JP3639457B2 - Method for treating water containing bromate - Google Patents
Method for treating water containing bromate Download PDFInfo
- Publication number
- JP3639457B2 JP3639457B2 JP12922199A JP12922199A JP3639457B2 JP 3639457 B2 JP3639457 B2 JP 3639457B2 JP 12922199 A JP12922199 A JP 12922199A JP 12922199 A JP12922199 A JP 12922199A JP 3639457 B2 JP3639457 B2 JP 3639457B2
- Authority
- JP
- Japan
- Prior art keywords
- bromate
- activated carbon
- water
- ions
- gac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Removal Of Specific Substances (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、臭素酸塩を含有する水、例えば、臭化物イオンを含む水をオゾン処理した処理水や、産業排水等から、臭素酸塩を除去することを目的とした水処理方法に関する。
【0002】
【従来の技術】
臭素酸塩は、発ガン性が確認されており、世界保健機構WHOでは、飲料水中の濃度にガイドライン値として25μg/Lを設定している。また、米国環境保護庁USEPAでは、さらに厳しい10μg/Lが現在検討されている状況にある。
【0003】
オゾン処理において、水中の臭化物イオン(Br- )は、オゾンと反応して、次亜臭素酸イオン(OBr- )を生成する。また、過剰のオゾンで酸化された場合、次亜臭素酸イオンは臭素酸イオン(BrO3 - )になる。
これらの反応は式(1)〜(3)で表される。
【0004】
【数1】
【0005】
【数2】
【0006】
【数3】
過剰のオゾンがない場合には、生成した次亜臭素酸イオンや臭素酸イオンは、有機物やアンモニアと反応する。
【0007】
例えば、自然に由来する有機物と反応してブロモホルム(CH3 Br)などの臭素化トリハロメタンや臭素化アンモニア(NH2 Br)を生成する。また、脱窒反応も生じる。
これらの反応は式(4)〜(6)で表される。
【0008】
【数4】
【0009】
【数5】
【0010】
【数6】
脱窒反応が生じている場合には、次亜臭素酸イオンは臭化物イオンに還元され、これは再び過剰のオゾンと反応して、次亜臭素酸イオンとなり脱窒反応を促進できるので、臭化物イオンは触媒的作用をするものと考えられる。
【0011】
一方、臭素酸イオンは、活性炭によっても還元される。しかし、上水分野におけるオゾンと活性炭を組合せた処理においては、初期には、活性炭により臭素酸イオンが臭化物イオンに還元される反応が見られるが、連続処理を行って活性炭表面に微生物が繁殖した、いわゆる生物活性炭になった状態では、還元作用が大きく低減されるという報告がある。
【0012】
特開平10−28983号公報「アンモニア性窒素含有排水の処理方法」では、アンモニア性窒素含有排水に対して、オゾンと臭化物イオンを添加して処理する方法が述べられている。一方、特開平10−85764号公報「活性炭による臭素酸含有水の処理方法」では、被処理水のpHを5未満に、好ましくは2〜4に制御して被処理水と活性炭を接触させる方法が開示されており、また、特表平10−504999号公報「水から接触的還元により塩素酸塩および臭素酸塩化合物を除去する方法」では、塩素酸塩および臭素酸塩化合物を含む水に対して、水素の存在で担体付き貴金属触媒を用いて処理する方法が提案されている。
【0013】
【発明が解決しようとする課題】
しかしながら、前記の特開平10−28983号公報「アンモニア性窒素含有排水の処理方法」に記載されている臭化物イオンの添加などは、上水分野などでは不可能である。また、特開平10−85764号公報「活性炭による臭素酸含有水の処理方法」を行うためには、水道水質基準や放流基準がpH5.8〜8.6となっているために、処理段階でpHを酸性に下げ、処理後にpHをあげるといった操作が伴うことになり、水中の塩濃度が高くなるばかりでなく、pH調整のため処理のためのコストアップにもつながる。さらに、特表平10−504999号公報「水から接触的還元により塩素酸塩および臭素酸塩化合物を除去する方法」は、還元反応は可能であるが、水道などで適用する場合には、新たな反応槽および装置を付加することが必要となる、などの問題がある。
本発明の目的は、上記のような問題点のない臭素酸塩の処理法を提供することにある。
【0014】
【課題を解決するための手段】
上記の課題を解決するために、被処理水のpH調整や水素注入など処理過程での付帯操作を伴わず、臭素酸塩を含有する被処理水から臭素酸イオンを分解除去する方法として、あらかじめ還元作用を有する鉄や銅などの金属を活性炭表面に吸着させた活性炭を、被処理水と接触させることによって、臭素酸イオンを無害な臭化物イオンに還元することとする。
この方法によると、以下の式(7)〜(10)で示す反応等が生じて臭素酸イオンを還元することができる。
【0015】
【数7】
【0016】
【数8】
【0017】
【数9】
【0018】
【数10】
【0019】
【発明の実施の形態】
まず、本発明を実証するために用いた還元作用を有する活性炭の作成方法の一例を述べる。
粒状活性炭(以下GACと記載する)は、米国カルゴン社製のF−400粒径1.0〜1.4mm(平均1.2mm)を用いた。まず、GACを硝酸第二鉄水溶液に含浸後、デカンテーションし、温度110℃で乾燥させた。その後、活性炭をメタノールガス温度500℃で4時間還元処理を行った。この活性炭を粉砕して、粒径を0.18〜0.30mm(平均0.24mm)にしたものを、還元作用の有る活性炭として、実験に使用した。
また、鉄(Fe)以外の金属として、銅(Cu)、ニッケル(Ni)、コバルト(Co)を活性炭表面に吸着した試料も上記と同様の方法で作製した。また、吸着させた金属の量は、ICP(誘導結合プラズマ)法で測定した。
【0020】
次に、上記の活性炭を使って、臭素酸イオンの処理能を評価した。
活性炭の臭素酸イオンの処理能は、臭素酸イオンの吸着および還元量により評価した。臭素酸イオンの還元量は、吸着実験中に活性炭が放出した臭化物イオン量(活性炭外のもの)と脱着実験により活性炭内から溶離させた臭化物イオン量(活性炭内のもの)より求めた。臭素酸イオンと臭化物イオンは、イオンクロマト分析計により測定した。
【0021】
吸着実験および脱着実験は、以下に述べる方法で行った。
吸着実験は、蒸留水を用いて調製した臭素酸イオン水溶液400μg/L−100mLと活性炭10mgとを、容量200mLの三角フラスコへ添加し、温度20℃、回転数125rpmのミキサーで攪拌した後、臭素酸イオンと臭化物イオンの濃度を測定した。
【0022】
脱着実験は、吸着実験後に、ガラス繊維ろ紙(GF/F)でろ過した活性炭に0.01MのNaOH溶液100mLを加え、軽く攪拌した後、抽出した臭化物イオン濃度を測定した。
【0023】
これらの吸着実験および脱着実験の結果を以下に示す。
図1には、GACと、Feを1.55wt%担持させたGAC(以下Fe−GACと記載する)とについて、臭素酸イオン除去実験の結果を示す。この図より、活性炭にFe を担持させたGAC(Fe−GAC)は、担持させないもの(GAC)に比べて、臭化物イオン濃度が上昇する一方、臭素酸イオン濃度が減少しており、活性炭の吸着能と還元能を向上できることがわかる。
【0024】
図2には、活性炭の内部と外部の臭化物イオン生成量の実験結果を示す。Fe−GACは、GACに比べて、活性炭内部の臭化物イオン濃度が高くなっている。これは、Feが活性炭上で反応基となり、臭素酸イオンの吸着と還元を促進させるためと考えられる。
【0025】
図3には、Feの担持量を0から3.68wt%まで変化させた場合の24時間後の臭素酸イオンと臭化物イオンの吸着率と還元率との関係を示す。この図より、吸着率は担持量にかかわらずほぼ100%であり、また、還元率は担持量の増加と共に増加していることがわかる。
【0026】
図4には、Cu、Ni、Coを別々に活性炭上に担持させた場合の、臭素酸イオンの吸着率と還元率の実験結果を示す。各金属の担持量は、Fe−1.10wt%、Cu−1.22wt%、Ni−1.00wt%、Co−0.88wt%のものである。この図より、Fe に比べて、Cuでは、吸着率と還元率とがほぼ同じ値を示しているが、NiとCoでは、吸着率はやや低下する傾向が見られ、還元率は劣り、GACよりは若干良いことがわかる。
【0027】
【発明の効果】
以上述べたように本発明によれば、臭素酸塩を含有する被処理水から臭素酸イオンを分解除去する方法で、あらかじめ還元作用を有する金属を活性炭表面に吸着させた活性炭と被処理水を接触させることによって、臭素酸イオンを還元することが可能である。
【0028】
また、浄水プロセスで、有機物の吸着や活性炭表面に生息する微生物によって分解を行うことを目的とした生物活性炭の場合には、本実施例で用いたFe等の還元作用を有する金属をあらかじめ含浸させておくことによって、新たな処理スペースを設ける必要なく、臭素酸イオンの還元と、有機物の吸着、分解が達成されることが十分に期待できる。
さらに、還元能力の落ちた活性炭は、通常の再活化処理、本実験で行ったような、メタノールガス雰囲気での還元処理によって再生できる。
【図面の簡単な説明】
【図1】本発明によるGACとFe−GACによる臭素酸イオンの除去実験結果を示す図
【図2】本発明によるGACとFe−GACによる臭化物イオン生成量実験結果を示す図
【図3】本発明によるGACのFe担持量と除去率及び還元率との関係を示す図
【図4】本発明によるGACに各種金属を担持した場合の臭素酸イオンの吸着率と還元率とを比較した図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment method for removing bromate from treated water obtained by ozone treatment of water containing bromate, for example, water containing bromide ions, or industrial waste water.
[0002]
[Prior art]
Bromate has been confirmed to be carcinogenic, and the World Health Organization WHO sets the concentration in drinking water as a guideline value of 25 μg / L. Further, the US Environmental Protection Agency USEPA is currently considering a more severe 10 μg / L.
[0003]
In the ozone treatment, bromide ions (Br − ) in water react with ozone to generate hypobromite ions (OBr − ). In addition, when oxidized with excess ozone, hypobromite ions become bromate ions (BrO 3 − ).
These reactions are represented by formulas (1) to (3).
[0004]
[Expression 1]
[0005]
[Expression 2]
[0006]
[Equation 3]
When there is no excess ozone, the produced hypobromite ions and bromate ions react with organic matter and ammonia.
[0007]
For example, it reacts with organic substances derived from nature to produce brominated trihalomethanes such as bromoform (CH 3 Br) and brominated ammonia (NH 2 Br). Denitrification reaction also occurs.
These reactions are represented by formulas (4) to (6).
[0008]
[Expression 4]
[0009]
[Equation 5]
[0010]
[Formula 6]
When denitrification occurs, the hypobromite ion is reduced to bromide ion, which reacts with excess ozone again to form hypobromite ion and promote the denitrification reaction. Is considered to have a catalytic action.
[0011]
On the other hand, bromate ions are also reduced by activated carbon. However, in the combined treatment of ozone and activated carbon in the water supply field, at first, a reaction was observed in which bromate ions were reduced to bromide ions by activated carbon, but microorganisms propagated on the activated carbon surface after continuous treatment. There is a report that the reduction action is greatly reduced in the state of so-called biological activated carbon.
[0012]
Japanese Patent Application Laid-Open No. 10-28983 “Ammonia Nitrogen-Containing Wastewater Treatment Method” describes a method of treating ammonia nitrogen-containing wastewater by adding ozone and bromide ions. On the other hand, Japanese Patent Application Laid-Open No. 10-85764 “Method for treating brominated acid-containing water with activated carbon” is a method in which the treated water is brought into contact with activated carbon by controlling the pH of the treated water to less than 5, preferably 2 to 4. In addition, in Japanese Patent Publication No. 10-504999 “Method for removing chlorate and bromate compound from water by catalytic reduction”, water containing chlorate and bromate compound is dissolved in water. On the other hand, a method of treating with a supported noble metal catalyst in the presence of hydrogen has been proposed.
[0013]
[Problems to be solved by the invention]
However, addition of bromide ions described in JP-A-10-28983 “Ammonia Nitrogen-Containing Wastewater Treatment Method” is impossible in the field of water supply. Further, in order to carry out “Method for treating brominated acid-containing water with activated carbon” in JP-A-10-85764, since the tap water quality standard and the discharge standard are pH 5.8 to 8.6, The operation of lowering the pH to acidic and raising the pH after the treatment is accompanied, and not only the salt concentration in the water is increased, but also the cost for the treatment is increased due to pH adjustment. Furthermore, Japanese Patent Publication No. 10-504999 “Method of removing chlorate and bromate compounds from water by catalytic reduction” is capable of a reduction reaction. There is a problem that it is necessary to add an appropriate reaction vessel and apparatus.
An object of the present invention is to provide a method for treating bromate without the above problems.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, as a method of decomposing and removing bromate ions from the water to be treated containing bromate without accompanying incidental operations in the treatment process such as pH adjustment of the water to be treated or hydrogen injection, It is assumed that bromate ions are reduced to harmless bromide ions by bringing activated carbon in which a metal such as iron or copper having a reducing action is adsorbed on the surface of the activated carbon into contact with water to be treated.
According to this method, the reaction shown by the following formulas (7) to (10) or the like occurs, and bromate ions can be reduced.
[0015]
[Expression 7]
[0016]
[Equation 8]
[0017]
[Equation 9]
[0018]
[Expression 10]
[0019]
DETAILED DESCRIPTION OF THE INVENTION
First, an example of a method for producing activated carbon having a reducing action used for demonstrating the present invention will be described.
As the granular activated carbon (hereinafter referred to as GAC), an F-400 particle size of 1.0 to 1.4 mm (average 1.2 mm) manufactured by Calgon, Inc., USA was used. First, after impregnating GAC with ferric nitrate aqueous solution, it was decanted and dried at a temperature of 110 ° C. Thereafter, the activated carbon was subjected to reduction treatment at a methanol gas temperature of 500 ° C. for 4 hours. This activated carbon was pulverized to a particle size of 0.18 to 0.30 mm (average 0.24 mm) and used in the experiment as activated carbon having a reducing action.
Further, a sample in which copper (Cu), nickel (Ni), and cobalt (Co) were adsorbed on the activated carbon surface as a metal other than iron (Fe) was also produced in the same manner as described above. The amount of adsorbed metal was measured by ICP (inductively coupled plasma) method.
[0020]
Next, the treatment ability of bromate ions was evaluated using the activated carbon.
The ability of activated carbon to treat bromate ions was evaluated by the adsorption and reduction amount of bromate ions. The amount of bromate ions reduced was determined from the amount of bromide ions released by activated carbon during the adsorption experiment (outside the activated carbon) and the amount of bromide ions eluted from within the activated carbon by the desorption experiment (from the activated carbon). Bromate ion and bromide ion were measured with an ion chromatograph.
[0021]
Adsorption experiments and desorption experiments were performed by the methods described below.
In the adsorption experiment, 400 μg / L-100 mL of bromate ion aqueous solution prepared using distilled water and 10 mg of activated carbon were added to a 200 mL capacity Erlenmeyer flask and stirred with a mixer at a temperature of 20 ° C. and a rotation speed of 125 rpm. The concentration of acid ion and bromide ion was measured.
[0022]
In the desorption experiment, after the adsorption experiment, 100 mL of 0.01 M NaOH solution was added to the activated carbon filtered through glass fiber filter paper (GF / F), and after stirring gently, the extracted bromide ion concentration was measured.
[0023]
The results of these adsorption and desorption experiments are shown below.
FIG. 1 shows the results of a bromate ion removal experiment on GAC and GAC carrying 1.55 wt% Fe (hereinafter referred to as Fe-GAC). From this figure, GAC (Fe-GAC) in which Fe is supported on activated carbon has an increased bromide ion concentration, but a decrease in bromate ion concentration, compared to the non-supported one (GAC). It can be seen that the ability and ability to reduce can be improved.
[0024]
In FIG. 2, the experimental result of the bromide ion production amount inside and outside activated carbon is shown. Fe-GAC has a higher bromide ion concentration inside activated carbon than GAC. This is presumably because Fe becomes a reactive group on activated carbon and promotes adsorption and reduction of bromate ions.
[0025]
FIG. 3 shows the relationship between the adsorption rate and the reduction rate of bromate ions and bromide ions after 24 hours when the Fe loading is changed from 0 to 3.68 wt%. From this figure, it can be seen that the adsorption rate is almost 100% regardless of the loading amount, and that the reduction rate increases as the loading amount increases.
[0026]
FIG. 4 shows experimental results of the adsorption rate and reduction rate of bromate ions when Cu, Ni, and Co are separately supported on activated carbon. The amount of each metal supported is Fe-1.10 wt%, Cu-1.22 wt%, Ni-1.00 wt%, Co-0.88 wt%. From this figure, the adsorption rate and the reduction rate of Cu are almost the same as those of Fe, but the adsorption rate tends to decrease slightly in Ni and Co, the reduction rate is inferior, and GAC. It turns out that it is slightly better.
[0027]
【The invention's effect】
As described above, according to the present invention, activated carbon in which a metal having a reducing action is previously adsorbed on the activated carbon surface and the water to be treated are decomposed and removed from the water to be treated containing bromate. By contacting, bromate ions can be reduced.
[0028]
In the case of biological activated carbon intended to be adsorbed with organic matter or decomposed by microorganisms that live on the activated carbon surface in the water purification process, it is impregnated in advance with a metal having a reducing action such as Fe used in this example. Thus, reduction of bromate ions and adsorption and decomposition of organic substances can be sufficiently expected without providing a new processing space.
Furthermore, the activated carbon having a reduced reducing ability can be regenerated by a normal reactivation process or a reduction process in a methanol gas atmosphere as performed in this experiment.
[Brief description of the drawings]
FIG. 1 is a diagram showing results of removing bromate ions by GAC and Fe-GAC according to the present invention. FIG. 2 is a diagram showing experimental results of bromide ion production by GAC and Fe-GAC according to the present invention. FIG. 4 is a graph showing the relationship between the amount of Fe supported on the GAC according to the invention and the removal rate and reduction rate. FIG. 4 is a graph comparing the adsorption rate of bromate ions and the reduction rate when various metals are supported on the GAC according to the present invention.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12922199A JP3639457B2 (en) | 1999-05-10 | 1999-05-10 | Method for treating water containing bromate |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP12922199A JP3639457B2 (en) | 1999-05-10 | 1999-05-10 | Method for treating water containing bromate |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2000317470A JP2000317470A (en) | 2000-11-21 |
| JP3639457B2 true JP3639457B2 (en) | 2005-04-20 |
Family
ID=15004149
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP12922199A Expired - Fee Related JP3639457B2 (en) | 1999-05-10 | 1999-05-10 | Method for treating water containing bromate |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3639457B2 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103232125A (en) * | 2013-05-13 | 2013-08-07 | 山东大学 | Method for removing bromate through ordered mesoporous carbon loaded nanoscale zero-valent iron material |
-
1999
- 1999-05-10 JP JP12922199A patent/JP3639457B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2000317470A (en) | 2000-11-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Olfatmehr et al. | Peroxydisulfate activation by enhanced catalytic activity of CoFe2O4 anchored on activated carbon: A new sulfate radical-based oxidation study on the Cefixime degradation | |
| Chou et al. | Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide | |
| Huang et al. | Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons | |
| AU749633B2 (en) | Method for mineralization of organic pollutants in water by catalytic ozonization | |
| Sun et al. | Redox conversion of chromium (VI) and arsenic (III) with the intermediates of chromium (V) and arsenic (IV) via AuPd/CNTs electrocatalysis in acid aqueous solution | |
| US20090261042A1 (en) | Method for adsorption of fluid contaminants and regeneration of the adsorbent | |
| US11370022B2 (en) | Method for the synthesis of a zero-valent metal micro- and nanoparticles in the presence of a noble metal | |
| Liu et al. | Selective reduction of nitrate into nitrogen using Cu/Fe bimetal combined with sodium sulfite | |
| US20070080115A1 (en) | Sorbent for removal of contaminants from fluids | |
| Xu et al. | Enhancing the degradation of bisphenol A by dioxygen activation using bimetallic Cu/Fe@ zeolite: Critical role of Cu (I) and superoxide radical | |
| CN112827511A (en) | A cyclodextrin-modified magnetic CuO-Fe3O4-biochar heterogeneous nanocatalyst and method for remediating organic pollution | |
| Shi et al. | Performance of Pd/Sn catalysts supported by chelating resin prestoring reductant for nitrate reduction in actual water | |
| CN104923319A (en) | Metal-loaded anion exchange resin and method for remediating toxic anions using same | |
| JP2014198286A (en) | Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof | |
| Tang et al. | Constructing a 3D ordered macroporous cobalt monoatomic catalyst for efficient SMX degradation via PMS activation | |
| CN110981013A (en) | Method for treating waste liquid after extraction of thiamine | |
| JP2002514498A (en) | Oxidation by pollutant adsorption and Fenton reaction | |
| JP3639457B2 (en) | Method for treating water containing bromate | |
| Bi et al. | Synergistic redox and adsorption for enhanced Roxarsone removal: Heterogeneous Fenton-Like reaction with a novel composite of nanoscale zero-valent iron supported on γ-aluminum oxide | |
| JP2010149050A (en) | Solid catalyst for treating nitrate nitrogen-containing water and method of treating nitrate nitrogen-containing water using the catalyst | |
| JP2003001277A (en) | How to decompose hardly decomposable substances | |
| Sampe et al. | Activation of peroxymonosulfate by morphologically modified NiCo2O4 and application to diclofenac degradation | |
| JP2005074368A (en) | Treatment method for organic water | |
| JPH0249158B2 (en) | ||
| JP4450677B2 (en) | Treatment method for nitrate-containing water |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041221 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050104 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050114 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 3639457 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080121 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090121 Year of fee payment: 4 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090121 Year of fee payment: 4 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090121 Year of fee payment: 4 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090121 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100121 Year of fee payment: 5 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100121 Year of fee payment: 5 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110121 Year of fee payment: 6 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110121 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120121 Year of fee payment: 7 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120121 Year of fee payment: 7 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130121 Year of fee payment: 8 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130121 Year of fee payment: 8 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 9 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140121 Year of fee payment: 9 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |