[go: up one dir, main page]

JP3605906B2 - Semiconductor device having contact resistance reduction layer - Google Patents

Semiconductor device having contact resistance reduction layer Download PDF

Info

Publication number
JP3605906B2
JP3605906B2 JP28195895A JP28195895A JP3605906B2 JP 3605906 B2 JP3605906 B2 JP 3605906B2 JP 28195895 A JP28195895 A JP 28195895A JP 28195895 A JP28195895 A JP 28195895A JP 3605906 B2 JP3605906 B2 JP 3605906B2
Authority
JP
Japan
Prior art keywords
layer
contact resistance
algainn
semiconductor device
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28195895A
Other languages
Japanese (ja)
Other versions
JPH08213653A (en
Inventor
謙司 下山
秀樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP28195895A priority Critical patent/JP3605906B2/en
Publication of JPH08213653A publication Critical patent/JPH08213653A/en
Application granted granted Critical
Publication of JP3605906B2 publication Critical patent/JP3605906B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は半導体装置に関し、特に窒化ガリウム系材料を使用した青色〜緑色発光ダイオード、青色〜緑色レーザーダイオード等の発光素子に関し、特に接触抵抗を大きく低減した半導体装置に関する。
【0002】
【従来の技術】
最近の青色及び緑色の発光ダイオード(LED)の高輝度化の進展には目ざましいものがあり、材料として、ZnSSe系やAlGaInN系が用いられている。現在、サファイア、SiCなどの基板上への高品質な窒化ガリウム(GaN)系化合物半導体膜の成長とGaN系への高濃度p型ドーピングが可能となったことにより、高輝度の青色発光ダイオードが実現されており、図2に示すようなダブルヘテロ構造が用いられている。
【0003】
【発明が解決しようとする課題】
しかしながら、図2に示すように、表面コンタクト層にワイドバンドギャップのGaN(Eg=3.39eV)を用いているために、電極との電位障壁が大きくなりやすく、このことが動作電圧の増加を招いてしまう(図3、n型の場合、Eは伝導帯の底のエネルギー、Eはフェルミ準位、Eは価電子帯の底のエネルギー、qφは電位障壁)。このようなワイドバンドギャップ半導体で、接触抵抗を下げるには、まず、ヘビードープした層を電極直下に挿入する、すなわちmetal−n+−n、metal−p+−pなる構造を形成する手法がある(図4、ただし、n型の場合)。これにより、電位障壁は残るが、非常に空乏層が薄くなり、キャリアが自由にトンネル効果で通過できるため、抵抗を示さなくなる。n型GaNではホール濃度が1019台という高濃度までドーピングが可能であるが、一方p型GaNドーピングでは、現状では1017台レベルまでしか入らない。このために、特にp型AlGaInNからなる層とは、充分低い接触抵抗の実現は困難である。この動作電圧の増加は、素子の発熱につながり、これは寿命を短くするため大きな問題となる。
【0004】
【課題を解決するための手段】
我々は、MOCVDやMBE法でAlGaInN系LEDを作製するにあたり、AlGaInN系からなる層と電極との間に薄膜のGaP1ーx(0.1≦x≦0.9)層を挿入することにより、上記の課題を解決するに至った。
この理由は、GaPNは、GaNからP組成を増加させても、またGaPからN組成を増加させてもバンドギャップが減少し、中間組成でバンドギャップがゼロになってしまうという特殊なバンド構造を有しているからである。そこで、ワイドバンドギャップ半導体で、接触抵抗を下げるために、非常にバンドギャップが小さいもしくはゼロである薄膜のGaP1ーx(0.1≦x≦0.9)層を挿入することにより、キャリア濃度を非常に高くすることができなくても、電極と表面層との間で形成される電位障壁が大幅に低減され、オーミックコンタクトを非常に取り易くなるためと考えられる(図5、n型の場合)。
【0005】
本発明の要点であるAlGaInN系からなる層と電極との間の薄膜のGaP1−x(0.1≦x≦0.9)層としては、厚さ、組成等の値については、AlGaInN系からなる層のキャリア濃度と組成(バンドギャップ)により異なるため特に限定されないが、通常好適な厚さとしては、接触抵抗が低下するという効果を満たすのに必要な厚さがあればよく、通常1μm以下であり、しばしば5〜100nm程度の厚さで使用される。
【0006】
又より好適な混晶比xとしては、0.1以上0.9以下であり、より好ましくは0.2以上0.8以下である。
尚、本明細書においてAlGaInN系からなる層とは、Al又はInの組成が0のものを含むものとする。
以下、本発明を実施例を用いてより詳細に説明するが、本発明はその要旨を超えない限り、実施例に限定されるものではない。
(実施例)
本発明の成長に使用した装置の構成は図6に示すように中央に基板搬送室を設け、基板交換室1室と減圧MOCVD装置3台を設置してある。成長室1は通常のMOCVD装置であり、AlGaInN系化合物半導体の成長に用いる。成長室2も通常のMOCVD装置であるがAlGaInN系以外のIII−V族化合物半導体の成長に用いる。成長室3は、原料をマイクロ波励起によりラジカル分解することができ、基板表面の窒化及びAlGaInN系化合物の成長に用いる。図1に示すような構造のエピタキシャルウエハを成長手順を示す。
【0007】
まずサファイア基板を成長室3に導入し、加熱昇温する。500゜Cにおいて、成長前に窒素ガス(N)を原料として、マイクロ波励起によりラジカル窒素を基板表面に供給し、表面の酸素(O)原子をN原子と置換させる工程、すなわち窒化を行う。この表面上に、GaNバッファ層20nmを成長させる。この後、基板を冷却し、搬送室を経て成長室1へ基板を移動させる。成長温度1000゜Cで加熱し、前記エピタキシャル膜成長基板上に、n型GaNバッファ層4μm、n型Al0.2Ga0.8Nクラッド層1μm、ZnドープIn0.1Ga0.9N活性層0.1μm、p型Al0.2Ga0.8Nクラッド層1μm、p型GaNコンタクト層1μmを順次成長させる。このとき、キャリアガスに水素を用いて、III族原料ガスに、トリメチルガリウム(TMG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)を用いた。V族原料には、一般的にはアンモニア(NH3)が用いられるが、成長温度の低減のために、低温での分解効率のよいジメチルヒドラジンやアジ化エチルなどの有機金属を用いてもよい。n型ドーパントには、SiまたはGeを、p型ドーパントには、MgまたはZnを用いた。必要に応じて、成長後に引き続いて成長室内で熱処理を行い、キャリアを活性化させる。この後、基板を冷却し、搬送室を経て成長室2へ基板を移動させる。基板を700゜Cに加熱し、前記エピタキシャル膜成長基板上に厚み20nmのGaP0.20.8を接触抵抗低減層として成長させる。このとき、キャリアガスに水素を用いて、III族原料ガスに、TMGをV族原料には、NH及びホスフィン(PH)を使用した。前記GaP0.20.8接触抵抗低減層は、余り厚くすると発光した光の吸収を大きくしてしまうが、上記実施例のように、光吸収の影響のない非常に薄い薄膜でも接触抵抗の低減に、非常に有効である。また、この接触抵抗低減層は、抵抗率が非常に小さいために、表面で電流を広げる役割も果たしてくれる。
【0008】
このようにして成長したエピタキシャルウエハの表面側に電極を形成し、チップに加工した。このチップを発光ダイオードとして組み立てて発光させたところ、順方向電流20mAにおいて、発光波長420nm、発光出力800μWと非常に良好な値が得られた。このとき動作電圧は3.3Vであり、比較のために作製したp−GaN表面上に電極を形成した従来の発光ダイオードでは動作電圧が4.0Vであった。この動作電圧の低減は、素子自体の発熱の低下を意味し、素子の寿命を大きく改善できた。
【0009】
上記実施例は、発光ダイオードについてであったが、半導体レーザにも同様な効果があることは言うまでもなく、そしてその他AlGaInN系半導体層の上に直接電極を設置する全ての半導体素子について、抵抗の減少によるロスを減らすことができ、効果を発揮する。
【0010】
【発明の効果】
AlGaInN系からなる層と電極との間に薄膜のGaP1ーx(0.1≦x≦0.9)層を挿入することにより、抵抗を低減し、これを発光装置として用いた場合には、動作電圧を大きく低減することができ、紫外〜赤色のAlGaInN系発光素子の特性及び素子の寿命も大幅に改善できる。
【図面の簡単な説明】
【図1】図1は、本発明の半導体装置の一例を示す説明図である。
【図2】図2は従来の半導体装置の一例を示す説明図である。
【図3】図3は、従来のAlGaInN系半導体層の上に直接電極を設置した場合のエネルギーバンドの説明図である。
【図4】図4は、従来のAlGaInN系半導体層の上にヘビードープ層を設けその上に電極を設置した場合のエネルギーバンドの説明図である。
【図5】図5は、本発明のAlGaInN系半導体層の上にGaP1−x(0.1≦x≦0.9)層を挿入して電極を設置した場合のエネルギーバンドの説明図である。
【図6】図6は、実施例1で用いた製造装置の説明図である。
[0001]
[Industrial applications]
The present invention relates to a semiconductor device, and more particularly, to a light emitting element using a gallium nitride-based material, such as a blue to green light emitting diode and a blue to green laser diode, and more particularly to a semiconductor device having significantly reduced contact resistance.
[0002]
[Prior art]
Recent progress in increasing the brightness of blue and green light-emitting diodes (LEDs) is remarkable, and ZnSSe-based and AlGaInN-based materials are used as materials. At present, it is possible to grow a high-quality gallium nitride (GaN) -based compound semiconductor film on a substrate such as sapphire or SiC and to perform a high-concentration p-type doping on a GaN-based semiconductor, so that a high-intensity blue light emitting diode can be manufactured. It has been realized, and a double hetero structure as shown in FIG. 2 is used.
[0003]
[Problems to be solved by the invention]
However, as shown in FIG. 2, since GaN (Eg = 3.39 eV) having a wide band gap is used for the surface contact layer, a potential barrier between the electrode and the electrode is apt to be increased. which leads (in the case of FIG. 3, n-type, E C is the bottom energy of the conduction band, E F is the Fermi level, E V is the bottom of the valence band energy, qφ B potential barrier). In order to reduce the contact resistance of such a wide band gap semiconductor, first, there is a method of inserting a heavy-doped layer immediately below an electrode, that is, forming a structure of metal-n + -n and metal-p + -p (FIG. 4, where n-type). This leaves a potential barrier, but the thickness of the depletion layer becomes very thin, and carriers can freely pass through the tunnel effect, so that no resistance is exhibited. the hole concentration in n-type GaN is possible doped to a concentration as high as 10 19 units, while in the p-type GaN doping can get only up to 10 17 units level at present. For this reason, it is difficult to realize a sufficiently low contact resistance especially with a layer made of p-type AlGaInN. This increase in operating voltage leads to heat generation of the element, which is a major problem because it shortens the life.
[0004]
[Means for Solving the Problems]
In manufacturing an AlGaInN-based LED by MOCVD or MBE, we insert a thin-film GaP x N 1-x (0.1 ≦ x ≦ 0.9) layer between an AlGaInN-based layer and an electrode. As a result, the above problem has been solved.
The reason is that GaPN has a special band structure in which the band gap decreases even if the P composition is increased from GaN or the N composition is increased from GaP, and the band gap becomes zero at the intermediate composition. Because it has. Therefore, in order to reduce the contact resistance, a thin GaP x N 1-x (0.1 ≦ x ≦ 0.9) layer having a very small or zero band gap is inserted in order to reduce the contact resistance. It is considered that even if the carrier concentration cannot be made very high, the potential barrier formed between the electrode and the surface layer is greatly reduced, and it becomes very easy to obtain an ohmic contact (FIG. 5, FIG. n-type).
[0005]
The thickness, composition, etc. of the thin film GaP x N 1-x (0.1 ≦ x ≦ 0.9) layer between the AlGaInN-based layer and the electrode, which are the main points of the present invention, are as follows. The thickness of the AlGaInN-based layer differs depending on the carrier concentration and the composition (band gap) of the AlGaInN-based layer, and is not particularly limited. However, the preferred thickness is usually a thickness necessary to satisfy the effect of reducing the contact resistance. It is usually 1 μm or less, and is often used in a thickness of about 5 to 100 nm.
[0006]
The more preferable mixed crystal ratio x is 0.1 or more and 0.9 or less, and more preferably 0.2 or more and 0.8 or less.
In this specification, an AlGaInN-based layer includes one in which the composition of Al or In is zero.
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples unless it exceeds the gist.
(Example)
As shown in FIG. 6, the apparatus used for the growth of the present invention is provided with a substrate transfer chamber at the center, one substrate exchange chamber and three reduced pressure MOCVD apparatuses. The growth chamber 1 is a normal MOCVD apparatus and is used for growing an AlGaInN-based compound semiconductor. The growth chamber 2 is also a normal MOCVD apparatus, but is used for growing a group III-V compound semiconductor other than AlGaInN. The growth chamber 3 can radically decompose the raw material by microwave excitation, and is used for nitriding the substrate surface and growing an AlGaInN-based compound. A procedure for growing an epitaxial wafer having a structure as shown in FIG. 1 will be described.
[0007]
First, a sapphire substrate is introduced into the growth chamber 3 and heated and heated. At 500 ° C., before the growth, using nitrogen gas (N 2 ) as a raw material, radical nitrogen is supplied to the substrate surface by microwave excitation to replace oxygen (O) atoms on the surface with N atoms, that is, nitridation is performed. . On this surface, a GaN buffer layer of 20 nm is grown. Thereafter, the substrate is cooled, and the substrate is moved to the growth chamber 1 via the transfer chamber. The substrate was heated at a growth temperature of 1000 ° C., and an n-type GaN buffer layer of 4 μm, an n-type Al 0.2 Ga 0.8 N cladding layer of 1 μm, and Zn-doped In 0.1 Ga 0.9 N were formed on the epitaxial film growth substrate. An active layer of 0.1 μm, a p-type Al 0.2 Ga 0.8 N cladding layer of 1 μm, and a p-type GaN contact layer of 1 μm are sequentially grown. At this time, hydrogen was used as a carrier gas, and trimethylgallium (TMG), trimethylaluminum (TMA), and trimethylindium (TMI) were used as group III source gases. Ammonia (NH3) is generally used as the group V raw material, but an organic metal such as dimethylhydrazine or ethyl azide, which has high decomposition efficiency at low temperatures, may be used to reduce the growth temperature. Si or Ge was used for the n-type dopant, and Mg or Zn was used for the p-type dopant. If necessary, after the growth, a heat treatment is performed subsequently in the growth chamber to activate the carriers. Thereafter, the substrate is cooled, and the substrate is moved to the growth chamber 2 via the transfer chamber. The substrate is heated to 700 ° C., and GaP 0.2 N 0.8 having a thickness of 20 nm is grown as a contact resistance reducing layer on the epitaxial film growth substrate. At this time, hydrogen was used as a carrier gas, TMG was used as a group III raw material gas, and NH 3 and phosphine (PH 3 ) were used as a group V raw material. If the thickness of the GaP 0.2 N 0.8 contact resistance reducing layer is too large, the absorption of emitted light is increased. However, as in the above embodiment, the contact resistance can be reduced even with a very thin thin film having no influence of light absorption. Is very effective in reducing the In addition, the contact resistance reducing layer has a very low resistivity, and thus plays a role of spreading the current on the surface.
[0008]
Electrodes were formed on the front side of the epitaxial wafer grown in this manner, and processed into chips. When this chip was assembled as a light emitting diode and emitted light, a very good value of an emission wavelength of 420 nm and an emission output of 800 μW was obtained at a forward current of 20 mA. At this time, the operating voltage was 3.3 V, and the operating voltage was 4.0 V in the conventional light emitting diode having an electrode formed on the p-GaN surface manufactured for comparison. This reduction in the operating voltage means that the heat generated by the element itself is reduced, and the life of the element can be greatly improved.
[0009]
Although the above embodiment is directed to a light emitting diode, it goes without saying that a semiconductor laser has the same effect, and the resistance of all other semiconductor elements in which electrodes are directly provided on an AlGaInN-based semiconductor layer is reduced. Loss can be reduced and the effect is exhibited.
[0010]
【The invention's effect】
When a thin GaP x N 1 -x (0.1 ≦ x ≦ 0.9) layer is inserted between the AlGaInN-based layer and the electrode to reduce the resistance and use this as a light emitting device In this method, the operating voltage can be greatly reduced, and the characteristics and life of the ultraviolet to red AlGaInN-based light emitting device can be greatly improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating an example of a semiconductor device of the present invention.
FIG. 2 is an explanatory diagram illustrating an example of a conventional semiconductor device.
FIG. 3 is an explanatory diagram of an energy band when an electrode is directly provided on a conventional AlGaInN-based semiconductor layer.
FIG. 4 is an explanatory diagram of an energy band when a heavy dope layer is provided on a conventional AlGaInN-based semiconductor layer and an electrode is provided thereon.
FIG. 5 is an explanation of an energy band when an electrode is provided by inserting a GaP x N 1-x (0.1 ≦ x ≦ 0.9) layer on the AlGaInN-based semiconductor layer of the present invention. FIG.
FIG. 6 is an explanatory diagram of the manufacturing apparatus used in the first embodiment.

Claims (2)

AlGaInN系からなる層と電極との間に薄膜のGaP1−x(0.1≦x≦0.9)層を有することを特徴とする半導体装置。A semiconductor device having a thin-film GaP x N 1-x (0.1 ≦ x ≦ 0.9) layer between an AlGaInN-based layer and an electrode. 該AlGaInN系からなる層がp型であることを特徴とする請求項1記載の半導体装置。2. The semiconductor device according to claim 1, wherein said AlGaInN-based layer is p-type.
JP28195895A 1994-10-28 1995-10-30 Semiconductor device having contact resistance reduction layer Expired - Fee Related JP3605906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28195895A JP3605906B2 (en) 1994-10-28 1995-10-30 Semiconductor device having contact resistance reduction layer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-265498 1994-10-28
JP26549894 1994-10-28
JP28195895A JP3605906B2 (en) 1994-10-28 1995-10-30 Semiconductor device having contact resistance reduction layer

Publications (2)

Publication Number Publication Date
JPH08213653A JPH08213653A (en) 1996-08-20
JP3605906B2 true JP3605906B2 (en) 2004-12-22

Family

ID=26546997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28195895A Expired - Fee Related JP3605906B2 (en) 1994-10-28 1995-10-30 Semiconductor device having contact resistance reduction layer

Country Status (1)

Country Link
JP (1) JP3605906B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3374737B2 (en) * 1997-01-09 2003-02-10 日亜化学工業株式会社 Nitride semiconductor device
US6677619B1 (en) 1997-01-09 2004-01-13 Nichia Chemical Industries, Ltd. Nitride semiconductor device
JPH10209569A (en) * 1997-01-16 1998-08-07 Hewlett Packard Co <Hp> P-type nitride semiconductor device and method of manufacturing the same
JP3461112B2 (en) * 1997-12-19 2003-10-27 昭和電工株式会社 Group III nitride semiconductor light emitting device
JP2002094110A (en) * 2000-09-12 2002-03-29 ▲さん▼圓光電股▲ふん▼有限公司 Structure of light emitting diode
JP2007081181A (en) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
WO2007032355A1 (en) 2005-09-15 2007-03-22 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device

Also Published As

Publication number Publication date
JPH08213653A (en) 1996-08-20

Similar Documents

Publication Publication Date Title
KR100406200B1 (en) Light-emitting gallium nitride-based compound semiconductor device
US6720570B2 (en) Gallium nitride-based semiconductor light emitting device
US6423984B1 (en) Light-emitting semiconductor device using gallium nitride compound semiconductor
JP2785254B2 (en) Gallium nitride based compound semiconductor light emitting device
US8716048B2 (en) Light emitting device and method for manufacturing the same
TW201011952A (en) Group iii nitride based semiconductor light emitting element and epitaxial wafer
US20210202790A1 (en) Method for manufacturing light-emitting element
JP3509260B2 (en) Group 3-5 compound semiconductor and light emitting device
JP3740744B2 (en) Semiconductor growth method
US7041519B2 (en) Method for producing p-type group III nitride compound semiconductor
US8278129B2 (en) Manufacturing method of nitride semi-conductor layer, and a nitride semi-conductor light emitting device with its manufacturing method
JP3658892B2 (en) Method for growing p-type nitride semiconductor and nitride semiconductor device
JP3567926B2 (en) pn junction type boron phosphide-based semiconductor light emitting device, method for manufacturing the same, and light source for display device
JP3667995B2 (en) GaN quantum dot structure manufacturing method and use thereof
JP3605906B2 (en) Semiconductor device having contact resistance reduction layer
JP3458007B2 (en) Semiconductor light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3605907B2 (en) Semiconductor device having contact resistance reduction layer
JPH10144960A (en) Method for manufacturing p-type nitride semiconductor and nitride semiconductor device
JPH10144612A (en) Growth of semiconductor
JP4609917B2 (en) Method for producing aluminum gallium nitride layer, method for producing group III nitride semiconductor light emitting device, and group III nitride semiconductor light emitting device
JPH05243613A (en) Light emitting device and manufacturing method thereof
JP3216596B2 (en) Gallium nitride based compound semiconductor light emitting device
JP3561243B2 (en) Compound semiconductor growth method and compound semiconductor light emitting device
JP7319559B2 (en) Nitride semiconductor light emitting device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees