[go: up one dir, main page]

JP3764509B2 - Optical waveguide module - Google Patents

Optical waveguide module Download PDF

Info

Publication number
JP3764509B2
JP3764509B2 JP10130395A JP10130395A JP3764509B2 JP 3764509 B2 JP3764509 B2 JP 3764509B2 JP 10130395 A JP10130395 A JP 10130395A JP 10130395 A JP10130395 A JP 10130395A JP 3764509 B2 JP3764509 B2 JP 3764509B2
Authority
JP
Japan
Prior art keywords
optical waveguide
optical
heat
optical fiber
waveguide module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10130395A
Other languages
Japanese (ja)
Other versions
JPH08114722A (en
Inventor
洋介 福地
徳胤 木本
通明 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10130395A priority Critical patent/JP3764509B2/en
Publication of JPH08114722A publication Critical patent/JPH08114722A/en
Application granted granted Critical
Publication of JP3764509B2 publication Critical patent/JP3764509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、光導波路チップと該光導波路チップの両端面に光軸を一致し、接続固定する光ファイバとを備えた高信頼性の光導波路モジュールに関する。
【0002】
【従来技術】
従来の光導波路モジュールは、主要部品として光導波路チップと接続用光部品から構成されており、接続用光部品としては、例えばV溝を石英基板上に形成し、所望の位置に光ファイバを接着剤などで配置固定したものが用いられている。また、光導波路チップは、光導波路基板中に屈折率の高い、光を閉じこめて導波させる部分が形成され、分岐、スイッチといった機能をもったものである。
【0003】
図9(a)は、1×4分岐器型光導波路チップ3と光ファイバブロック1との接続例を示す図であり、該光導波路チップ3及び接続用光部品1の接続端面は光軸に対し、反射戻り光を防ぐために所望の角度で端面研磨されており、また該接続用光部品1である4芯光ファイバブロック1のそれぞれのコア間隔は、該光導波路チップ3の光導波路4間隔と一致するように作製されている。また、該光導波路チップ3および光ファイバブロック1は、一般に光軸を一致させた後、接着剤(例えば紫外線硬化型接着剤)等により接続固定されている。
【0004】
そのため、これらの光導波路チップ3と光ファイバブロック1の接続部には、接着剤層7が介在し、この接着層7が水分の存在下において吸湿し、経時的な接着力の低下及び材料の劣化を引き起こすことになる。この結果、接続部における光損失の増加が生じていた。
【0005】
その対策として、図9(b)のように接続固定したもの接続部を含む側面に熱硬化型樹脂11を塗布し、封止するといった対策がとられている。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した封止方法では封止材として熱硬化型の樹脂を塗布するため、均一な厚さで塗布を行わなければ熱硬化型の樹脂の厚みの違いによる応力の違いが生じ、位置ずれの原因となり光導波路モジュールの信頼性を損なうという問題があった。
【0007】
また、封止材として熱硬化型の樹脂を用いるため、硬化時間がかかり、更に硬化後に熱硬化型樹脂を均一な厚さで維持するためには、熱硬化樹脂の自重による影響を防ぐために光導波路モジュールの各側面ごとに作業を行わなければならず、作業効率が悪いという問題があった。
【0008】
本発明は、上記の点に鑑みてなされたものであり、その目的は、光学特性を不安定にすること無く長期信頼性に優れ、かつ作業効率が良好な光導波路モジュールを提供することにある。
【0009】
【課題を解決するための手段】
本発明は、これらの問題を解決するためになされたもので、光導波路チップと該光導波路チップの両端面に各光導波路と光軸が一致するように接続固定される少なくとも1本以上の光ファイバが固定されている光ファイバブロックとを備えた光導波路型モジュールにおいて、光導波路チップと光ファイバの光軸を一致させた後に接続固定を行い、接続部の封止に熱収縮チューブを用いることを特徴とするものである。
【0010】
【作用】
以上のような光導波路モジュールでは、封止材である熱収縮チューブの厚みを容易に均一とすることが可能であるため、従来問題となった熱硬化型樹脂の厚みの違いによる応力の違いの影響を防ぐことができ、更に光導波路チップと光ファイバの光軸を一致させた後、接続固定したものを熱収縮チューブ内に挿入し熱により収縮させるため光導波路モジュールの接続部を含む全側面を一度に封止する事が可能となり、作業効率を向上させることができる。
【0011】
【実施例】
以下、本発明の参考例を図面に基づいて詳細に説明する。図1は、本発明にかかる光導波路モジュール10の参考例を示す構成図及び封止方法を示す。図1(a)において光導波路チップは1×8分岐型光導波路チップ3であり、シリコン製基板上に石英系光導波路が形成されている。8本の光導波路と接続する光ファイバブロック1は、切削加工により光導波路の間隔と同一で高精度で形成されたV溝基板上の8本のV溝にテープファイバ5の光ファイバが8本配置されており、1本の光導波路と接続する光ファイバブロック1は、同様の加工法により作製されたV溝基板上の1本のV溝に光ファイバ2が1本配置されている。この状態において、双方のV溝に配置された光ファイバ上方からカバーで押さえて紫外線硬化型接着剤を用いて接着固定し、その後研磨により光軸に対し所望の角度で接続断面が作製されている。また、光導波路チップ3と光ファイバブロック1は、例えば各々の接続側において光軸調整がなされた後、紫外線硬化型接着剤を塗布し、紫外線を照射して接続断面間に接着層7を形成し、接続固定されている。次に図1(b)に示すように均一な厚さで作製されている1つのフッ素樹脂熱収縮チューブ8内に光導波路モジュール10の2つの接続部が隠れるように挿入し、更にこの状態のまま恒温槽に挿入し、適切な温度でフッ素樹脂熱収縮チューブ8を収縮させる。ここで、フッ素樹脂熱収縮チューブ8は、4ふっ化エチレン−6ふっ化プロピレン共重合樹脂FEP(Fluorinated−Ethylene−Propylene、収縮温度140℃、収縮率40%)を使用し、その内径は、収縮後に導波路モジュール10の側面とフッ素樹脂熱収縮チューブ8の内壁の間に隙間が生じない大きさとした。収縮後は図1(c)のようになる。
【0012】
図2は、本発明の別の参考例を示す構成図であり、2つの接続部それぞれに別々のフッ素樹脂熱収縮チューブ8を用いたものである。
【0013】
図3は、本発明の別の参考例を示す構成図であり、光導波路モジュール10全体をフッ素樹脂熱収縮チューブ8で覆ったものである。
【0014】
図4、5及び6は、本発明の実施例を示す構成図であり、光ファイバブロック1と光導波路チップ3の高さが違う場合に段差部を小さくしたものである。図4では、例えば接続に用いた紫外線硬化型の接着剤を光導波路チップ3上に接続部と逆方向に徐々に厚みが薄くなるようにテーパ部を設けてある。図5及び6では、光ファイバブロック1と光導波路チップ3の高さを一致させるように光導波路チップ3上に補助基板9を設けたものである。
【0015】
図7は、本発明の別の実施例を示す構成図である。光導波路チップ3及び光ファイバブロック1を図7(a)(b)に示すように円形の断面の筺体6に固定した後、図7(c)のように各々の接続側において光軸調整がなされた後、紫外線硬化型接着剤を塗布し、紫外線を照射して接続断面間に接着層7を形成し、接続固定されており、その後、図7(d)に示すようにフッ素樹脂熱収縮チューブ8で封止したものである。
【0016】
図8は、本発明の別の実施例を示す断面図である。接続部の封止に熱収縮チューブを用いる部分の光導波路チップ3及び光ファイバブロック1の外周に弾性体のシリコン樹脂12を塗布してあり、熱収縮チューブ8の収縮時の応力を緩和する構造となっている。
【0017】
以上本発明の実施例を詳細に説明したが、本発明はこれに限らず、例えば以下のような変更が可能である。
【0018】
▲1▼上記実施例では、熱収縮チューブ8をフッ素樹脂としたが、防湿性に優れかつ補強が可能であれば別の成分でも良い。フッ素樹脂としては、ふっ化ビニリデン樹脂(PVDF:Polyvinylidene−fluoride、例:収縮温度175℃、収縮率50%)、4ふっ化エチレン樹脂(TFE:Tetrafluoroethylene、例:収縮温度327℃、収縮率50%、75%)、4ふっ化エチレン−パーフロロアルコキシエチレン共重合樹脂(PFA:Perfluoalcoxy、例:収縮温度140℃、収縮率25%)、4ふっ化エチレン樹脂TFEと4ふっ化エチレン−6ふっ化プロピレン共重合樹脂FEPの2重構造体TFE/FEP(例:収縮温度327℃、収縮率67%)等がある。
【0019】
又、架橋ポリオレフィンをチューブ状にしても熱収縮チューブが得られる。架橋ポリオレフィンは、オレフィン(エチレン列炭化水素)の重合体であるポレオレフィン(Polyolefin:例えばポリエチレンなど多種多様)の耐熱性を向上させるため、放射線架橋によって、ポリマー分子間を架橋し、3次元網目構造にしたものである。架橋ポリオレフィンとしては、収縮温度121℃、収縮率50%のものを使用した。その他、半硬質架橋ポレオレフィン(例:収縮温度135℃、収縮率50%)等がある。
【0020】
また、合成ゴムを用いても熱収縮チューブが得られる。合成ゴムには、架橋フッ素ゴム(例:収縮温度175℃、収縮率50%)、クロロプレンゴム(例:収縮温度135℃、収縮率50%)等が有る。
【0021】
さらにこれら熱収縮性材料の内側に熱溶融性の層を設けた2重構造材料で熱収縮チューブを形成すると、加熱により内側の層が溶融するとともに外側の熱収縮性材料が収縮するので、光導波路モジュールの接続部全周囲と熱収縮チューブの内壁との間の隙間を除去し密着封止するのに有効である。このような材料には、架橋ポリオレフィンとポレオレフィンとで2層構造にし、架橋ポリオレフィンを外側にし、ポレオレフィンを内側にしてチューブを形成すれば熱収縮チューブが実現できる(例:収縮温度121℃、収縮率60%)。その他、架橋ポリオレフィンとポリアミド系接着材(例:収縮温度121℃、収縮率67%)等がある。
▲2▼熱収縮チューブ8の収縮前の断面形状は、収縮後に光導波路モジュール10の側面と熱収縮チューブ8の内壁の間に隙間が生じないければ円形及び矩形でも良い。
【0022】
▲3▼上記実施例では、光導波路チップ3と光ファイバブロック1の接続固定部に補強材を用いていないが、光導波路チップ及び光ファイバブロックの両側面にまたがる補強材を設けた後に封止しても良い。
【0023】
▲4▼上記実施例では、筺体6の断面形状を円形としたが、これに限らず、例えば矩形でも良い。
【0024】
なお、本発明は、図1〜図8に示す実施例、上記▲1▼〜▲3▼の技術的事項を組み合わせることができる。
【0025】
【発明の効果】
以上詳細に説明したように、本発明にかかる光導波路モジュールでは、接続部の封止に熱収縮チューブを用いているため、従来問題となった熱硬化型樹脂の厚みの違いによる応力の違いの影響を防ぐことができ、更に光導波路チップと光ファイバの光軸を一致させた後、接続固定したものを熱収縮チューブ内に挿入し熱により収縮させるため光導波路モジュールの接続部を含む全側面を一度に封止する事が可能となり、作業効率を向上させることができる。
【図面の簡単な説明】
【図1】 (a)(b)(c)は本発明の参考例にかかる光導波路モジュールの封止方法例を示す側面図である。
【図2】 本発明の他の参考例を示す光導波路モジュールの側面図である。
【図3】 本発明の他の参考例を示す光導波路モジュールの側面図である。
【図4】 本発明の実施例を示す光導波路モジュールの側面図である。
【図5】 本発明の他の実施例を示す光導波路モジュールの側面図である。
【図6】 本発明の他の実施例を示す光導波路モジュールの側面図である。
【図7】 本発明に係る光導波路モジュールの他の実施例を示すもので、(a)は光ファイバブロックの接続端面図、(b)は光導波路チップの接続端面図、(c)は光導波路チップの両端面に光ファイバブロックを接続固定した光導波路モジュールの斜視図、(d)は光導波路モジュールを封止した様子を示す斜視図である。
【図8】 本発明の他の実施例を示す光導波路モジュールの断面図である。
【図9】 従来例を示し、(a)は1×4分岐型光導波路チップと光ファイバブロックとを接続した光導波路モジュールの上面図、(b)は光導波路モジュールの接続部に熱硬化型樹脂を塗布した例を示す光導波路モジュールの断面図である。
【符号の説明】
1:光ファイバブロック、2:光ファイバ、3:光導波路チップ、4:光導波路、5:テープファイバ、6:筺体、7:接着剤層、8:フッ素樹脂熱収縮チューブ、9:補助基板、10:光導波路モジュール、11:熱硬化型樹脂、12:シリコン樹脂
[0001]
[Industrial application fields]
The present invention relates to a highly reliable optical waveguide module including an optical waveguide chip and an optical fiber whose optical axes coincide with each other and are connected and fixed.
[0002]
[Prior art]
A conventional optical waveguide module is composed of an optical waveguide chip and a connecting optical component as main components. For example, a V-groove is formed on a quartz substrate and an optical fiber is bonded to a desired position. A material fixed with an agent or the like is used. In addition, the optical waveguide chip has a function of branching and switching, in which a portion having a high refractive index and confining light is formed in the optical waveguide substrate.
[0003]
FIG. 9A is a diagram showing an example of connection between the 1 × 4 branching type optical waveguide chip 3 and the optical fiber block 1, and the connection end faces of the optical waveguide chip 3 and the connecting optical component 1 are on the optical axis. On the other hand, end faces are polished at a desired angle in order to prevent reflected return light, and each core interval of the four-core optical fiber block 1 which is the connecting optical component 1 is the interval between the optical waveguides 4 of the optical waveguide chip 3. Are made to match. The optical waveguide chip 3 and the optical fiber block 1 are generally connected and fixed with an adhesive (for example, an ultraviolet curable adhesive) or the like after the optical axes are aligned.
[0004]
Therefore, an adhesive layer 7 is interposed in the connection portion between the optical waveguide chip 3 and the optical fiber block 1, and the adhesive layer 7 absorbs moisture in the presence of moisture. It will cause deterioration. As a result, an increase in optical loss at the connection portion has occurred.
[0005]
As a countermeasure, a measure is taken such that the thermosetting resin 11 is applied and sealed on the side surface including the connection portion that is connected and fixed as shown in FIG. 9B.
[0006]
[Problems to be solved by the invention]
However, in the above-described sealing method, a thermosetting resin is applied as a sealing material. Therefore, if the application is not performed with a uniform thickness, a difference in stress occurs due to a difference in the thickness of the thermosetting resin. As a result, the reliability of the optical waveguide module is impaired.
[0007]
In addition, since a thermosetting resin is used as the sealing material, it takes a long time to cure, and in order to maintain the thermosetting resin with a uniform thickness after curing, a light guide is used to prevent the influence of the thermosetting resin due to its own weight. There has been a problem that work must be performed for each side of the waveguide module, and work efficiency is poor.
[0008]
The present invention has been made in view of the above points, and an object of the present invention is to provide an optical waveguide module that has excellent long-term reliability and good working efficiency without destabilizing optical characteristics. .
[0009]
[Means for Solving the Problems]
The present invention has been made in order to solve these problems. At least one light that is connected and fixed to the optical waveguide chip and both end faces of the optical waveguide chip so that the optical axes coincide with each other. In an optical waveguide module equipped with an optical fiber block to which the fiber is fixed, the optical waveguide chip and the optical axis of the optical fiber are aligned, the connection is fixed, and a heat shrink tube is used to seal the connection. It is characterized by.
[0010]
[Action]
In the optical waveguide module as described above, it is possible to easily make the thickness of the heat-shrinkable tube, which is a sealing material, uniform. Therefore, the difference in stress due to the difference in the thickness of the thermosetting resin that has been a problem in the past. All the side surfaces including the connection part of the optical waveguide module can be prevented, and after the optical waveguide chip and the optical axis of the optical fiber are aligned, the connected and fixed one is inserted into the heat shrinkable tube and contracted by heat Can be sealed at a time, and work efficiency can be improved.
[0011]
【Example】
Hereinafter, reference examples of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram and a sealing method showing a reference example of an optical waveguide module 10 according to the present invention. In FIG. 1A, the optical waveguide chip is a 1 × 8 branch type optical waveguide chip 3, and a silica-based optical waveguide is formed on a silicon substrate. The optical fiber block 1 connected to the eight optical waveguides has eight optical fibers of the tape fiber 5 in the eight V-grooves on the V-groove substrate formed with the same precision as the interval of the optical waveguides by cutting. In the optical fiber block 1 that is arranged and connected to one optical waveguide, one optical fiber 2 is arranged in one V-groove on a V-groove substrate manufactured by the same processing method. In this state, the connection cross section is produced at a desired angle with respect to the optical axis by polishing by pressing with a cover from above the optical fibers arranged in both V-grooves and then using an ultraviolet curable adhesive. . In addition, the optical waveguide chip 3 and the optical fiber block 1 are, for example, adjusted in optical axis on each connection side, and then applied with an ultraviolet curable adhesive and irradiated with ultraviolet rays to form an adhesive layer 7 between connection cross sections. And the connection is fixed. Next, as shown in FIG. 1B, the two connecting portions of the optical waveguide module 10 are inserted into one fluororesin heat-shrinkable tube 8 having a uniform thickness so as to be hidden. The fluororesin heat shrinkable tube 8 is shrunk at an appropriate temperature. Here, the fluororesin heat shrinkable tube 8 uses a tetrafluoroethylene-6 fluoropropylene copolymer resin FEP (Fluorinated-Ethylene-Propyrene, shrinkage temperature 140 ° C., shrinkage rate 40%), and its inner diameter is shrinkage. Later, the size was set such that no gap was formed between the side surface of the waveguide module 10 and the inner wall of the fluororesin heat-shrinkable tube 8. After contraction, it becomes as shown in FIG.
[0012]
FIG. 2 is a configuration diagram showing another reference example of the present invention, in which separate fluororesin heat-shrinkable tubes 8 are used for each of the two connecting portions.
[0013]
FIG. 3 is a configuration diagram showing another reference example of the present invention, in which the entire optical waveguide module 10 is covered with a fluororesin heat-shrinkable tube 8.
[0014]
4, 5 and 6 are configuration diagrams showing an embodiment of the present invention, in which the stepped portion is made smaller when the optical fiber block 1 and the optical waveguide chip 3 are different in height. In FIG. 4, for example, a taper portion is provided on the optical waveguide chip 3 so that the thickness of the UV curable adhesive used for connection is gradually reduced in the direction opposite to the connection portion. 5 and 6, the auxiliary substrate 9 is provided on the optical waveguide chip 3 so that the heights of the optical fiber block 1 and the optical waveguide chip 3 are matched.
[0015]
FIG. 7 is a block diagram showing another embodiment of the present invention. After the optical waveguide chip 3 and the optical fiber block 1 are fixed to the housing 6 having a circular cross section as shown in FIGS. 7 (a) and 7 (b), the optical axis is adjusted on each connection side as shown in FIG. 7 (c). After that, an ultraviolet curable adhesive is applied, and an ultraviolet ray is irradiated to form an adhesive layer 7 between the connection cross sections, and the connection is fixed. Then, as shown in FIG. The tube 8 is sealed.
[0016]
FIG. 8 is a cross-sectional view showing another embodiment of the present invention. A structure in which an elastic silicon resin 12 is applied to the outer periphery of the optical waveguide chip 3 and the optical fiber block 1 in a portion where the heat shrinkable tube is used to seal the connection portion, and the stress at the time of shrinkage of the heat shrinkable tube 8 is relaxed. It has become.
[0017]
Although the embodiments of the present invention have been described in detail above, the present invention is not limited thereto, and for example, the following modifications are possible.
[0018]
(1) In the above embodiment, the heat-shrinkable tube 8 is made of a fluororesin, but other components may be used as long as they have excellent moisture resistance and can be reinforced. As the fluororesin, vinylidene fluoride resin (PVDF: Polyvinylidene-fluoride, eg: shrinkage temperature 175 ° C., shrinkage rate 50%), tetrafluoroethylene resin (TFE: Tetrafluoroethylene), eg: shrinkage temperature 327 ° C., shrinkage rate 50% , 75%) Tetrafluoroethylene-perfluoroalkoxyethylene copolymer resin (PFA: Perfluoroalkoxy, eg, shrinkage temperature 140 ° C., shrinkage 25%), tetrafluoroethylene resin TFE and tetrafluoroethylene-6 fluoride There is a double structure TFE / FEP of propylene copolymer resin FEP (example: shrinkage temperature 327 ° C., shrinkage rate 67%).
[0019]
Moreover, a heat-shrinkable tube can be obtained even if the crosslinked polyolefin is formed into a tube shape. Cross-linked polyolefin is a three-dimensional network structure in which polymer molecules are cross-linked by radiation cross-linking in order to improve the heat resistance of polyolefin (Polyolefin: for example, various types such as polyethylene) which is a polymer of olefin (ethylene series hydrocarbon). It is a thing. A crosslinked polyolefin having a shrinkage temperature of 121 ° C. and a shrinkage rate of 50% was used. In addition, there are semi-rigid crosslinked polyolefins (eg, shrinkage temperature 135 ° C., shrinkage rate 50%).
[0020]
A heat-shrinkable tube can also be obtained using synthetic rubber. Synthetic rubbers include cross-linked fluororubber (eg, shrinkage temperature 175 ° C., shrinkage rate 50%), chloroprene rubber (eg, shrinkage temperature 135 ° C., shrinkage rate 50%) and the like.
[0021]
Further, when a heat shrinkable tube is formed of a double structure material in which a heat-meltable layer is provided inside these heat-shrinkable materials, the inner layer is melted by heating and the outer heat-shrinkable material is shrunk. This is effective for removing and sealing the gap between the entire circumference of the connection portion of the waveguide module and the inner wall of the heat shrinkable tube. For such a material, a heat-shrinkable tube can be realized by forming a tube with a cross-linked polyolefin and polyolefin having a two-layer structure, with the cross-linked polyolefin on the outside and the polyolefin on the inside (example: shrink temperature 121 ° C., Shrinkage rate 60%). In addition, there are a crosslinked polyolefin and a polyamide-based adhesive (eg, shrinkage temperature 121 ° C., shrinkage rate 67%).
(2) The cross-sectional shape of the heat-shrinkable tube 8 before shrinkage may be circular or rectangular as long as no gap is generated between the side surface of the optical waveguide module 10 and the inner wall of the heat-shrinkable tube 8 after shrinkage.
[0022]
(3) In the above embodiment, no reinforcing material is used for the connection fixing portion between the optical waveguide chip 3 and the optical fiber block 1, but sealing is performed after the reinforcing material is provided over both sides of the optical waveguide chip and the optical fiber block. You may do it.
[0023]
(4) In the above-described embodiment, the cross-sectional shape of the housing 6 is circular. However, the shape is not limited to this, and may be rectangular, for example.
[0024]
In addition, this invention can combine the Example shown in FIGS. 1-8 and the technical matter of said (1)-(3).
[0025]
【The invention's effect】
As described above in detail, in the optical waveguide module according to the present invention, since the heat shrinkable tube is used for sealing the connection portion, the difference in stress due to the difference in the thickness of the thermosetting resin that has been a problem in the past is used. All the side surfaces including the connection part of the optical waveguide module can be prevented, and after the optical waveguide chip and the optical axis of the optical fiber are aligned, the connected and fixed one is inserted into the heat shrinkable tube and contracted by heat Can be sealed at a time, and work efficiency can be improved.
[Brief description of the drawings]
FIGS. 1A, 1B, and 1C are side views showing an example of a method for sealing an optical waveguide module according to a reference example of the present invention.
FIG. 2 is a side view of an optical waveguide module showing another reference example of the present invention.
FIG. 3 is a side view of an optical waveguide module showing another reference example of the present invention.
FIG. 4 is a side view of an optical waveguide module showing an embodiment of the present invention.
FIG. 5 is a side view of an optical waveguide module showing another embodiment of the present invention.
FIG. 6 is a side view of an optical waveguide module showing another embodiment of the present invention.
FIGS. 7A and 7B show another embodiment of the optical waveguide module according to the present invention, in which FIG. 7A is a connection end view of an optical fiber block, FIG. 7B is a connection end view of an optical waveguide chip, and FIG. FIG. 4 is a perspective view of an optical waveguide module in which optical fiber blocks are connected and fixed to both end faces of the waveguide chip, and FIG. 4D is a perspective view showing a state in which the optical waveguide module is sealed.
FIG. 8 is a cross-sectional view of an optical waveguide module showing another embodiment of the present invention.
9A and 9B show a conventional example, in which FIG. 9A is a top view of an optical waveguide module in which a 1 × 4 branch type optical waveguide chip and an optical fiber block are connected, and FIG. 9B is a thermosetting type at a connection portion of the optical waveguide module. It is sectional drawing of the optical waveguide module which shows the example which apply | coated resin.
[Explanation of symbols]
1: optical fiber block, 2: optical fiber, 3: optical waveguide chip, 4: optical waveguide, 5: tape fiber, 6: housing, 7: adhesive layer, 8: fluororesin heat shrinkable tube, 9: auxiliary substrate, 10: Optical waveguide module, 11: Thermosetting resin, 12: Silicon resin

Claims (3)

光導波路が形成された光導波路チップと、光ファイバが固定された光ファイバブロックとが接続された光導波路型モジュールにおいて、前記光導波路チップと光ファイバブロックの高さが異なり、前記光導波路チップと光ファイバブロックとが光導波路と接続すべき光ファイバとの位置が合わされて接着剤により接続固定され、該接着剤を光導波路チップ上に接続部と逆方向に徐々に厚みが薄くなるようにテーパ部を設け、さらに熱収縮チューブを加熱収縮することにより、前記接続固定部全周囲が封止されていることを特徴とする光導波路型モジュール。In an optical waveguide module in which an optical waveguide chip in which an optical waveguide is formed and an optical fiber block to which an optical fiber is fixed are connected, the optical waveguide chip and the optical fiber block have different heights, and the optical waveguide chip and The position of the optical fiber block and the optical fiber to be connected to the optical waveguide are aligned and fixed by an adhesive, and the adhesive is tapered on the optical waveguide chip so that the thickness gradually decreases in the direction opposite to the connecting portion. An optical waveguide module characterized in that the entire periphery of the connection fixing portion is sealed by providing a portion and further heat-shrinking the heat-shrinkable tube. 前記熱収縮チューブはフッ素樹脂、架橋ポリオレフィン、合成ゴムの中から選択した一の材料をチューブ状に形成して成ることを特徴とする請求項1に記載の光導波路型モジュール。2. The optical waveguide module according to claim 1, wherein the heat-shrinkable tube is formed by forming one material selected from fluororesin, crosslinked polyolefin, and synthetic rubber into a tube shape. 前記熱収縮チューブは外側が熱収縮性材料層、内側が熱溶融性材料層から成る2重構造を有して成ることを特徴とする請求項1または2に記載の光導波路型モジュール。Optical waveguide module according to claim 1 or 2 wherein the heat shrink tubing outer heat shrinkable material layer, the inner characterized in that it comprises a double structure composed of a heat-meltable material layer.
JP10130395A 1994-08-26 1995-04-25 Optical waveguide module Expired - Fee Related JP3764509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10130395A JP3764509B2 (en) 1994-08-26 1995-04-25 Optical waveguide module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-201772 1994-08-26
JP20177294 1994-08-26
JP10130395A JP3764509B2 (en) 1994-08-26 1995-04-25 Optical waveguide module

Publications (2)

Publication Number Publication Date
JPH08114722A JPH08114722A (en) 1996-05-07
JP3764509B2 true JP3764509B2 (en) 2006-04-12

Family

ID=26442196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10130395A Expired - Fee Related JP3764509B2 (en) 1994-08-26 1995-04-25 Optical waveguide module

Country Status (1)

Country Link
JP (1) JP3764509B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3697580B2 (en) * 2000-12-14 2005-09-21 日本碍子株式会社 Fiber array and waveguide device

Also Published As

Publication number Publication date
JPH08114722A (en) 1996-05-07

Similar Documents

Publication Publication Date Title
CA1129693A (en) Optical waveguide termination device
US11209594B2 (en) Cable with overcoated non-coplanar groups of fusion spliced optical fibers, and fabrication method
US4196965A (en) Connecting method of optical fiber with plastic clad
US4923268A (en) Fiber optic coupler
US8050527B2 (en) Self healing optical fiber cable assembly and method of making the same
US4863234A (en) Protective sheath for optical waveguide splice
JPS6052403B2 (en) Optical fiber connector and connection method using it
US5530940A (en) Coupling device for light pipe system
US11327231B2 (en) Flexible splice protector assembly and method for preparing same
US4699462A (en) Fiber optic cable termination and method for forming same
WO2008037195A1 (en) A multi-fiber port platform and the manufacture method thereof
JP3764509B2 (en) Optical waveguide module
US20020172478A1 (en) Light transmission techniques
JPS58158621A (en) Member for reinforcing connection part of optical fiber core
EP0139171A2 (en) Apparatus for aligning optical fibers
EP0343588B1 (en) Coupler for bundles of optical fibres, and method of producing the same
JPH09113754A (en) Method of manufacturing optical waveguide module
CN116679379A (en) Optical fiber processing method and optical fiber device
EP0393064A4 (en) Fiber optic coupler
JP3393761B2 (en) Optical waveguide module and method of manufacturing the same
JPH08327849A (en) Optical fiber reinforcement method
JP3266424B2 (en) Optical waveguide module
GB2041558A (en) Light-guide terminations
JPH0573202B2 (en)
GB2038015A (en) Splicing and termination of optical fibres

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees