[go: up one dir, main page]

JP3631923B2 - Substrate tube for fuel cell and its material - Google Patents

Substrate tube for fuel cell and its material Download PDF

Info

Publication number
JP3631923B2
JP3631923B2 JP20427899A JP20427899A JP3631923B2 JP 3631923 B2 JP3631923 B2 JP 3631923B2 JP 20427899 A JP20427899 A JP 20427899A JP 20427899 A JP20427899 A JP 20427899A JP 3631923 B2 JP3631923 B2 JP 3631923B2
Authority
JP
Japan
Prior art keywords
fuel cell
particle size
average particle
added
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20427899A
Other languages
Japanese (ja)
Other versions
JP2000106192A (en
Inventor
洋 佃
晃弘 山下
健一郎 小阪
長生 久留
義治 渡邉
北條  透
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20427899A priority Critical patent/JP3631923B2/en
Priority to US09/490,857 priority patent/US6379832B1/en
Priority to EP00101442A priority patent/EP1071150B1/en
Priority to DE60010811T priority patent/DE60010811T2/en
Publication of JP2000106192A publication Critical patent/JP2000106192A/en
Application granted granted Critical
Publication of JP3631923B2 publication Critical patent/JP3631923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は基体管の気孔率及び気孔径を向上させ、燃料電池の発電特性の向上を図った燃料電池の基体管及びその材料に関する。
【0002】
【従来の技術】
図1に溶射型の固体電解質型燃料電池の基体管の概略を示す。
図1に示すように、溶射型の固体電解質型燃料電池(SOFC)は、カルシア安定化ジルコニア(CSZ)多孔質円筒管の基体管1に、燃料極側電極2としてNiとイットリア安定化ジルコニア(YSZ)とのサーメットをプラズマ溶射で成膜する。次いでこの上に電解質3として酸素イオン伝導性のYSZをプラズマ溶射で成膜する。その後、この上に空気側電極4としてLaCoOをアセチレンフレーム溶射で成膜して燃料電池を構成する。最後に、NiAlとアルミナのサーメットで成膜した導電性接続材(インタコネクタ)5で上記燃料極側電極2と空気側電極4とを直列に接続している。
【0003】
【発明が解決しようとする課題】
しかしながら、従来技術の溶射法による燃料電池の製造は手間がかかると共に製造コストがかかり、低コスト化が望まれている。
【0004】
このため、焼結回数の少ない、基体管と燃料極及び電解質を一体に焼結する共焼結型の燃料電池の開発がなされているが、発電特性に対して基体管のガス透過性が充分でないという、問題がある。
【0005】
また、従来技術の基体管の問題として、熱サイクル時の速い昇降温速度で著しく劣化する点があげられる。
【0006】
すなわち、50℃/時以下の昇降温速度の場合には熱サイクル前後で性能変化が認められないが、50℃/時以上の昇降温速度では熱サイクル1回当たり10%程度の出力低下が発生する場合がある。
【0007】
これは、燃料電池を集合させて用いる場合に、昇降温速度を極めて緩やかにしなければ、燃料電池集合体の一部で50℃/時以上の昇降温速度になる部分が発生し、セルを損傷するおそれがある。
【0008】
したがって、200℃/時程度の速い昇降温速度でも損傷しないセルが望まれている。
【0009】
さらに,基体管の課題として,燃料利用率の向上があげられる。
従来技術の基体管の燃料利用率は投入した燃料の70%程度であるが,燃料利用率の向上が図れれば燃料電池の効率を向上できる。
【0010】
本発明は、上記問題に鑑み、基一体焼結型の燃料電池の製造に際し、基体管の気孔率及び気孔径を向上させ、燃料電池の発電特性の向上を図ると共に、速い昇降温速度でも損傷せず、さらに燃料利用率の高い燃料電池用基体管及びその材料を提供することを課題とする。
【0011】
【課題を解決するための手段】
前記課題を解決する本発明の[請求項1]の発明は、
平均粒径が0.5〜2μmの燃料電池の基体管原料に、粒径が5μm以上10μm未満の粗粒を添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くすることを特徴とする。
【0013】
[請求項2]の発明は、
平均粒径が0.5〜2μmの燃料電池の基体管原料に、粒径が5μm以上10μm未満の粗粒を10〜40重量%添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くすることを特徴とする。
【0014】
[請求項3]の発明は、
請求項1又は2において、上記基体管原料がカルシア安定化ジルコニア(CSZ)であることを特徴とする。
【0015】
[請求項4]の発明は、
燃料電池の基体管原料が微粒のカルシア安定化ジルコニア(CSZ)であり、該基体管原料と同一粒径のNiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる添加微粒を混合し、焼結時に収縮を不均一化し、気孔率を高くすることを特徴とする。
【0016】
[請求項5]の発明は、
請求項4において、上記基体管原料の平均粒径が0.5〜2μmであることを特徴とする。
【0017】
[請求項6]の発明は、
請求項4又は5において、上記添加微粒が10〜40重量%配合してなることを特徴とする。
【0018】
[請求項7]の発明は、
燃料電池の基体管原料が平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)であり、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる5μm以上の添加粗粒を添加・混合し、焼結時に収縮を不均一化し、気孔率を高くすることを特徴とする。
【0019】
[請求項8]の発明は、
請求項7において、上記粗粒が10〜30重量%配合してなることを特徴とする。
【0020】
[請求項9]の発明は、
燃料電池の基体管原料が平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)であり、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる0.5μm〜3μmの添加微粒と、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる5μm以上の添加粗粒とを添加・混合し、焼結時に収縮を不均一化し、気孔率を高くすることを特徴とする。
【0021】
[請求項10]の発明は、
請求項9において、上記添加微粒が5〜30重量%、上記添加粗粒が5〜30重量%配合してなることを特徴とする。
【0022】
[請求項11]の発明は、
表面に燃料極側電極、電解質膜、酸化剤側電極を順次積層してなる固体電解質燃料電池用基体管の材料であって、
基体管原料が平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)であり、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる5μm以上の添加粗粒を添加・混合してなることを特徴とする。
【0023】
[請求項12]の発明は、
請求項11において、上記粗粒が10〜30重量%配合してなることを特徴とする。
【0024】
[請求項13]の発明は、
表面に燃料極側電極、電解質膜、酸化剤側電極を順次積層してなる固体電解質燃料電池用基体管の材料であって、
平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)に対して、
添加微粒として平均粒径0.5から3μmのNiO,CoO,Fe23の1種類もしくは2種類以上の金属酸化物を5重量%から30重量%と、
添加粗粒として平均粒径5μm以上のNiO,CoO,Fe23,CaO安定化ZrO2のいずれか1種若しくは2種以上の金属酸化物を5重量%から30重量%とを添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くすることを特徴とする。
【0025】
[請求項14]の発明は、
表面に燃料極側電極、電解質膜、酸化剤側電極を順次積層してなる固体電解質燃料電池用基体管の材料であって、
平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)に対して、
平均粒径0.5μm以上のCaTiO3,SrTiO3,BaTiO3,CaO安定化ZrO2のいずれか1種若しくは2種以上の金属酸化物を5重量%から30重量%と、
平均粒径5μm以上のNiO,CoO,Fe23のいずれか1種若しくは2種以上の金属酸化物を5重量%から30重量%とを添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くすることを特徴とする。
【0026】
【発明の実施の形態】
以下、本発明の実施形態を説明するが、本発明はこれに限定されるものではない。
【0027】
(1) 本発明の基体管用の複合材料は、基体管原料に粗粒を添加・混合したものを用い、焼結時に収縮を不均一化し、気孔率を高くしたものである。
この結果、本発明によれば、焼結時に収縮を均一化し気孔率を高くしてガス透過性を向上させている。
する。
本発明により基体管の気孔率を高くすることができ、また基体管の平均気孔径を大きくすることができ、この結果ガス透過性の向上を図ることができる。
【0028】
ここで、本発明の基体管材料としては、平均粒径が0.5〜2μm程度の微粒のカルシア安定化ジルコニア(CSZ)であり、粗粒としては5μm以上、特に好ましくは10μm程度のカルシア安定化ジルコニア(CSZ)を混合するのがよい。
【0029】
本発明の基体管の原料は特に限定されるものではないが、上記カルシア安定化ジルコニア(CSZ)の代わりに、例えばMgO−MgAl,CaTiO−MgAl,MgTiO−MgAl,BaTiO−MgAl等を挙げることができる。
【0030】
なお、添加する粗粒は5μm以上のものであれば、その粒径の上限は特に限定されるものではないが、おおよそ500μm程度の場合でも効果が発現できる。
【0031】
上記粗粒の配合は、特に限定されるものではないが、好適には10〜40重量%配合すればよい。
これは、10重量%未満であると、気孔率の向上が少なく、一方40重量%を超えて添加しても更なる向上が図れないからである。
【0032】
また、本発明の基体管の製造時の焼結温度は1300℃〜1500℃程度が好ましい。
これは、焼結温度が1300℃未満であると、電解質,インターコネクタの緻密化が不充分となるので好ましくなく、一方1500℃を超えた焼結では燃料極の緻密化が進行する点で好ましくないからである。
【0033】
(2) 本発明の基体材は、基体管の原料である上記カルシア安定化ジルコニア(CSZ)に、金属酸化物を添加させることで、発電時に該金属酸化物が還元収縮し、新たに気孔を発生し、且つ気孔径を大きくさせ、ガス透過性を向上させている。
この結果、本発明により気孔率を高くすることができ、また平均気孔径を大きくすることができ、ガス透過性の向上を図ることができる。
【0034】
ここで、添加する金属酸化物は、NiO,CoO,FeO,Feのいずれか一種若しくは2種以上より選ばれてなる添加微粒であり、この金属酸化物の添加により、焼結時に収縮を不均一化し、気孔率を高くすることができる。
【0035】
また、上記金属酸化物の粒径を原料と同一径とせずに、5μm以上、特に好ましくは20μm程度のものを混合すると、金属酸化物の添加した発電時に還元される収縮作用と、添加金属酸化物の粒径を大きくしたことによる焼結時における収縮作用との相乗効果により、気孔率の向上並びに気孔径の向上を図ることができる。
【0036】
上記金属酸化物の配合は、特に限定されるものではないが、好適には5〜40重量%、好ましくは10〜30重量%配合すればよい。
これは、5重量%未満であると、気孔率の向上が少なく、一方40重量%を超えて添加しても更なる向上が図れないからである。
【0037】
また、添加する酸化金属を微粒のものと、粗粒のものとを所定割合添加することにより、気孔率の向上、セル発電効率の向上及び熱サイクル時のリーク増加率の抑制、燃料利用率の向上を図ることができる。
【0038】
すなわち、本発明の基体管材料は、基体管原料のCaO安定化ZrOに対して、添加微粒として平均粒径0.5から3μmのNiO, CoO, Feの1種類もしくは2種類以上を5重量%から30重量%と、添加粗粒として平均粒径5μm以上のNiO, CoO, Fe,CaO安定化ZrOのいずれか1種若しくは2種以上を5重量%から30重量%とを添加してなるものである。
【0039】
また、本発明の基体管材料は、基体管原料のCaO安定化ZrOに対して、平均粒径0.5μm以上のCaTiO,SrTiO,BaTiO等のチタニア系複合酸化物、CaO安定化ZrOのいずれか1種若しくは2種以上を5重量%から30重量%と、平均粒径5μm以上のNiO, CoO, Feのいずれか1種若しくは2種以上を5重量%から30重量%とを添加してなるものである。
【0040】
ここで、上記添加する金属酸化物の粒径は、NiO,CoO,FeO,Fe23等の場合には、200μm程度を上限とする。また、CaTiO 3 ,SrTiO 3 ,BaTiO 3 の場合には、500〜700μm程度を上限とする。これは、燃料電池の発電時にNiO,CoO,FeO,Fe23等では、200μm以上の粒径の場合には、発電時の還元雰囲気においても熱収縮が生じ、強度的に弱くなるが、CaTiO 3 等のチタニア系複合酸化物の場合には、発電時の還元雰囲気においても熱収縮が生ずることがないので、電解質膜と熱膨張が整合し、強度的に弱くなるようなことがないからである。この結果、熱サイクル時のリーク率の上昇を抑えることができる。なお、本発明では、上記チタニア系複合酸化物の代わりに、例えばCr23等のクロニア系複合酸化物、クロムベースのLaCrO3等のランタン系複合化合物等を例示することができる。
【0041】
【実施例】
本発明の効果を示す試験例及び実施例を以下に説明するが、本発明はこれに限定されるものではない。
【0042】
[試験例1]
平均粒径1μmのCSZ原料80重量%と、10μmのCSZ粗粒20重量%とを混合させ、1350℃で焼結した。
【0043】
[試験例2]
平均粒径1μmのCSZ原料80重量%と、1μmのNiO原料20重量%とを混合させ、1350℃で焼結した。
【0044】
[試験例3]
平均粒径1μmのCSZ原料80重量%と、20μmのNiO原料20重量%とを混合させ、1350℃で焼結した。
【0045】
[参考例1]
参考例として、平均粒径1μmのCSZ原料のみを使用して同様に焼結した。
【0046】
これらの焼結物の気孔率、気孔径並びにセル発電効率の結果を下記「表1」に示す。
【0047】
【表1】

Figure 0003631923
【0048】
「表1」に示すように、本試験例にかかる基体管はいずれも参考例に較べて気孔率が向上し、セル発電効率が向上することが判明した。
また、試験例3に示すように、金属材料を添加し、さらに粒径を大きくした場合には、これらの相乗効果により、セル発電効率が更に向上することが判明した。
【0049】
<実施例1〜19、比較例1〜7、実施例20〜27及び比較例8〜11>
図1に示す本発明に係る多孔質管からなる基体管(基材部)1の複合材料の配合を「表2」ならびに「表3」に示す。
【0050】
この基体管1の表面に100μmのNi−ジルコニアサーメットからなる燃料極側電極2、100μmのYSZからなる電解質3、1000μmのSrを0.1ドープしたLaMnOからなる空気側電極を積層し、さらに燃料極側電極と空気側電極を接続するための導電性接続材LaCrOを積層し電池とした。
【0051】
この電池を急速昇降温を繰り回した後、そのリーク率の変化を比較した。
また、気孔率及びセル発電効率も測定した。
その結果、「表2」ならびに「表3」に示す実施例の配合によりリークの増加率を抑制できた。
また,燃料利用率も向上できた。
【0052】
本実施例においては、基体管1のセラミックス原料は、「表2」ならびに「表3」に示す材料を用意した。
【0053】
上記基体管1は押出成形法により作るが、押出成形用助剤としてメチルセルロース、グリセリン、水さらに潤滑剤としてステアリン酸エマルジョンを用いた。それぞれの助剤は、セラミックス原料100重量部に対してそれぞれ4重量部,5重量部,10重量部,0.2重量部である。
また、ステアリン酸エマルジョンは、固形分濃度を15重量%とし、分散媒は水とした。
【0054】
本実施例にかかる基体管の製造を以下に示す。
はじめに任意の割合にセラミック原料とメチルセルロースとを計量し、高速ミキサーに入れ3分間混合する。
次に水,グリセリン,ステアリン酸エマルジョンを計量し、添加後1分間混合する。
次に、2軸ニーダを用いて本混練を行ない、押出成形機を用いて円筒形状に成形する。
成形後、60℃で24時間乾燥し、電極材料塗布した後1400℃で2時間熱処理して燃料電池を構成した。
【0055】
得られたこれらのセルについて発電温度と室温の昇降温を昇温速度200℃/時間の速度で5回行ない、セル性能の変化を求めた。
【0056】
本発明の実施例の結果を「表2」ならびに「表3」に示す。
本発明の効果を明確にするために本発明の範囲外である比較例も併せて示す。
【0057】
【表2】
Figure 0003631923
【0058】
【表3】
Figure 0003631923
【0059】
「表2」より、本発明の成分範囲内である実施例1から実施例19においては、昇降温を繰り返してもリーク率の増加は認められなかった。
また、燃料利用率も80%以上であり、良好と言える。
さらに、セル強度も3kg/ mm以上を示し良好であった。
【0060】
ここで、平均粒径0.5から3μmのNiOの役割としては、熱サイクル時のリーク率の上昇を抑えることに寄与しているものと考えられる。
比較例7において平均粒径0.5から3μmのNiOの量が少ない場合に、熱サイクル時のリーク率の上昇が示された。
これは、基体管の熱膨張係数を高くすることを意味するものと考えられ、同様の効果がCoO, Feなどでも予測できる。
【0061】
また、平均粒径0.5から3μmのNiOは基体管を緻密化するという作用もあり、発明の成分範囲を外れた比較例の場合では、燃料利用率の低下につながった。このことは比較例1と比較例6の結果により実証される。
【0062】
平均粒径5μm から200μmのNiOの役割は、燃料利用率の向上に寄与するものと考えられる。これは、比較例5に示すように、平均粒径5μmから200μm のNiO の量が少ない場合に、燃料利用率が低下していることからも明らかである。
【0063】
また、平均粒径5μmから200μmのNiOはセルの強度を向上させるという作用があり、発明の成分範囲を外れると強度の低下につながる。
比較例2〜3はこれを実証するものである。
【0064】
また、「表3」より、実施例20〜27において平均粒径0.5から3μm のNiO, CoO, Feの1種類もしくは2種類以上を、5重量%から30重量%、平均粒径5μmから200μmのNiO, CoO, Feの1種類もしくは2種類以上を5重量%から30重量%添加した基体管を用いた場合に同様の効果が確認された。
また、本発明の範囲外の比較例8において添加する粗粒の平均粒径の範囲外ではセル強度の低下が認められ、比較例9において添加する粗粒の添加量の範囲外では燃料利用率の低下が認められる。
【0065】
さらに、本発明の範囲外の比較例10において添加する微粒の添加量が多い場合には燃料利用率が低下し、比較例11において添加する微粒の添加量が少ない場合では熱サイクル時のリーク率の増加が認められた。
【0066】
<実施例28〜48、比較例12〜18、実施例49〜56及び比較例19〜22>
図1に示す本発明に係る多孔質管からなる基体管(基材部)1の複合材料の配合を「表4」ならびに「表5」に示す。
【0067】
この基体管1の表面に100μm のNi−ジルコニアサーメットからなる燃料極側電極2、100μmのYSZからなる電解質3、1000μm のSrを0.1ドープしたLaMnOからなる空気側電極を積層し、さらに燃料極側電極と空気側電極を接続するための導電性接続材LaCrOを積層し電池とした。 この電池を急速昇降温を繰り回した後、そのリーク率の変化を比較した。
また、気孔率及びセル発電効率も測定した。
【0068】
その結果、「表4」ならびに「表5」に示す実施例の配合によりリークの増加率を抑制できた。また,燃料利用率も向上できた。
【0069】
本実施例においては、基体管1のセラミックス原料は、「表4」ならびに「表5」に示す材料を用意した。
【0070】
上記基体管1は押出成形法により作るが、押出成形用助剤としてメチルセルロース,グリセリン, 水さらに潤滑剤としてステアリン酸エマルジョンを用いた。それぞれの助剤は、セラミックス原料100重量部に対してそれぞれ4重量部,5重量部,10重量部,0.2重量部である。
【0071】
また、ステアリン酸エマルジョンは固形分濃度が15重量%で分散媒は水である。
【0072】
本実施例にかかる基体管の製造を以下に示す。
はじめに任意の割合にセラミック原料とメチルセルロースを計量し、高速ミキサーに入れ3分間混合する。
次に、水,グリセリン,ステアリン酸エマルジョンを計量し、添加後1分間混合する。
次に、2軸ニーダを用いて本混練を行ない、押出成形機を用いて円筒形状に成形する。
成形後、60℃で24時間乾燥し、電極材料塗布した後1400℃で2時間熱処理して燃料電池を構成した。
【0073】
これらのセルについて発電温度と室温の昇降温を昇温速度200℃/時間の速度で5回行ない、セル性能の変化を調査した。
本発明の実施例を「表4」ならびに「表5」に示す。本発明の効果を明確にするために本発明外の比較例も併せて示す。
【0074】
【表4】
Figure 0003631923
【0075】
【表5】
Figure 0003631923
【0076】
「表4」より、本発明の成分範囲内である実施例28から実施例48においては、昇降温を繰り返してもリーク率の増加は認められなかった。
また、燃料利用率も80%以上であり良好と言える。
さらに、セル強度も3kg/mm以上を示し良好と考えられる。
【0077】
ここで、平均粒径0.5から200μmのCaTiOの役割としては、熱サイクル時のリーク率の上昇を抑えることに寄与しているものと考えられ、比較例18において平均粒径0.5から200μmのCaTiOの量が少ない場合に熱サイクル時のリーク率の上昇が認められたことからも明らかである。
これは、基体管の熱膨張係数を高くすることを意味するものと考えられ、同様の効果がSrTiO,BaTiO,CaO, MgOなどでも予測できる。
【0078】
また、平均粒径0.5から200μmのCaTiOは基体管を緻密化するという作用もあり、発明の成分範囲を外れると燃料利用率の低下につながる。比較例12と比較例17はこれを実証するものである。
【0079】
ここで、平均粒径5μmから200μmのNiOの役割は、燃料利用率の向上に寄与するものと考えられ、比較例16で平均粒径5μmから200μmのNiOの量が少ない場合に、燃料利用率が低下していることからも明らかである。
【0080】
また、平均粒径5μmから200μmのNiOはセルの強度を向上させるという作用があり、発明の成分範囲を外れると強度の低下につながった。比較例13〜15はこれを実証するものである。
同様の効果は、CoO やFe等でも予測できる。
【0081】
また、実施例44,45に示すように、平均粒径300μm,500μmとしたCaTiOの場合であっても、気孔率の向上及びセル強度が共に好ましいものであった。
【0082】
また、「表5」より、実施例49から56において平均粒径0.5から200μmのCaTiO,SrTiO,BaTiOの1種類もしくは2種類以上を5重量% から30重量%、平均粒径5μm から200μmのNiO, CoO,Feの1種類もしくは2種類以上を5重量%から30重量%添加した基体管を用いた場合に同様の効果が確認された。
【0083】
また、本発明の範囲外の比較例19において添加する粗粒の平均粒径の範囲外ではセル強度の低下が認められ、比較例20において添加する粗粒の添加量の範囲外では燃料利用率の低下が認められた。
さらに、本発明の範囲外の比較例21において添加する微粒の添加量が多い場合には燃料利用率が低下し、比較例22において添加する微粒の添加量が少ない場合では熱サイクル時のリーク率の増加が認められた。
【0084】
<実施例57〜59>
図1に示す本発明に係る多孔質管からなる基体管(基材部)1の複合材料の配合を「表6」に示す。
本実施例では、添加微粒としてNiOを用い、添加粗粒としてカルシア安定化ジルコニア(CSZ)を用いたものである。
【0085】
この基体管1の表面に100μm のNi−ジルコニアサーメットからなる燃料極側電極2、100μmのYSZからなる電解質3、1000μm のSrを0.1ドープしたLaMnOからなる空気側電極を積層し、さらに燃料極側電極と空気側電極を接続するための導電性接続材LaCrOを積層し電池とした。 この電池を急速昇降温を繰り回した後、そのリーク率の変化を比較した。
また、気孔率及びセル発電効率も測定した。
【0086】
【表6】
Figure 0003631923
【0087】
また、「表6」より、実施例57から59の基体管も昇降温を繰り返してもリーク率の増加は認められなかった。
また、燃料利用率も80%以上であり良好と言える。
さらに、セル強度も3kg/mm以上を示し良好と考えられる。
【0088】
【発明の効果】
以上、説明したように本発明の[請求項1]の発明よれば、平均粒径が0.5〜2μmの燃料電池の基体管原料に、粒径が5μm以上10μm未満の粗粒を添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くするので、ガス透過性能が向上し、セル発電効率の向上を図ることができる。また、気孔率の向上を図ることができる。
【0090】
[請求項2]の発明によれば、平均粒径が0.5〜2μmの燃料電池の基体管原料に、粒径が5μm以上10μm未満の粗粒を10〜40重量%添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くするので、ガス透過性能が向上し、セル発電効率の向上を図ることができる。また、気孔率の向上を図ることができる。
【0091】
[請求項3]の発明によれば、請求項1又は2において、上記基体管原料がカルシア安定化ジルコニア(CSZ)であるので、特に、気孔率が20%と従来の15%よりも向上が図られ、セル発電効率の向上を図ることができる。
【0092】
[請求項4]の発明によれば、燃料電池の基体管原料が微粒のカルシア安定化ジルコニア(CSZ)であり、該基体管原料と同一粒径のNiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる添加微粒を混合し、焼結時に収縮を不均一化し、気孔率を高くするので、セル発電効率の向上を図ることができる。
【0093】
[請求項5]の発明によれば、請求項4において、上記基体管原料の平均粒径が0.5〜2μmであるので、セル発電効率の向上を図ることができる。
【0094】
[請求項6]の発明によれば、請求項4又は5において、上記添加微粒が10〜40重量%配合してなるので、セル発電効率の向上を図ることができる。
【0095】
[請求項7]の発明によれば、燃料電池の基体管原料が平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)であり、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる5μm以上の添加粗粒を添加・混合し、焼結時に収縮を不均一化し、気孔率を高くするので、セル発電効率の向上を図ることができる。
【0096】
[請求項8]の発明によれば、請求項7において、上記粗粒が10〜30重量%配合してなるので、セル発電効率の向上を図ることができる。
【0097】
[請求項9]の発明によれば、燃料電池の基体管原料が平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)であり、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる0.5μm〜3μmの添加微粒と、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる5μm以上の添加粗粒とを添加・混合し、焼結時に収縮を不均一化し、気孔率を高くするので、セル発電効率の向上を図ることができる。
【0098】
[請求項10]の発明によれば、請求項9において、上記添加微粒が5〜30重量%、上記添加粗粒が5〜30重量%配合してなるので、セル発電効率の向上を図ることができる。
【0099】
[請求項11]の発明によれば、表面に燃料極側電極、電解質膜、酸化剤側電極を順次積層してなる固体電解質燃料電池用基体管の材料であって、
基体管原料が平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)であり、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる5μm以上の添加粗粒を添加・混合してなるので、セル発電効率の向上を図ることができる。
【0100】
[請求項12]の発明によれば、請求項11において、上記粗粒が10〜30重量%配合してなるので、セル発電効率の向上を図ることができる。
【0101】
[請求項13]の発明によれば、表面に燃料極側電極、電解質膜、酸化剤側電極を順次積層してなる固体電解質燃料電池用基体管の材料であって、
平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)に対して、
添加微粒として平均粒径0.5から3μmのNiO,CoO,Fe23の1種類もしくは2種類以上の金属酸化物を5重量%から30重量%と、
添加粗粒として平均粒径5μm以上のNiO,CoO,Fe23,CaO安定化ZrO2のいずれか1種若しくは2種以上の金属酸化物を5重量%から30重量%とを添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くするので、セル発電効率の向上を図ることができる。
【0102】
[請求項14]の発明によれば、表面に燃料極側電極、電解質膜、酸化剤側電極を順次積層してなる固体電解質燃料電池用基体管の材料であって、
平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)に対して、
平均粒径0.5μm以上のCaTiO3,SrTiO3,BaTiO3,CaO安定化ZrO2のいずれか1種若しくは2種以上の金属酸化物を5重量%から30重量%と、
平均粒径5μm以上のNiO,CoO,Fe23のいずれか1種若しくは2種以上の金属酸化物を5重量%から30重量%とを添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くするするので、セル発電効率の向上を図ることができる。
【図面の簡単な説明】
【図1】溶射型の固体電解質型燃料電池の基体管の概略図である。
【符号の説明】
1 基体管
2 燃料極側電極
3 電解質
4 空気側電極
5 導電性接続材(インタコネクタ)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a base tube of a fuel cell and a material thereof that improve the porosity and pore diameter of the base tube and improve the power generation characteristics of the fuel cell.
[0002]
[Prior art]
FIG. 1 shows an outline of a base tube of a thermal spray type solid oxide fuel cell.
As shown in FIG. 1, a thermal spray type solid oxide fuel cell (SOFC) includes a base tube 1 of a calcia-stabilized zirconia (CSZ) porous cylindrical tube, Ni and yttria-stabilized zirconia (as a fuel electrode side electrode 2). YSZ) is formed by plasma spraying. Next, an oxygen ion conductive YSZ film is formed thereon as an electrolyte 3 by plasma spraying. Thereafter, LaCoO is formed thereon as the air side electrode 43A fuel cell is formed by forming a film with acetylene flame spraying. Finally, the fuel electrode side electrode 2 and the air side electrode 4 are connected in series by a conductive connecting material (interconnector) 5 formed of NiAl and alumina cermet.
[0003]
[Problems to be solved by the invention]
However, the production of a fuel cell by the conventional thermal spraying method is time-consuming and expensive, and a reduction in cost is desired.
[0004]
For this reason, co-sintered fuel cells that sinter the base tube, fuel electrode, and electrolyte together have been developed, but the gas permeability of the base tube is sufficient for power generation characteristics. There is a problem that it is not.
[0005]
Further, as a problem of the substrate tube of the prior art, there is a point that it deteriorates remarkably at a fast heating / cooling rate during a thermal cycle.
[0006]
In other words, in the case of a temperature increase / decrease rate of 50 ° C./hour or less, no change in performance is observed before and after the thermal cycle, but at a temperature increase / decrease rate of 50 ° C./hour or more, an output decrease of about 10% occurs per thermal cycle. There is a case.
[0007]
This is because, when the fuel cells are assembled and used, if the heating / cooling rate is not very slow, a part of the fuel cell assembly has a heating / cooling rate of 50 ° C./hour or more, which damages the cell. There is a risk.
[0008]
Therefore, a cell that is not damaged even at a high temperature rising / falling speed of about 200 ° C./hour is desired.
[0009]
Furthermore, improvement of the fuel utilization rate is given as a problem of the base tube.
The fuel utilization rate of the substrate tube of the prior art is about 70% of the injected fuel, but if the fuel utilization rate can be improved, the efficiency of the fuel cell can be improved.
[0010]
In view of the above problems, the present invention improves the power generation characteristics of the fuel cell by improving the porosity and the pore diameter of the base tube in the production of the base-sintered fuel cell, and damages even at a high temperature rise / fall rate. In addition, an object of the present invention is to provide a fuel cell base tube and a material thereof having a higher fuel utilization rate.
[0011]
[Means for Solving the Problems]
The invention of [Claim 1] of the present invention for solving the above-mentioned problems is
The average particle size is 0.5-2 μmAs a raw material for fuel cell base tubeThe particle size is 5 μm or more and less than 10 μmCoarse grains are added and mixed, the shrinkage is made nonuniform during sintering, and the porosity of the base tube is increased.
[0013]
[Claim 2]The invention of
The average particle size is 0.5-2 μmAs a raw material for fuel cell base tubeThe particle size is 5 μm or more and less than 10 μmCoarse grains are added and mixed in an amount of 10 to 40% by weight to make the shrinkage nonuniform during sintering and to increase the porosity of the base tube.
[0014]
[Claim 3]The invention of
Claim 1 or 2The base tube material is calcia-stabilized zirconia (CSZ).
[0015]
[Claim 4]The invention of
The base material of the fuel cell is a fine calcia-stabilized zirconia (CSZ), and NiO, CoO, FeO, Fe having the same particle size as the base material2OThree,CaTiO Three , SrTiO Three , BaTiO Three Any one or more ofMetal oxideIt is characterized in that the additive fine particles selected are mixed to make the shrinkage nonuniform during sintering and to increase the porosity.
[0016]
[Claim 5]The invention of
5. The substrate tube raw material according to claim 4, wherein an average particle diameter of the base tube raw material is 0.5 to 2 [mu] m.
[0017]
[Claim 6]The invention of
Claim 4 or 5In addition, the said addition fine particle is mix | blended 10 to 40weight%, It is characterized by the above-mentioned.
[0018]
[Claim 7]The invention of
The base material of the fuel cell is calcia-stabilized zirconia (CSZ) having an average particle size of 0.5 to 2 μm, NiO, CoO, FeO, Fe2OThree,CaTiO Three , SrTiO Three , BaTiO Three Any one or more ofMetal oxideAdditive coarse particles of 5 μm or more selected from above are added and mixed to make the shrinkage nonuniform during sintering and to increase the porosity.
[0019]
[Claim 8]The invention of
Claim 7In the above coarse grains10-30% by weightIt is characterized by blending.
[0020]
[Claim 9]The invention of
The base material of the fuel cell is calcia-stabilized zirconia (CSZ) having an average particle size of 0.5 to 2 μm, NiO, CoO, FeO, Fe2OThree,CaTiO Three , SrTiO Three , BaTiO Three Any one or more ofMetal oxide0.5 μm to 3 μm added fine particles selected from NiO, CoO, FeO, Fe2OThree,CaTiO Three , SrTiO Three , BaTiO Three Any one or more ofMetal oxideAdditive coarse particles of 5 μm or more selected from above are added and mixed to make the shrinkage nonuniform during sintering and increase the porosity.
[0021]
[Claim 10]The invention of
Claim 9In which 5 to 30% by weight of the added fine particles and 5 to 30% by weight of the added coarse particles are blended.
[0022]
[Claim 11]The invention of
A material for a base tube for a solid electrolyte fuel cell in which a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode are sequentially laminated on the surface,
The base tube material is calcia-stabilized zirconia (CSZ) having an average particle size of 0.5 to 2 μm, and NiO, CoO, FeO, Fe2OThree,CaTiO Three , SrTiO Three , BaTiO Three Any one or more ofMetal oxideIt is characterized by being added and mixed with added coarse particles of 5 μm or more selected from above.
[0023]
[Claim 12]The invention of
Claim 11In the above coarse grains10-30% by weightIt is characterized by blending.
[0024]
[Claim 13]The invention of
A material for a base tube for a solid electrolyte fuel cell in which a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode are sequentially laminated on the surface,
For calcia-stabilized zirconia (CSZ) with an average particle size of 0.5-2 μm,
NiO, CoO, Fe having an average particle size of 0.5 to 3 μm as added fine particles2OThreeOne or more ofMetal oxideFrom 5% to 30% by weight,
NiO, CoO, Fe with an average particle size of 5 μm or more as added coarse particles2OThree, CaO stabilized ZrO2Any one or more ofMetal oxide5% to 30% by weight is added and mixed to make the shrinkage nonuniform during sintering and to increase the porosity of the base tube.
[0025]
[Claim 14]The invention of
A material for a base tube for a solid electrolyte fuel cell in which a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode are sequentially laminated on the surface,
For calcia-stabilized zirconia (CSZ) with an average particle size of 0.5-2 μm,
CaTiO with an average particle size of 0.5 μm or moreThree, SrTiOThree, BaTiOThree, CaO stabilized ZrO2Any one or more ofMetal oxideFrom 5% to 30% by weight,
NiO, CoO, Fe with average particle size of 5μm or more2OThreeAny one or more ofMetal oxide5% to 30% by weight is added and mixed to make the shrinkage nonuniform during sintering and to increase the porosity of the base tube.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, although embodiment of this invention is described, this invention is not limited to this.
[0027]
(1) The composite material for a base tube of the present invention is obtained by adding and mixing coarse particles to a base tube raw material, making the shrinkage nonuniform during sintering and increasing the porosity.
As a result, according to the present invention, the gas permeability is improved by making the shrinkage uniform during sintering and increasing the porosity.
To do.
According to the present invention, the porosity of the base tube can be increased, and the average pore diameter of the base tube can be increased. As a result, the gas permeability can be improved.
[0028]
Here, the base tube material of the present invention is fine calcia-stabilized zirconia (CSZ) having an average particle diameter of about 0.5 to 2 μm, and coarse grains having a calcia stability of about 5 μm or more, particularly preferably about 10 μm. Zirconia fluoride (CSZ) is preferably mixed.
[0029]
The raw material of the base tube of the present invention is not particularly limited, but instead of the calcia-stabilized zirconia (CSZ), for example, MgO-MgAl2O4, CaTiO3-MgAl2O4, MgTiO3-MgAl2O4, BaTiO3-MgAl2O4Etc.
[0030]
The upper limit of the particle size is not particularly limited as long as the coarse particles to be added are 5 μm or more, but the effect can be exhibited even in the case of about 500 μm.
[0031]
The blending of the coarse particles is not particularly limited, but is preferably 10 to 40% by weight.
This is because when the amount is less than 10% by weight, the porosity is hardly improved, and when the amount exceeds 40% by weight, further improvement cannot be achieved.
[0032]
In addition, the sintering temperature during the production of the base tube of the present invention is preferably about 1300 ° C to 1500 ° C.
This is not preferable when the sintering temperature is less than 1300 ° C., since the densification of the electrolyte and the interconnector becomes insufficient. On the other hand, sintering exceeding 1500 ° C. is preferable because the densification of the fuel electrode proceeds. Because there is no.
[0033]
(2) In the base material of the present invention, by adding a metal oxide to the above-mentioned calcia-stabilized zirconia (CSZ) which is a raw material of the base tube, the metal oxide is reduced and contracted during power generation, and pores are newly formed. It is generated and the pore diameter is increased to improve the gas permeability.
As a result, according to the present invention, the porosity can be increased, the average pore diameter can be increased, and the gas permeability can be improved.
[0034]
Here, the metal oxide to be added is NiO, CoO, FeO, Fe2O3These additive fine particles are selected from one or more of these, and by adding this metal oxide, shrinkage can be made nonuniform during sintering and the porosity can be increased.
[0035]
In addition, when the particle size of the metal oxide is not the same as that of the raw material and is mixed with a material of 5 μm or more, particularly preferably about 20 μm, the shrinkage action reduced during power generation with the addition of the metal oxide and the added metal oxidation Due to the synergistic effect with the shrinkage action during sintering by increasing the particle size of the product, the porosity and the pore diameter can be improved.
[0036]
The blending of the metal oxide is not particularly limited, but is suitably 5 to 40% by weight, preferably 10 to 30% by weight.
This is because when the amount is less than 5% by weight, the porosity is hardly improved, and when the amount exceeds 40% by weight, further improvement cannot be achieved.
[0037]
Moreover, by adding a predetermined amount of fine and coarse metal oxides to be added, the porosity is improved, the cell power generation efficiency is improved, the leak increase rate during thermal cycling is suppressed, and the fuel utilization rate is increased. Improvements can be made.
[0038]
That is, the base tube material of the present invention is the CaO-stabilized ZrO of the base tube raw material.2In contrast, NiO, CoO, Fe having an average particle size of 0.5 to 3 μm as added fine particles2O3NiO, CoO, Fe having an average particle size of 5 μm or more as an additive coarse particle, with one or more of these being 5 wt% to 30 wt%2O3, CaO stabilized ZrO2Any one or two or more of these are added to 5 to 30% by weight.
[0039]
Further, the base tube material of the present invention is a CaO-stabilized ZrO of the base tube raw material.2In contrast, CaTiO having an average particle size of 0.5 μm or more3, SrTiO3, BaTiO3Titania complex oxide such as CaO stabilized ZrO2Any one or two or more of NiO, CoO, Fe having an average particle diameter of 5 μm or more and 5 to 30% by weight2O3Any one or two or more of these are added to 5 to 30% by weight.
[0040]
Here, the particle size of the metal oxide added is NiO, CoO, FeO, Fe.2OThreeIn such a case, the upper limit is about 200 μm. Also,CaTiO Three , SrTiO Three , BaTiO Three In this case, the upper limit is about 500 to 700 μm. This is because NiO, CoO, FeO, Fe during power generation of the fuel cell2OThreeIn the case of a particle size of 200 μm or more, heat shrinkage occurs even in a reducing atmosphere during power generation, and the strength is weakened.CaTiO Three In the case of a titania-based complex oxide such as the above, heat shrinkage does not occur even in a reducing atmosphere at the time of power generation, so that the thermal expansion matches with the electrolyte membrane and the strength is not weakened. . As a result, it is possible to suppress an increase in the leak rate during the heat cycle. In the present invention, instead of the titania-based composite oxide, for example, Cr2OThreeChronic complex oxides such as chromium-based LaCrOThreeExamples thereof include lanthanum-based composite compounds.
[0041]
【Example】
Test examples and examples showing the effects of the present invention will be described below, but the present invention is not limited thereto.
[0042]
[Test Example 1]
80 wt% of CSZ raw material having an average particle diameter of 1 μm and 20 wt% of 10 μm coarse CSZ grains were mixed and sintered at 1350 ° C.
[0043]
[Test Example 2]
80 wt% of the CSZ raw material having an average particle diameter of 1 μm and 20 wt% of the 1 μm NiO raw material were mixed and sintered at 1350 ° C.
[0044]
[Test Example 3]
80 wt% of the CSZ raw material having an average particle diameter of 1 μm and 20 wt% of the 20 μm NiO raw material were mixed and sintered at 1350 ° C.
[0045]
[Reference Example 1]
As a reference example, sintering was similarly performed using only a CSZ raw material having an average particle diameter of 1 μm.
[0046]
The results of porosity, pore diameter, and cell power generation efficiency of these sintered products are shown in “Table 1” below.
[0047]
[Table 1]
Figure 0003631923
[0048]
As shown in “Table 1”, it has been found that the substrate pipe according to this test example has an improved porosity and improved cell power generation efficiency as compared with the reference example.
In addition, as shown in Test Example 3, when a metal material was added and the particle size was further increased, it was found that the cell power generation efficiency was further improved by these synergistic effects.
[0049]
<Examples 1-19, Comparative Examples 1-7, Examples 20-27, and Comparative Examples 8-11>
The composition of the composite material of the base tube (base material portion) 1 made of the porous tube according to the present invention shown in FIG. 1 is shown in “Table 2” and “Table 3”.
[0050]
On the surface of the substrate tube 1, a fuel electrode side electrode 2 made of 100 μm Ni-zirconia cermet, an electrolyte 3 made of 100 μm YSZ, and LaMnO doped with 0.1 μm of 1000 μm Sr.3A conductive connecting material LaCrO for laminating air-side electrodes made of, and further connecting the fuel electrode-side electrode and the air-side electrode3Were stacked to obtain a battery.
[0051]
After rapidly raising and lowering the temperature of this battery, the change in the leak rate was compared.
The porosity and cell power generation efficiency were also measured.
As a result, the rate of increase in leak could be suppressed by blending the examples shown in “Table 2” and “Table 3”.
The fuel utilization rate was also improved.
[0052]
In this example, the materials shown in “Table 2” and “Table 3” were prepared as ceramic raw materials for the base tube 1.
[0053]
The base tube 1 is made by an extrusion molding method, and methylcellulose, glycerin, water, and a stearic acid emulsion as a lubricant are used as extrusion molding aids. Each auxiliary agent is 4 parts by weight, 5 parts by weight, 10 parts by weight, and 0.2 parts by weight with respect to 100 parts by weight of the ceramic raw material.
The stearic acid emulsion had a solid content of 15% by weight and the dispersion medium was water.
[0054]
The manufacture of the base tube according to this example is described below.
First, the ceramic raw material and methylcellulose are weighed in an arbitrary ratio, put in a high speed mixer, and mixed for 3 minutes.
Next, weigh water, glycerin and stearic acid emulsion and mix for 1 minute after addition.
Next, the main kneading is performed using a biaxial kneader, and it is formed into a cylindrical shape using an extruder.
After molding, it was dried at 60 ° C. for 24 hours, applied with an electrode material, and then heat-treated at 1400 ° C. for 2 hours to form a fuel cell.
[0055]
With respect to these obtained cells, the power generation temperature and the room temperature were raised and lowered 5 times at a rate of temperature increase of 200 ° C./hour, and the change in cell performance was determined.
[0056]
The results of the examples of the present invention are shown in “Table 2” and “Table 3”.
In order to clarify the effects of the present invention, comparative examples that are outside the scope of the present invention are also shown.
[0057]
[Table 2]
Figure 0003631923
[0058]
[Table 3]
Figure 0003631923
[0059]
From “Table 2”, in Examples 1 to 19 that are within the component range of the present invention, no increase in leak rate was observed even when the temperature was raised and lowered repeatedly.
In addition, the fuel utilization rate is 80% or more, which is favorable.
Furthermore, the cell strength is also 3 kg / mm.2The above was good.
[0060]
Here, it is considered that the role of NiO having an average particle size of 0.5 to 3 μm contributes to suppressing an increase in the leak rate during the thermal cycle.
In Comparative Example 7, when the amount of NiO having an average particle size of 0.5 to 3 μm was small, an increase in the leak rate during thermal cycling was shown.
This is considered to mean that the coefficient of thermal expansion of the base tube is increased, and the same effect is obtained with CoO, Fe.2O3Etc. can also be predicted.
[0061]
In addition, NiO having an average particle size of 0.5 to 3 μm also has the effect of densifying the base tube, and in the case of a comparative example outside the component range of the invention, it led to a decrease in fuel utilization. This is demonstrated by the results of Comparative Example 1 and Comparative Example 6.
[0062]
The role of NiO having an average particle size of 5 μm to 200 μm is considered to contribute to the improvement of the fuel utilization rate. This is also clear from the fact that the fuel utilization rate is lowered when the amount of NiO 2 having an average particle size of 5 μm to 200 μm is small as shown in Comparative Example 5.
[0063]
Further, NiO having an average particle size of 5 μm to 200 μm has an effect of improving the strength of the cell, and if it falls outside the component range of the invention, it leads to a decrease in strength.
Comparative Examples 2-3 demonstrate this.
[0064]
Further, from “Table 3”, in Examples 20 to 27, NiO, CoO, Fe having an average particle diameter of 0.5 to 3 μm.2O3NiO, CoO, Fe having 5 to 30% by weight and an average particle size of 5 to 200 μm.2O3The same effect was confirmed when using a base tube to which 5% to 30% by weight of one or more of these were added.
In addition, a decrease in cell strength was observed outside the range of the average particle size of the coarse particles added in Comparative Example 8 outside the range of the present invention, and the fuel utilization rate was outside the range of the amount of coarse particles added in Comparative Example 9. Decrease is observed.
[0065]
Further, when the amount of fine particles added in Comparative Example 10 outside the scope of the present invention is large, the fuel utilization rate decreases, and when the amount of fine particles added in Comparative Example 11 is small, the leak rate during thermal cycling is reduced. Increased.
[0066]
<Examples 28 to 48, Comparative Examples 12 to 18, Examples 49 to 56, and Comparative Examples 19 to 22>
The composition of the composite material of the base tube (base material portion) 1 made of the porous tube according to the present invention shown in FIG. 1 is shown in “Table 4” and “Table 5”.
[0067]
On the surface of the substrate tube 1, a fuel electrode side electrode 2 made of 100 μm Ni-zirconia cermet, an electrolyte 3 made of 100 μm YSZ, and LaMnO doped with 0.1 μm of 1000 μm Sr.3A conductive connecting material LaCrO for laminating air-side electrodes made of, and further connecting the fuel electrode-side electrode and the air-side electrode3Were stacked to obtain a battery. After rapidly raising and lowering the temperature of this battery, the change in the leak rate was compared.
The porosity and cell power generation efficiency were also measured.
[0068]
As a result, the rate of increase in leak could be suppressed by blending the examples shown in “Table 4” and “Table 5”. The fuel utilization rate was also improved.
[0069]
In this example, the materials shown in “Table 4” and “Table 5” were prepared as ceramic raw materials for the base tube 1.
[0070]
The base tube 1 is made by an extrusion molding method, and methylcellulose, glycerin, water, and a stearic acid emulsion as a lubricant are used as an auxiliary for extrusion molding. Each auxiliary agent is 4 parts by weight, 5 parts by weight, 10 parts by weight, and 0.2 parts by weight with respect to 100 parts by weight of the ceramic raw material.
[0071]
The stearic acid emulsion has a solid concentration of 15% by weight and the dispersion medium is water.
[0072]
The manufacture of the base tube according to this example is described below.
First, weigh ceramic raw material and methylcellulose in an arbitrary ratio, put them in a high speed mixer and mix for 3 minutes.
Next, water, glycerin and stearic acid emulsion are weighed and mixed for 1 minute after addition.
Next, the main kneading is performed using a biaxial kneader, and it is formed into a cylindrical shape using an extruder.
After molding, it was dried at 60 ° C. for 24 hours, applied with an electrode material, and then heat-treated at 1400 ° C. for 2 hours to form a fuel cell.
[0073]
For these cells, the power generation temperature and the temperature increase / decrease temperature were increased five times at a rate of temperature increase of 200 ° C./hour to investigate changes in cell performance.
Examples of the present invention are shown in “Table 4” and “Table 5”. In order to clarify the effects of the present invention, comparative examples outside the present invention are also shown.
[0074]
[Table 4]
Figure 0003631923
[0075]
[Table 5]
Figure 0003631923
[0076]
From “Table 4”, in Examples 28 to 48, which are within the component range of the present invention, no increase in leak rate was observed even when the temperature was raised and lowered repeatedly.
Also, the fuel utilization rate is 80% or more, which is good.
Furthermore, the cell strength is also 3 kg / mm.2These are considered good.
[0077]
Here, CaTiO having an average particle size of 0.5 to 200 μm3It is considered that this contributes to suppressing an increase in the leak rate during the heat cycle. In Comparative Example 18, the CaTiO 3 having an average particle diameter of 0.5 to 200 μm.3It is also clear from the fact that when the amount of is small, an increase in the leak rate during thermal cycling was observed.
This is considered to mean that the thermal expansion coefficient of the base tube is increased, and the same effect is obtained by SrTiO.3, BaTiO3, CaO, MgO, etc. can also be predicted.
[0078]
In addition, CaTiO having an average particle size of 0.5 to 200 μm3Has the effect of densifying the base tube, and if it goes out of the component range of the invention, it leads to a decrease in fuel utilization. Comparative examples 12 and 17 demonstrate this.
[0079]
Here, the role of NiO having an average particle size of 5 μm to 200 μm is considered to contribute to the improvement of the fuel utilization rate. When the amount of NiO having an average particle size of 5 μm to 200 μm is small in Comparative Example 16, the fuel utilization rate is It is also clear from the decline.
[0080]
Further, NiO having an average particle size of 5 μm to 200 μm has an effect of improving the strength of the cell, and when it is out of the component range of the invention, the strength is reduced. Comparative Examples 13-15 demonstrate this.
Similar effects can be obtained from CoO and Fe.2O3Etc. can also be predicted.
[0081]
Further, as shown in Examples 44 and 45, CaTiO having an average particle diameter of 300 μm and 500 μm.3Even in this case, both improvement in porosity and cell strength were preferable.
[0082]
Further, from “Table 5”, in Examples 49 to 56, CaTiO having an average particle diameter of 0.5 to 200 μm.3, SrTiO3, BaTiO3NiO, CoO, Fe with 5% to 30% by weight and average particle size of 5μm to 200μm2O3The same effect was confirmed when using a base tube to which 5% to 30% by weight of one or more of these were added.
[0083]
In addition, a decrease in cell strength was observed outside the range of the average particle size of the coarse particles added in Comparative Example 19 outside the scope of the present invention, and the fuel utilization rate was outside the range of the amount of coarse particles added in Comparative Example 20. Decrease was observed.
Further, when the amount of fine particles added in Comparative Example 21 outside the scope of the present invention is large, the fuel utilization rate decreases, and when the amount of fine particles added in Comparative Example 22 is small, the leak rate during thermal cycling is reduced. Increased.
[0084]
<Examples 57 to 59>
The composition of the composite material of the base tube (base material portion) 1 made of the porous tube according to the present invention shown in FIG. 1 is shown in “Table 6”.
In this example, NiO is used as the added fine particles, and calcia-stabilized zirconia (CSZ) is used as the added coarse particles.
[0085]
On the surface of the substrate tube 1, a fuel electrode side electrode 2 made of 100 μm Ni-zirconia cermet, an electrolyte 3 made of 100 μm YSZ, and LaMnO doped with 0.1 μm of 1000 μm Sr.3A conductive connecting material LaCrO for laminating air-side electrodes made of, and further connecting the fuel electrode-side electrode and the air-side electrode3Were stacked to obtain a battery. After rapidly raising and lowering the temperature of this battery, the change in the leak rate was compared.
The porosity and cell power generation efficiency were also measured.
[0086]
[Table 6]
Figure 0003631923
[0087]
Further, from Table 6, no increase in the leak rate was observed even when the substrate tubes of Examples 57 to 59 were repeatedly raised and lowered.
Also, the fuel utilization rate is 80% or more, which is good.
Furthermore, the cell strength is also 3 kg / mm.2These are considered good.
[0088]
【The invention's effect】
As described above, according to the invention of [Claim 1] of the present invention,The average particle size is 0.5-2 μmAs a raw material for fuel cell base tubeThe particle size is 5 μm or more and less than 10 μmCoarse grains are added and mixed to make the shrinkage nonuniform during sintering and increase the porosity of the base tube, thereby improving gas permeation performance and improving cell power generation efficiency.In addition, the porosity can be improved.
[0090]
[Claim 2]According to the invention ofThe average particle size is 0.5-2 μmAs a raw material for fuel cell base tubeThe particle size is 5 μm or more and less than 10 μmSince coarse particles are added and mixed in an amount of 10 to 40% by weight, the shrinkage is made nonuniform during sintering and the porosity of the base tube is increased, so that the gas permeation performance is improved and the cell power generation efficiency can be improved.Also,The porosity can be improved.
[0091]
[Claim 3]According to the invention ofClaim 1 or 2In this case, since the base tube raw material is calcia-stabilized zirconia (CSZ), the porosity is 20%, which is higher than the conventional 15%, and the cell power generation efficiency can be improved.
[0092]
[Claim 4]According to the invention, the base material of the fuel cell is fine calcia-stabilized zirconia (CSZ), and NiO, CoO, FeO, Fe having the same particle size as the base material.2OThree,CaTiO Three , SrTiO Three , BaTiO Three Any one or more ofMetal oxideThe additive fine particles selected are mixed, the shrinkage is made nonuniform during sintering, and the porosity is increased, so that the cell power generation efficiency can be improved.
[0093]
[Claim 5]According to the invention ofClaim 4In the above, since the average particle diameter of the base tube raw material is 0.5 to 2 μm, the cell power generation efficiency can be improved.
[0094]
[Claim 6]According to the invention ofClaim 4 or 5In addition, since the said addition fine particle mix | blends 10 to 40 weight%, improvement in cell power generation efficiency can be aimed at.
[0095]
[Claim 7]According to the invention, the raw material for the tube of the fuel cell is calcia-stabilized zirconia (CSZ) having an average particle size of 0.5 to 2 μm, and NiO, CoO, FeO, Fe2OThree,CaTiO Three , SrTiO Three , BaTiO Three Any one or more ofMetal oxideThe added coarse particles of 5 μm or more selected from the above are added and mixed to make the shrinkage nonuniform during sintering and increase the porosity, so that the cell power generation efficiency can be improved.
[0096]
[Claim 8]According to the invention ofClaim 7In the above coarse grains10-30% by weightSince it mix | blends, the improvement of cell power generation efficiency can be aimed at.
[0097]
[Claim 9]According to the invention, the raw material for the tube of the fuel cell is calcia-stabilized zirconia (CSZ) having an average particle size of 0.5 to 2 μm, and NiO, CoO, FeO, Fe2OThree,CaTiO Three , SrTiO Three , BaTiO Three Any one or more ofMetal oxide0.5 μm to 3 μm added fine particles selected from NiO, CoO, FeO, Fe2OThree,CaTiO Three , SrTiO Three , BaTiO Three Any one or more ofMetal oxideThe added coarse particles of 5 μm or more selected from the above are added and mixed to make the shrinkage nonuniform during sintering and increase the porosity, so that the cell power generation efficiency can be improved.
[0098]
[Claim 10]According to the invention ofClaim 9, The added fine particles are blended in an amount of 5 to 30% by weight, and the added coarse particles are blended in an amount of 5 to 30% by weight, so that the cell power generation efficiency can be improved.
[0099]
[Claim 11]According to the invention, a material for a base tube for a solid electrolyte fuel cell in which a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode are sequentially laminated on the surface,
The base tube material is calcia-stabilized zirconia (CSZ) having an average particle size of 0.5 to 2 μm, and NiO, CoO, FeO, Fe2OThree,CaTiO Three , SrTiO Three , BaTiO Three Any one or more ofMetal oxideSince the added coarse particles of 5 μm or more which are more selected are added and mixed, the cell power generation efficiency can be improved.
[0100]
[Claim 12]According to the invention ofClaim 11In the above coarse grains10-30% by weightSince it mix | blends, the improvement of cell power generation efficiency can be aimed at.
[0101]
[Claim 13]According to the invention, a material for a base tube for a solid electrolyte fuel cell in which a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode are sequentially laminated on the surface,
For calcia-stabilized zirconia (CSZ) with an average particle size of 0.5-2 μm,
NiO, CoO, Fe having an average particle size of 0.5 to 3 μm as added fine particles2OThreeOne or more ofMetal oxideFrom 5% to 30% by weight,
NiO, CoO, Fe with an average particle size of 5 μm or more as added coarse particles2OThree, CaO stabilized ZrO2Any one or more ofMetal oxide5% to 30% by weight is added and mixed to make the shrinkage nonuniform during sintering and increase the porosity of the base tube, so that the cell power generation efficiency can be improved.
[0102]
[Claim 14]According to the invention, a material for a base tube for a solid electrolyte fuel cell in which a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode are sequentially laminated on the surface,
For calcia-stabilized zirconia (CSZ) with an average particle size of 0.5-2 μm,
CaTiO with an average particle size of 0.5 μm or moreThree, SrTiOThree, BaTiOThree, CaO stabilized ZrO2Any one or more ofMetal oxideFrom 5% to 30% by weight,
NiO, CoO, Fe with average particle size of 5μm or more2OThreeAny one or more ofMetal oxideIs added and mixed in an amount of 5 to 30% by weight to make the shrinkage nonuniform during sintering and increase the porosity of the base tube, thereby improving the cell power generation efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic view of a base tube of a thermal spray type solid oxide fuel cell.
[Explanation of symbols]
1 Base tube
2 Fuel electrode side electrode
3 electrolyte
4 Air side electrode
5 Conductive connection material (interconnector)

Claims (14)

平均粒径が0.5〜2μmの燃料電池の基体管原料に、粒径が5μm以上10μm未満の粗粒を添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くすることを特徴とする燃料電池用基体管。Coarse particles with a particle size of 5 μm or more and less than 10 μm are added to and mixed with fuel cell substrate tube materials having an average particle size of 0.5 to 2 μm to make the shrinkage nonuniform during sintering and increase the porosity of the substrate tube. A fuel cell base tube. 平均粒径が0.5〜2μmの燃料電池の基体管原料に、粒径が5μm以上10μm未満の粗粒を10〜40重量%添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くすることを特徴とする燃料電池用基体管。10-40% by weight of coarse particles having a particle size of 5 μm or more and less than 10 μm are added to and mixed with a raw material for a fuel cell substrate tube having an average particle size of 0.5 to 2 μm to make the shrinkage nonuniform during sintering. A base tube for a fuel cell, wherein the porosity of the fuel cell is increased. 請求項1又は2において、上記基体管原料がカルシア安定化ジルコニア(CSZ)であることを特徴とする燃料電池用基体管。3. The fuel cell substrate tube according to claim 1, wherein the substrate tube material is calcia stabilized zirconia (CSZ). 燃料電池の基体管原料が微粒のカルシア安定化ジルコニア(CSZ)であり、該基体管原料と同一粒径のNiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる添加微粒を混合し、焼結時に収縮を不均一化し、気孔率を高くすることを特徴とする燃料電池用基体管。The base material of the fuel cell is fine calcia-stabilized zirconia (CSZ), and any one of NiO, CoO, FeO, Fe 2 O 3 , CaTiO 3 , SrTiO 3 , and BaTiO 3 having the same particle size as the base material. A fuel cell substrate tube characterized by mixing additive fine particles selected from one or more metal oxides, making the shrinkage nonuniform during sintering and increasing the porosity. 請求項4において、上記基体管原料の平均粒径が0.5〜2μmであることを特徴とする燃料電池用基体管。5. The fuel cell substrate tube according to claim 4, wherein the substrate tube material has an average particle size of 0.5 to 2 [mu] m. 請求項4又は5において、上記添加微粒が10〜40重量%配合してなることを特徴とする燃料電池用基体管。6. A fuel cell substrate tube according to claim 4, wherein the additive fine particles are blended in an amount of 10 to 40% by weight. 燃料電池の基体管原料が平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)であり、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる5μm以上の添加粗粒を添加・混合し、焼結時に収縮を不均一化し、気孔率を高くすることを特徴とする燃料電池用基体管。The base material of the fuel cell is calcia-stabilized zirconia (CSZ) having an average particle size of 0.5 to 2 μm, and any one of NiO, CoO, FeO, Fe 2 O 3 , CaTiO 3 , SrTiO 3 , and BaTiO 3 A base tube for a fuel cell, wherein added coarse particles of 5 μm or more selected from two or more metal oxides are added and mixed to make the shrinkage nonuniform during sintering and increase the porosity. 請求項7において、上記粗粒が10〜30重量%配合してなることを特徴とする燃料電池用基体管。 8. The fuel cell substrate tube according to claim 7, wherein the coarse particles are blended in an amount of 10 to 30% by weight . 燃料電池の基体管原料が平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)であり、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる0.5μm〜3μmの添加微粒と、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる5μm以上の添加粗粒とを添加・混合し、焼結時に収縮を不均一化し、気孔率を高くすることを特徴とする燃料電池用基体管。The base material of the fuel cell is calcia-stabilized zirconia (CSZ) having an average particle size of 0.5 to 2 μm, and any one of NiO, CoO, FeO, Fe 2 O 3 , CaTiO 3 , SrTiO 3 , and BaTiO 3 and added fine of 0.5μm~3μm comprising selected from two or more metal oxides, NiO, CoO, FeO, Fe 2 O 3, CaTiO 3, SrTiO 3, the BaTiO 3 any one or more of A base tube for a fuel cell, characterized in that additional coarse particles of 5 μm or more selected from metal oxides are added and mixed to make the shrinkage nonuniform during sintering and to increase the porosity. 請求項9において、上記添加微粒が5〜30重量%、上記添加粗粒が5〜30重量%配合してなることを特徴とする燃料電池用基体管。10. The fuel cell substrate tube according to claim 9, wherein 5 to 30% by weight of the added fine particles and 5 to 30% by weight of the added coarse particles are blended. 表面に燃料極側電極、電解質膜、酸化剤側電極を順次積層してなる固体電解質燃料電池用基体管の材料であって、
基体管原料が平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)であり、NiO,CoO,FeO,Fe23CaTiO 3 ,SrTiO 3 ,BaTiO 3 のいずれか一種若しくは2種以上の金属酸化物より選ばれてなる5μm以上の添加粗粒を添加・混合してなることを特徴とする燃料電池用基体管材料。
A material for a base tube for a solid electrolyte fuel cell in which a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode are sequentially laminated on the surface,
The base tube material is calcia-stabilized zirconia (CSZ) having an average particle diameter of 0.5 to 2 μm, and any one or more of NiO, CoO, FeO, Fe 2 O 3 , CaTiO 3 , SrTiO 3 , and BaTiO 3 A base material for a fuel cell, which is obtained by adding and mixing 5 μm or more added coarse particles selected from the above metal oxides .
請求項11において、上記粗粒が10〜30重量%配合してなることを特徴とする燃料電池用基体管材料。 12. The fuel cell substrate tube material according to claim 11, wherein the coarse particles are blended in an amount of 10 to 30% by weight . 表面に燃料極側電極、電解質膜、酸化剤側電極を順次積層してなる固体電解質燃料電池用基体管の材料であって、
平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)に対して、
添加微粒として平均粒径0.5から3μmのNiO,CoO,Fe23の1種類もしくは2種類以上の金属酸化物を5重量%から30重量%と、
添加粗粒として平均粒径5μm以上のNiO,CoO,Fe23,CaO安定化ZrO2のいずれか1種若しくは2種以上の金属酸化物を5重量%から30重量%とを添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くすることを特徴とする基体管材料。
A material for a base tube for a solid electrolyte fuel cell in which a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode are sequentially laminated on the surface,
For calcia-stabilized zirconia (CSZ) with an average particle size of 0.5-2 μm,
5 to 30% by weight of one or more metal oxides of NiO, CoO, Fe 2 O 3 with an average particle diameter of 0.5 to 3 μm as added fine particles,
Addition and mixing of 5 to 30% by weight of one or more metal oxides of NiO, CoO, Fe 2 O 3 and CaO stabilized ZrO 2 with an average particle size of 5 μm or more as added coarse particles And a base tube material characterized in that shrinkage is made nonuniform during sintering and the porosity of the base tube is increased.
表面に燃料極側電極、電解質膜、酸化剤側電極を順次積層してなる固体電解質燃料電池用基体管の材料であって、
平均粒径0.5〜2μmのカルシア安定化ジルコニア(CSZ)に対して、
平均粒径0.5μm以上のCaTiO3,SrTiO3,BaTiO3,CaO安定化ZrO2のいずれか1種若しくは2種以上の金属酸化物を5重量%から30重量%と、
平均粒径5μm以上のNiO,CoO,Fe23のいずれか1種若しくは2種以上の金属酸化物を5重量%から30重量%とを添加・混合し、焼結時に収縮を不均一化し、基体管の気孔率を高くすることを特徴とする基体管材料。
A material for a base tube for a solid electrolyte fuel cell in which a fuel electrode side electrode, an electrolyte membrane, and an oxidant side electrode are sequentially laminated on the surface,
For calcia-stabilized zirconia (CSZ) with an average particle size of 0.5-2 μm,
5 wt% to 30 wt% of one or more metal oxides of CaTiO 3 , SrTiO 3 , BaTiO 3 , CaO stabilized ZrO 2 having an average particle size of 0.5 μm or more,
Add 5% to 30% by weight of any one or more metal oxides of NiO, CoO, and Fe 2 O 3 with an average particle size of 5μm or more to make the shrinkage nonuniform during sintering. A substrate tube material characterized by increasing the porosity of the substrate tube.
JP20427899A 1998-07-27 1999-07-19 Substrate tube for fuel cell and its material Expired - Fee Related JP3631923B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20427899A JP3631923B2 (en) 1998-07-27 1999-07-19 Substrate tube for fuel cell and its material
US09/490,857 US6379832B1 (en) 1999-07-19 2000-01-24 Base tube for fuel cell and material for base tube
EP00101442A EP1071150B1 (en) 1999-07-19 2000-01-25 Base tube for fuel cell and material for base tube
DE60010811T DE60010811T2 (en) 1999-07-19 2000-01-25 Base tube for a fuel cell and material for this base tube

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-210581 1998-07-27
JP21058198 1998-07-27
JP20427899A JP3631923B2 (en) 1998-07-27 1999-07-19 Substrate tube for fuel cell and its material

Publications (2)

Publication Number Publication Date
JP2000106192A JP2000106192A (en) 2000-04-11
JP3631923B2 true JP3631923B2 (en) 2005-03-23

Family

ID=26514386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20427899A Expired - Fee Related JP3631923B2 (en) 1998-07-27 1999-07-19 Substrate tube for fuel cell and its material

Country Status (1)

Country Link
JP (1) JP3631923B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379832B1 (en) * 1999-07-19 2002-04-30 Mitsubishi Heavy Industries, Ltd. Base tube for fuel cell and material for base tube
JP4562951B2 (en) * 2001-06-01 2010-10-13 三菱重工業株式会社 SUBSTRATE TUBE FOR FUEL CELL, SUBSTRATE TUBE MATERIAL FOR FUEL CELL, AND METHOD FOR PRODUCING FUEL CELL CELL
JP5086507B2 (en) * 2001-09-28 2012-11-28 三菱重工業株式会社 Manufacturing method of fuel cell tube and ceramic manufacturing apparatus
DE602004028912D1 (en) * 2003-03-13 2010-10-14 Tokyo Gas Co Ltd SOLID-OXYGEN FUEL CELL MODULE
WO2004088783A1 (en) * 2003-03-31 2004-10-14 Tokyo Gas Company Limited Method for fabricating solid oxide fuel cell module
JP4102877B2 (en) * 2003-08-28 2008-06-18 独立行政法人産業技術総合研究所 Method for producing hybrid molded porous tube
JP4851692B2 (en) * 2004-05-31 2012-01-11 京セラ株式会社 Solid electrolyte fuel cell stack, bundle and fuel cell
JP5118865B2 (en) * 2007-03-15 2013-01-16 京セラ株式会社 Horizontally-striped fuel cell and method for producing the same
JP4093321B2 (en) * 2007-07-20 2008-06-04 独立行政法人産業技術総合研究所 Hybrid porous tube
JP2015008088A (en) * 2013-06-25 2015-01-15 Jx日鉱日石エネルギー株式会社 Anode support for solid oxide fuel cell, anode-support type solid oxide fuel cell, and fuel cell system

Also Published As

Publication number Publication date
JP2000106192A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
KR100344936B1 (en) Tubular Solid Oxide Fuel Cell supported by Fuel Electrode and Method for the same
JP4000128B2 (en) Fuel electrode support type flat tube type solid oxide fuel cell stack and manufacturing method thereof
KR100648144B1 (en) High performance anode supported solid oxide fuel cell
WO2016080019A1 (en) Anode for solid oxide fuel cell and manufacturing method therefor, and manufacturing method for electrolyte layer-electrode assembly for fuel cell
JP6658754B2 (en) Solid oxide fuel cell and method for producing electrolyte layer-anode assembly
JP2008226654A (en) Fuel cell and fuel cell stack, and fuel cell
KR20130123189A (en) Anode support for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell including the anode support
JP5247051B2 (en) Fuel cell and fuel cell stack, and fuel cell
JP3631923B2 (en) Substrate tube for fuel cell and its material
JP2002175814A (en) Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method
JP2001196069A (en) Fuel cell
JP6174608B2 (en) Solid oxide fuel cell and method for producing the same
JPH1021935A (en) Solid electrolyte fuel cell
KR100793155B1 (en) Manufacturing method of unit cell for solid oxide fuel cell
JP7285117B2 (en) Materials for Forming Substrates of Solid Oxide Fuel Cells and Their Applications
JP2003208902A (en) Solid electrolyte-type fuel cell
JP4719940B2 (en) Interconnector material and solid oxide fuel cell having the same
JP2004087353A (en) Substrate tube for solid electrolyte fuel cell
EP1071150B1 (en) Base tube for fuel cell and material for base tube
JP6654765B2 (en) Solid oxide fuel cell stack
JPH08222246A (en) Base body material for solid electrolyte fuel cell
JP2003323903A (en) Zirconia material containing scandia in form of solid solution, and solid electrolyte fuel cell using the same
JP2002050370A (en) Current collector
KR100660218B1 (en) Manufacturing method of anode material for solid oxide fuel cell
JP2008226762A (en) Solid oxide type fuel battery cell and solid oxide type fuel battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

R151 Written notification of patent or utility model registration

Ref document number: 3631923

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees