0004]
The housing 1 of the MAS probe has a rotation axis in a direction inclined by 54.7 ° with respect to the axial direction of the static magnetic field generated by the superconducting magnet, and is rotated at a very high speed (several kilohertz to several tens of kilohertz). It has a structure for obtaining a solid-state NMR spectrum of resolution.
[0005]
In order to measure the sample temperature dependence of the solid-state NMR spectrum, it is necessary to introduce temperature-controlled VT air 2 from below the MAS probe to control the temperature of the entire housing 1. For this purpose, it is indispensable to suppress the exchange of heat with the outside world, and it is necessary to insulate the housing from the outside world with a vacuum double tube 3 made of glass.
[0006]
[Problems to be solved by the invention]
However, since the glass vacuum double tube 3 used for heat insulation is vulnerable to mechanical shock, a breakage accident often occurs during the assembly operation of the MAS probe and use at the customer site. Further, the glass vacuum double tube 3 is expensive because it is difficult to manufacture, and there is a problem that manufacturing troubles due to vacuum failure often occur.
[0007]
On the other hand, as an alternative technique of the glass vacuum double tube 3, a Teflon sheet can be used as a heat insulating structure. However, in the case of a Teflon sheet, it is difficult to set the thickness. When it was too thin, there was a problem that heat insulation was insufficient.
[0008]
In view of the above points, an object of the present invention is to provide a heat insulating structure that has no fear of becoming a source of NMR background signal and has excellent heat insulating properties.
[0009]
[Means for Solving the Problems]
In order to achieve this object, the heat insulating structure of the NMR probe according to the invention of claim 1 is provided with a thermal insulator layer covered with a good electrical conductor layer around the sample chamber of the NMR probe in the temperature variable measurement by the NMR probe. In addition, the inside of the NMR probe and the outside are insulated, and the good electrical conductor layer covering the thermal insulator layer is connected to the ground potential.
[0010]
The heat insulation structure of the NMR probe according to the invention of claim 2 is characterized in that the NMR probe is a MAS probe for measuring a solid sample.
[0011]
The heat insulating structure of the NMR probe according to the invention of claim 3 is characterized in that the good electric conductor layer is made of metal plating.
[0012]
The heat insulating structure of the NMR probe according to the invention of claim 4 is characterized in that the thermal insulator layer is made of a heat resistant resin.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an adiabatic structure of the NMR probe according to the present invention. In the figure, the same components as those in FIG. 1 will be described with the same numbers as those in FIG.
[0016]
In the figure, reference numeral 1 denotes a MAS probe housing. The housing 1 has a rotation axis in a direction inclined by 54.7 ° from the central axis of the MAS probe, and rotates the measurement sample at a high speed. From below the housing 1, VT air 2 for controlling the sample temperature is supplied. Thereby, the temperature of the internal structure of the MAS probe including the housing 1 can be freely controlled.
[0017]
Around the housing 1, a cylindrical heat insulating material 4 made of heat-resistant resin, which is plated with tin or the like, is disposed at a place where the glass vacuum double tube 3 is conventionally disposed. This metal plating is grounded to an external metal cylinder or the like at the end of the heat insulating material.
[0018]
The temperature-controlled VT air 2 heats and / or cools the NMR sample together with the housing 1 while filling the inside surrounded by the heat insulating material 4. At this time, heat conduction from the MAS probe to the outside or heat conduction from the outside to the MAS probe is blocked by the heat insulating material 4.
[0019]
Although the metal plating applied to the surface of the heat insulating material 4 has high thermal conductivity, the thickness is thin, so that the actual amount of heat conduction is extremely small. In addition, since the high frequency emitted from the NMR signal detector flows to the ground via the metal plating, the heat resistant resin constituting the heat insulating material 4 is not irradiated with the high frequency, and there is no possibility of causing a background signal. Absent. This indicates that the metal plating serves as a shield against high frequencies.
[0020]
Although the heat insulation performance of such a heat insulation structure is slightly inferior to that of the glass vacuum double tube 3, it has a heat insulation performance enough to withstand practical use, and is mechanically better than the glass vacuum double tube 3. In terms of price, it is much more robust and can be manufactured at a very low price.
[0021]
The heat insulating material 4 may be anything as long as it has a low thermal conductivity. The plating may be any material as long as it has a high electrical conductivity.
[0023]
【The invention's effect】
As described above, by using the heat insulating structure of the NMR probe of the present invention, it is possible to overcome the mechanical brittleness and high cost that were the disadvantages of the conventional heat insulating structure using a glass vacuum double tube, In addition, it is possible to obtain a heat insulating performance sufficient for practical use.
[Brief description of the drawings]
FIG. 1 is a diagram showing a heat insulation structure of a conventional NMR probe.
FIG. 2 is a diagram showing an embodiment of the heat insulation structure of the NMR probe of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Housing, 2 ... VT air, 3 ... Glass vacuum double tube, 4 ... Thermal insulation.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25214398A JP3683716B2 (en) | 1998-09-07 | 1998-09-07 | Thermal insulation structure of NMR probe |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25214398A JP3683716B2 (en) | 1998-09-07 | 1998-09-07 | Thermal insulation structure of NMR probe |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2000081472A JP2000081472A (en) | 2000-03-21 |
| JP3683716B2 true JP3683716B2 (en) | 2005-08-17 |
Family
ID=17233083
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP25214398A Expired - Fee Related JP3683716B2 (en) | 1998-09-07 | 1998-09-07 | Thermal insulation structure of NMR probe |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3683716B2 (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6538440B2 (en) * | 2001-06-20 | 2003-03-25 | Ge Medical Systems Global Technology Co., Llc | Non-conductive long wave thermal radiation shield |
| JP5233040B2 (en) * | 2006-07-03 | 2013-07-10 | 独立行政法人物質・材料研究機構 | MAS probe device for solid-state NMR |
| JP5517086B2 (en) * | 2012-09-21 | 2014-06-11 | 独立行政法人物質・材料研究機構 | MAS probe device for solid-state NMR |
| JP6622081B2 (en) | 2015-12-21 | 2019-12-18 | 日本電子株式会社 | Nuclear magnetic resonance measuring apparatus and exhaust gas treatment method |
| CN109298009A (en) * | 2018-11-19 | 2019-02-01 | 郑州轻工业学院 | A temperature-controlled sample tube suitable for low-field nuclear magnetic resonance analysis of tobacco raw materials and using method thereof |
-
1998
- 1998-09-07 JP JP25214398A patent/JP3683716B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2000081472A (en) | 2000-03-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5999081A (en) | Shielding unique for filtering RFI and EFI interference signals from the measuring elements | |
| US4224461A (en) | Ungrounded three wire thermocouple | |
| EP0855596A2 (en) | Gas chromatograph system | |
| US7080941B1 (en) | Temperature sensing system for temperature measurement in a high radio frequency environment | |
| US5864282A (en) | Unique strain relief junction | |
| US2952762A (en) | Black body radiation source | |
| US7404331B2 (en) | Sensor assembly, transformers and methods of manufacture | |
| JP3683716B2 (en) | Thermal insulation structure of NMR probe | |
| CN110646752A (en) | An integrated head device of SERF atomic magnetometer | |
| JPH05340979A (en) | Capacitive sensor | |
| JP2010513924A (en) | Cooled normal metal and HTSNMR probe coils with electric field shield | |
| EP0189297B1 (en) | X-ray tube devices | |
| US3213177A (en) | Resistance furnace | |
| CN110475394A (en) | A kind of heating device applied in vacuum equipment | |
| JP3129417B2 (en) | Heating / cooling device and electrical characteristic evaluation device | |
| JP2912616B1 (en) | Plate heating device | |
| JP2004212354A (en) | Nuclear magnetic resonance probe | |
| JP7488919B2 (en) | Aerosol Generator | |
| US2801607A (en) | Apparatus for applying material by thermal vaporization in the manufacture of electrical resistors | |
| US20230156873A1 (en) | Electromagnetic-induction heating device for thin-film thermocouple on ceramic blade | |
| US4214117A (en) | Furnace heated by radiation | |
| JP2007522682A (en) | Liquefied gas cryostat | |
| Chitarin et al. | Technology developments for ITER in-vessel equilibrium magnetic sensors | |
| JP2010032491A (en) | Nmr probe for high temperature measurement | |
| JP3791813B2 (en) | Heat analyzer heating device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050308 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050316 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050524 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050526 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080603 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090603 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090603 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100603 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110603 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120603 Year of fee payment: 7 |
|
| LAPS | Cancellation because of no payment of annual fees |