[go: up one dir, main page]

JP3712540B2 - Power transmission device capable of absorbing shock - Google Patents

Power transmission device capable of absorbing shock Download PDF

Info

Publication number
JP3712540B2
JP3712540B2 JP27838598A JP27838598A JP3712540B2 JP 3712540 B2 JP3712540 B2 JP 3712540B2 JP 27838598 A JP27838598 A JP 27838598A JP 27838598 A JP27838598 A JP 27838598A JP 3712540 B2 JP3712540 B2 JP 3712540B2
Authority
JP
Japan
Prior art keywords
spline
shaft member
tubular member
axial direction
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27838598A
Other languages
Japanese (ja)
Other versions
JP2000108701A (en
Inventor
肇幸 増田
健一 杉山
昌夫 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27838598A priority Critical patent/JP3712540B2/en
Publication of JP2000108701A publication Critical patent/JP2000108701A/en
Application granted granted Critical
Publication of JP3712540B2 publication Critical patent/JP3712540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Steering Controls (AREA)
  • Motor Power Transmission Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車の推進軸や操向コラム等に使用可能で、軸方向の衝撃エネルギを吸収可能な動力伝達装置に関する。
【0002】
【従来の技術】
この種の動力伝達装置は、例えば、特開平9−123774号公報に示されるように、動力伝達装置の軸部材とこの軸部材に嵌り合う管状部材とが、スプライン継手によって軸方向に相対移動可能でかつ回転方向に相対回動不能に連結されると共に、これら軸部材と管状部材との対応する位置に形成した周溝内に装着されたスナップリングによって相互に連結されている。
【0003】
前記動力伝達装置は、軸部材と管状部材との間で回転駆動力を伝達する一方、軸方向に所定値以上の力が作用した場合には、軸部材が管状部材に対してスプライン継手によって摩擦抵抗を受けつつ軸方向に移動すると共に、スナップリングが周溝内から外れることによって、軸方向の衝撃エネルギを吸収するようになっている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来例にあっては、スプライン接手の摩擦抵抗よりも、専らスナップリングが周溝内から外れることによって軸方向の衝撃エネルギを吸収しようとするものであって、スプライン接手の安定した摩擦抵抗を得ることについては格別配慮されるところがない。
【0005】
即ち、発明者らの研究によれば、従来例のように軸部材に形成した外スプラインの先端が管状部材に形成した内スプラインの軸方向途中にある場合にはスプライン接手の摩擦抵抗にばらつきを生じるものである。
【0006】
このため、前記従来例にあっては、スプライン接手の摩擦抵抗のばらつきによって、安定した衝撃エネルギ吸収効果が得られなくなる虞がある。
【0007】
本発明は前記従来の実情に鑑みて案出されたもので、スプライン接手の安定した摩擦抵抗によって衝撃エネルギを吸収することができる、衝撃吸収可能な動力伝達装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
そこで、請求項1記載の発明は、軸部材とこの軸部材に嵌り合う管状部材とが、スプライン継手によって軸方向に相対移動可能でかつ回転方向に相対回動不能に連結されてなる、衝撃吸収可能な動力伝達装置において、
前記軸部材に形成した外スプラインが管状部材に形成した内スプラインに圧入嵌合されると共に、
前記軸部材に形成した外スプラインが管状部材に形成した内スプラインよりも軸方向に長く形成されてなり、
前記軸部材と管状部材とが連結された初期状態において軸部材に形成した外スプラインの両端が管状部材に形成した内スプラインの端部から軸方向に突出している構成にしてある。
【0009】
また、請求項2記載の発明は、請求項1記載の発明の構成のうち、前記軸部材に形成した外スプラインと管状部材に形成した内スプラインとの何れか一方または両方がヘリカルスプラインである構成にしてある。
【0010】
また、請求項3記載の発明は、請求項2記載の発明の構成のうち、前記軸部材に形成した外スプラインがヘリカルスプラインである構成にしてある。
【0011】
斯かる構成において、前記外スプライン及び内スプラインの歯形形状、歯数は任意である。また、前記軸部材と管状部材との連結に、スナップリングや可断ピン(剪断ピン)を付設して、大きな衝撃吸収エネルギを得るようにすることは任意に可能である。
【0012】
斯かる構成によれば、前記軸部材に形成した外スプラインが管状部材に形成した内スプライン内に圧入嵌合され、軸部材と管状部材とが軸方向に相対移動可能でかつ回転方向に相対回動不能に連結される。このとき、前記軸部材の外スプラインは管状部材の内スプラインよりも軸方向に長く形成されており、軸部材と管状部材とが連結された初期状態において、軸部材に形成した外スプラインの両端が管状部材に形成した内スプラインの端部から軸方向に突出するように圧入嵌合される。これによって、前記スプライン接手によって連結された動力伝達装置が形成されることになる。
【0013】
前記動力伝達装置は、回転トルクの動力伝達を司ると共に、軸方向に所定値以上の力が作用した場合には、軸部材と管状部材とがスプライン接手によって摩擦抵抗を受けつつ軸方向に相対移動することによって、軸方向の衝撃エネルギを吸収する。
【0014】
ここで、前記軸部材に形成した外スプラインが管状部材に形成した内スプライン内に圧入嵌合される荷重は、図3に示すように、外スプラインが内スプラインに軸方向に圧入嵌合されるにしたがって直線的に増加して、外スプラインの先端が内スプラインを抜け出す時点でピーク値A1を示して以降、やや減少して、B1からC1に略平坦に変化する領域をもった特性を示す。また、これらの圧入荷重特性は、前記外スプライン及び内スプラインの寸法が許容範囲内でばらついている場合には、破線で示すように変化し、それぞれの荷重がA2、B2、C2となる特性を示す。
【0015】
ここに、前記圧入嵌合荷重の差は、ピーク値A1、A2の相互差(P1)は比較的大きく、略平坦な領域の荷重B1、B2及びC1、C2の相互差(P2)は比較的小さいものとなる。即ち、前記軸部材に形成した外スプラインの先端が管状部材に形成した内スプラインの軸方向途中にある場合には圧入嵌合荷重のばらつきが大きく、一方、軸部材に形成した外スプラインの両端が管状部材に形成した内スプラインの端部から軸方向に突出した状態においては、外スプラインの先端側で内スプラインを傷つけることがないから、圧入嵌合荷重のばらつきは小さなものとなる。
【0016】
つまり、前記動力伝達装置の軸方向に所定値以上の力が作用し、軸部材と管状部材とがスプライン接手によって摩擦抵抗を受けつつ軸方向に相対移動することによって、軸方向の衝撃エネルギを吸収する場合に、摩擦抵抗の大きさは、軸部材と管状部材とが連結された初期状態から更に圧入嵌合されるときの圧入嵌合荷重に相当するものとなるから、圧入嵌合荷重の変化が少ない略平坦な領域の荷重となる。即ち、前記圧入嵌合荷重即ち摩擦抵抗は、ピーク値に比較してばらつきの小さなものとなる。
【0017】
このため、前記動力伝達装置の軸方向に所定値以上の力が作用した場合に、軸部材に形成した外スプラインと管状部材に形成した内スプラインとが摩擦抵抗を受けつつ軸方向に相対移動して軸方向の衝撃エネルギを吸収するとき、スプライン接手の摩擦抵抗はばらつきが小さく、安定したものとなる。
【0018】
したがって、スプライン接手の安定した摩擦抵抗によって衝撃エネルギを吸収することができる、衝撃吸収可能な動力伝達装置が得られる。
【0019】
また、請求項2記載の発明によれば、前記軸部材に形成した外スプラインと管状部材に形成した内スプラインの何れか一方または両方がヘリカルスプラインであることにより、スプラインの歯幅方向の隙間を小さくでき、動力伝達装置の回転方向のがたつきが防止される。
【0020】
また、請求項3記載の発明によれば、前記軸部材に形成した外スプラインがヘリカルスプラインであることにより、管状部材に形成した内スプラインがヘリカルスプラインである場合に比較して、スプラインの加工が容易になる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳述する。
【0022】
図1は本発明の衝撃吸収可能な動力伝達装置の要部を示す断面図、図2は図1に示す軸部材が管状部材に嵌り合う前の状態を、軸部材(A)、管状部材(B)で示す説明図、図3は図1に示す軸部材に形成した外スプラインを管状部材に形成した内スプラインに圧入嵌合する場合の圧入嵌合荷重と圧入ストロークとの関係を示す荷重特性線図である。
【0023】
図において1は動力伝達装置の軸部材、2はこの軸部材1に嵌り合う管状部材である。前記軸部材1と管状部材2とは、スプライン継手3によって軸方向に相対移動可能でかつ回転方向に相対回動不能に連結してある。即ち、前記軸部材1には外スプライン3aが形成され、管状部材2には内スプライン3bが形成されて、相互に圧入嵌合されている。
【0024】
前記軸部材1に形成した外スプライン3aは軸方向に平行に形成されており、その軸方向長さは寸法aとなっている。また、前記管状部材2に形成した内スプライン3bは軸方向に平行に形成されており、その軸方向長さは寸法bとなっている(図2参照)。前記軸部材1に形成した外スプライン3aの形成寸法aは、管状部材2に形成した内スプライン3bの形成寸法bよりも長くなっており、これによって、軸部材1と管状部材2とが連結された初期状態において外スプライン3aの両端が内スプライン3bの端部から軸方向に突出するように圧入嵌合されている(図1参照)。
【0025】
ここで、前記軸部材1に形成した外スプライン3aが管状部材2に形成した内スプライン3b内に圧入嵌合される荷重は、図3に示すように、外スプライン3aが内スプライン3bに軸方向に圧入嵌合されるにしたがって直線的に増加して、外スプライン3aの先端が内スプライン3bを抜け出す時点でピーク値A1を示して以降、やや減少して、B1からC1に略平坦に変化する領域をもった特性を示す。また、これらの圧入荷重特性は、前記外スプライン3a及び内スプライン3bの寸法が許容範囲内でばらついている場合には、破線で示すように変化し、それぞれの荷重がA2、B2、C2となる特性を示す。
【0026】
ここに、前記圧入嵌合荷重の差は、ピーク値A1、A2の相互差(P1)は比較的大きく、略平坦な領域の荷重B1、B2及びC1、C2の相互差(P2)は比較的小さいものとなる。即ち、前記軸部材1に形成した外スプライン3aの先端が管状部材2に形成した内スプライン3bの軸方向途中にある場合には圧入嵌合荷重のばらつきが大きく、一方、記軸部材1に形成した外スプライン3aの両端が管状部材2に形成した内スプライン3bの端部から軸方向に突出した状態においては、外スプライン3aの先端側で内スプライン3bを傷つけることがないから、圧入嵌合荷重のばらつきは小さなものとなる。
【0027】
4は動力伝達を司るチューブで、このチューブ4は金属材料や繊維強化合成樹脂材料等からなり、管状部材2の端部、図1において右側の端部5Aに取付けられている。詳しくは、前記管状部材2の右側の端部5Aの外周が所定の長さに亘ってチューブ4の肉厚寸法に略等しい寸法だけ縮径されており、チューブ4は、その端部が管状部材2の端部5Aの縮径された外周部分に圧入され、かつ溶接や接着によって取付けられている。
【0028】
斯かる構成によれば、前記軸部材1に形成した外スプライン3aが管状部材2に形成した内スプライン3b内に左側の端部5B側から圧入嵌合され、軸部材1と管状部材2とが軸方向に相対移動可能でかつ回転方向に相対回動不能に連結される。このとき、前記軸部材1の外スプライン3aは管状部材2の内スプライン3bよりも軸方向に長く形成されており、軸部材1と管状部材2とが連結された初期状態において、軸部材1に形成した外スプライン3aの両端が管状部材2に形成した内スプライン3bの端部から軸方向に突出するように圧入嵌合される。これによって、前記スプライン接手3によって連結された動力伝達装置が形成されることになる。
【0029】
前記動力伝達装置は、軸部材1が図外の駆動装置に連結され、管状部材2がチューブ4を介して図外の被駆動装置に連結されて使用され、駆動装置と被駆動装置との間の回転トルクの動力伝達を司る。また、前記動力伝達装置の軸方向に所定値以上の力が作用した場合には、軸部材1と管状部材2とがスプライン接手3によって摩擦抵抗を受けつつ軸方向に相対移動することによって、軸方向の衝撃エネルギを吸収する。
【0030】
ここで、前記軸部材1に形成した外スプライン3aが管状部材2に形成した内スプライン3b内に圧入嵌合される荷重は、図3をもって前述したように、外スプライン3aの先端が内スプライン3bを抜け出す時点でピーク値A1(A2)を示して以降、やや減少して、B1(B2)からC1(C2)に略平坦に変化する領域をもった特性を示し、図3に示す荷重特性線図の略平坦な領域の荷重B1、B2及びC1、C2の相互差(P2)は比較的小さいものとなっている。即ち、前記軸部材1に形成した外スプライン3aの両端が管状部材2に形成した内スプライン3bの端部から軸方向に突出した状態においては、外スプライン3aの先端側で内スプライン3bを傷つけることがないから、圧入嵌合荷重のばらつきは小さなものとなっている。
【0031】
つまり、前記動力伝達装置の軸方向に所定値以上の力が作用し、軸部材1と管状部材2とがスプライン接手3によって摩擦抵抗を受けつつ軸方向に相対移動することによって、軸方向の衝撃エネルギを吸収する場合に、摩擦抵抗の大きさは、軸部材1と管状部材2とが連結された初期状態から更に圧入嵌合されるときの圧入嵌合荷重に相当するものとなるから、圧入嵌合荷重の変化が少ない略平坦な領域の荷重となる。即ち、前記圧入嵌合荷重即ち摩擦抵抗は、ピーク値に比較してばらつきの小さなものとなる。
【0032】
このため、前記動力伝達装置の軸方向に所定値以上の力が作用した場合に、軸部材1に形成した外スプライン3aと管状部材2に形成した内スプライン3bとが摩擦抵抗を受けつつ軸方向に相対移動して軸方向の衝撃エネルギを吸収するとき、スプライン接手3の摩擦抵抗はばらつきが小さく、安定したものとなる。
【0033】
したがって、スプライン接手3の安定した摩擦抵抗によって衝撃エネルギを吸収することができる、衝撃吸収可能な動力伝達装置が得られる。
【0034】
図4乃至図6は本発明の別の実施の形態を示す図面で、これら実施の形態が前記実施の形態と変わるところは、前記軸部材1に形成した外スプライン3aと管状部材2に形成した内スプライン3bとの何れか一方または両方をヘリカルスプラインにした点である。以下、これらの実施の形態について説明する。なお、説明に際して、前記実施の形態と同一構成部分には同一符号を付し、その重複する説明を省略する。
【0035】
先ず、図4に示す実施の形態は、前記軸部材1に形成した外スプライン3aは軸方向に平行なスプラインとし、管状部材2に形成した内スプライン3bをヘリカルスプラインとしてある。
【0036】
また、図5に示す実施の形態は、前記軸部材1に形成した外スプライン3aをヘリカルスプラインとし、管状部材2に形成した内スプライン3bは軸方向に平行なスプラインとしてある。
【0037】
また、図6に示す実施の形態は、前記軸部材1に形成した外スプライン3a及び管状部材2に形成した内スプライン3bの両方をヘリカルスプラインとしてある。
【0038】
斯かる構成においても、前記軸部材1と管状部材2とが連結された初期状態において、軸部材1に形成した外スプライン3aの両端が管状部材2に形成した内スプライン3bの端部から軸方向に突出した状態にあるから、動力伝達装置の軸方向に所定値以上の力が作用してその衝撃エネルギを吸収するとき、スプライン接手3の摩擦抵抗はばらつきが小さく、安定したものとなる。
【0039】
したがって、これらの実施の形態においても、スプライン接手3の安定した摩擦抵抗によって衝撃エネルギを吸収することができる、衝撃吸収可能な動力伝達装置が得られる。
【0040】
加えて、前記軸部材1に形成した外スプライン3aと管状部材2に形成した内スプライン3bの何れか一方または両方がヘリカルスプラインであることにより、スプライン3a、3bの歯幅方向の隙間を小さくでき、動力伝達装置の回転方向のがたつきが防止される。
【0041】
とりわけ、前記軸部材1に形成した外スプライン3aをヘリカルスプラインとすることにより、管状部材2に形成した内スプライン3bをヘリカルスプラインとする場合に比較して、スプラインの加工が容易になる。
【0042】
以上、実施の形態を図面に基づいて説明したが、具体的構成はこの実施の形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
【0043】
【発明の効果】
以上、詳細に説明したように、本発明によれば、スプライン接手の安定した摩擦抵抗によって衝撃エネルギを吸収することができる、衝撃吸収可能な動力伝達装置が得られる。
【図面の簡単な説明】
【図1】本発明の衝撃吸収可能な動力伝達装置の要部を示す断面図である。
【図2】図1に示す軸部材が管状部材に嵌り合う前の状態を、軸部材(A)、管状部材(B)で示す説明図である。
【図3】図1に示す軸部材に形成した外スプラインを管状部材に形成した内スプラインに圧入嵌合する場合の圧入嵌合荷重と圧入ストロークとの関係を示す荷重特性線図である。
【図4】本発明の別の実施の形態を示す、図2と同様な図面である。
【図5】本発明の別の実施の形態を示す、図2と同様な図面である。
【図6】本発明の別の実施の形態を示す、図2と同様な図面である。
【符号の説明】
1 軸部材
2 管状部材
3 スプライン継手
3a 外スプライン
3b 内スプライン
4 チューブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power transmission device that can be used for a propulsion shaft, a steering column, and the like of an automobile and can absorb impact energy in the axial direction.
[0002]
[Prior art]
In this type of power transmission device, for example, as disclosed in JP-A-9-123774, a shaft member of the power transmission device and a tubular member fitted to the shaft member can be relatively moved in the axial direction by a spline joint. In addition, the shaft member and the tubular member are connected to each other by a snap ring mounted in a circumferential groove formed at a corresponding position between the shaft member and the tubular member.
[0003]
The power transmission device transmits a rotational driving force between the shaft member and the tubular member. On the other hand, when a force of a predetermined value or more acts in the axial direction, the shaft member is rubbed against the tubular member by a spline joint. While moving in the axial direction while receiving resistance, the snap ring is removed from the inside of the circumferential groove to absorb the impact energy in the axial direction.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional example, the snap ring is intended to absorb the impact energy in the axial direction exclusively by removing the snap ring from the circumferential groove rather than the frictional resistance of the spline joint, and the stable friction of the spline joint. There is nothing special about getting resistance.
[0005]
That is, according to the research by the inventors, when the tip of the outer spline formed on the shaft member is in the middle of the axial direction of the inner spline formed on the tubular member as in the conventional example, the friction resistance of the spline joint varies. It will occur.
[0006]
For this reason, in the conventional example, there is a possibility that a stable impact energy absorption effect may not be obtained due to variations in the frictional resistance of the spline joint.
[0007]
The present invention has been devised in view of the above-described conventional situation, and an object of the present invention is to provide a power transmission device capable of absorbing an impact and capable of absorbing an impact energy by a stable frictional resistance of a spline joint.
[0008]
[Means for Solving the Problems]
In view of this, the invention according to claim 1 is characterized in that the shaft member and the tubular member fitted to the shaft member are connected by a spline joint so as to be relatively movable in the axial direction and not to be relatively rotatable in the rotational direction. In a possible power transmission device,
The outer spline formed on the shaft member is press-fitted to the inner spline formed on the tubular member,
The outer spline formed on the shaft member is formed longer in the axial direction than the inner spline formed on the tubular member,
In the initial state in which the shaft member and the tubular member are connected, both ends of the outer spline formed on the shaft member protrude in the axial direction from the end of the inner spline formed on the tubular member.
[0009]
According to a second aspect of the present invention, in the configuration of the first aspect of the invention, one or both of the outer spline formed on the shaft member and the inner spline formed on the tubular member is a helical spline. It is.
[0010]
According to a third aspect of the present invention, in the configuration of the second aspect of the present invention, the outer spline formed on the shaft member is a helical spline.
[0011]
In such a configuration, the tooth shape and the number of teeth of the outer spline and the inner spline are arbitrary. Moreover, it is arbitrarily possible to attach a snap ring or a severable pin (shearing pin) to the connection between the shaft member and the tubular member so as to obtain a large impact absorption energy.
[0012]
According to such a configuration, the outer spline formed on the shaft member is press-fitted into the inner spline formed on the tubular member, and the shaft member and the tubular member are relatively movable in the axial direction and are relatively rotated in the rotational direction. It is linked immovably. At this time, the outer spline of the shaft member is formed longer in the axial direction than the inner spline of the tubular member, and in the initial state where the shaft member and the tubular member are connected, both ends of the outer spline formed on the shaft member are It press-fits so that it may protrude in the axial direction from the edge part of the inner spline formed in the tubular member. As a result, a power transmission device connected by the spline joint is formed.
[0013]
The power transmission device is responsible for power transmission of rotational torque, and when a force greater than a predetermined value is applied in the axial direction, the shaft member and the tubular member are relatively moved in the axial direction while receiving frictional resistance by the spline joint. By doing so, the impact energy in the axial direction is absorbed.
[0014]
Here, the load by which the outer spline formed on the shaft member is press-fitted into the inner spline formed on the tubular member is, as shown in FIG. 3, the outer spline press-fitted to the inner spline in the axial direction. As a result, the peak value A1 is shown at the time when the tip of the outer spline exits the inner spline, and after that, it decreases slightly and shows a characteristic having a region in which it changes from B1 to C1 substantially flatly. Further, these press-fit load characteristics change as indicated by broken lines when the dimensions of the outer spline and the inner spline vary within an allowable range, and the respective loads become characteristics A2, B2, and C2. Show.
[0015]
Here, the difference in the press-fitting fitting load is that the mutual difference (P1) between the peak values A1 and A2 is relatively large, and the mutual difference (P2) between the loads B1 and B2 and C1 and C2 in a substantially flat region is relatively large. It will be small. That is, when the tip of the outer spline formed on the shaft member is in the axial direction of the inner spline formed on the tubular member, the variation in press-fitting load is large, while the both ends of the outer spline formed on the shaft member are In a state where the inner spline is protruded from the end of the inner spline formed in the tubular member in the axial direction, the inner spline is not damaged on the distal end side of the outer spline, and therefore, the variation in the press-fit fitting load is small.
[0016]
That is, a force of a predetermined value or more acts in the axial direction of the power transmission device, and the shaft member and the tubular member move in the axial direction while receiving frictional resistance by the spline joint, thereby absorbing the impact energy in the axial direction. In this case, the magnitude of the frictional resistance corresponds to the press-fitting load when the press-fitting is further performed from the initial state where the shaft member and the tubular member are connected. This is a load in a substantially flat region with a small amount. That is, the press-fitting fitting load, that is, the frictional resistance is less varied than the peak value.
[0017]
For this reason, when a force of a predetermined value or more is applied in the axial direction of the power transmission device, the outer spline formed on the shaft member and the inner spline formed on the tubular member relatively move in the axial direction while receiving frictional resistance. Thus, when absorbing the impact energy in the axial direction, the frictional resistance of the spline joint is small and stable.
[0018]
Therefore, it is possible to obtain a power transmission device capable of absorbing the impact, which can absorb the impact energy by the stable frictional resistance of the spline joint.
[0019]
According to a second aspect of the present invention, either or both of the outer spline formed on the shaft member and the inner spline formed on the tubular member are helical splines, so that the gap in the tooth width direction of the spline is reduced. It can be made small, and rattling in the rotational direction of the power transmission device is prevented.
[0020]
According to the invention described in claim 3, since the outer spline formed on the shaft member is a helical spline, the processing of the spline can be performed compared to the case where the inner spline formed on the tubular member is a helical spline. It becomes easy.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0022]
FIG. 1 is a cross-sectional view showing a main part of a power transmission device capable of absorbing shock according to the present invention. FIG. 2 shows a state before the shaft member shown in FIG. B), FIG. 3 is a load characteristic showing the relationship between the press-fitting load and the press-fitting stroke when the outer spline formed on the shaft member shown in FIG. 1 is press-fitted to the inner spline formed on the tubular member. FIG.
[0023]
In the figure, 1 is a shaft member of the power transmission device, and 2 is a tubular member fitted to the shaft member 1. The shaft member 1 and the tubular member 2 are connected by a spline joint 3 so as to be relatively movable in the axial direction and not to be relatively rotatable in the rotational direction. That is, the outer spline 3a is formed on the shaft member 1, and the inner spline 3b is formed on the tubular member 2, and they are press-fitted together.
[0024]
The outer spline 3a formed on the shaft member 1 is formed in parallel to the axial direction, and its axial length is a dimension a. Further, the inner spline 3b formed on the tubular member 2 is formed in parallel to the axial direction, and the axial length thereof is a dimension b (see FIG. 2). The formation dimension a of the outer spline 3a formed on the shaft member 1 is longer than the formation dimension b of the inner spline 3b formed on the tubular member 2, whereby the shaft member 1 and the tubular member 2 are connected. In the initial state, both ends of the outer spline 3a are press-fitted and fitted so as to protrude from the end of the inner spline 3b in the axial direction (see FIG. 1).
[0025]
Here, as shown in FIG. 3, the load in which the outer spline 3a formed on the shaft member 1 is press-fitted into the inner spline 3b formed on the tubular member 2 is axially applied to the inner spline 3b. It increases linearly as it is press-fitted to, and when it reaches the peak value A1 when the tip of the outer spline 3a exits the inner spline 3b, it slightly decreases and changes from B1 to C1 substantially flatly. A characteristic with a region is shown. These press-fit load characteristics change as indicated by broken lines when the dimensions of the outer spline 3a and the inner spline 3b vary within an allowable range, and the respective loads become A2, B2, and C2. Show properties.
[0026]
Here, the difference in the press-fitting fitting load is that the mutual difference (P1) between the peak values A1 and A2 is relatively large, and the mutual difference (P2) between the loads B1 and B2 and C1 and C2 in a substantially flat region is relatively large. It will be small. That is, when the front end of the outer spline 3a formed on the shaft member 1 is in the axial direction of the inner spline 3b formed on the tubular member 2, the press-fitting load varies greatly, while the outer spline 3a is formed on the shaft member 1. In the state where both ends of the outer spline 3a protrude in the axial direction from the end of the inner spline 3b formed on the tubular member 2, the inner spline 3b is not damaged at the front end side of the outer spline 3a. The variation of is small.
[0027]
Reference numeral 4 denotes a tube that controls power transmission. The tube 4 is made of a metal material, a fiber-reinforced synthetic resin material, or the like, and is attached to the end of the tubular member 2, that is, the right end 5A in FIG. Specifically, the outer circumference of the right end portion 5A of the tubular member 2 is reduced in diameter by a dimension substantially equal to the wall thickness of the tube 4 over a predetermined length, and the end portion of the tube 4 is a tubular member. It is press-fitted into the outer peripheral portion with a reduced diameter of the second end portion 5A and is attached by welding or adhesion.
[0028]
According to such a configuration, the outer spline 3a formed on the shaft member 1 is press-fitted from the left end portion 5B side into the inner spline 3b formed on the tubular member 2, and the shaft member 1 and the tubular member 2 are connected. They are connected so that they can move relative to each other in the axial direction and cannot rotate in the rotational direction. At this time, the outer spline 3a of the shaft member 1 is formed longer in the axial direction than the inner spline 3b of the tubular member 2, and in the initial state where the shaft member 1 and the tubular member 2 are coupled, The both ends of the formed outer spline 3a are press-fitted and fitted so as to protrude in the axial direction from the end of the inner spline 3b formed on the tubular member 2. As a result, a power transmission device connected by the spline joint 3 is formed.
[0029]
In the power transmission device, the shaft member 1 is connected to a driving device (not shown), and the tubular member 2 is connected to a driving device (not shown) via a tube 4 between the driving device and the driven device. It manages the power transmission of the rotational torque. Further, when a force of a predetermined value or more is applied in the axial direction of the power transmission device, the shaft member 1 and the tubular member 2 are moved relative to each other in the axial direction while receiving frictional resistance by the spline joint 3. Absorbs directional impact energy.
[0030]
Here, the load that the outer spline 3a formed on the shaft member 1 is press-fitted into the inner spline 3b formed on the tubular member 2 is, as described above with reference to FIG. 3, the tip of the outer spline 3a is the inner spline 3b. 3 shows a characteristic having a region in which the peak value A1 (A2) is slightly reduced after the peak value A1 (A2) is exited and changes from B1 (B2) to C1 (C2) substantially flatly. The load characteristic line shown in FIG. The mutual difference (P2) between the loads B1, B2 and C1, C2 in the substantially flat region in the figure is relatively small. That is, when both ends of the outer spline 3a formed on the shaft member 1 protrude in the axial direction from the end of the inner spline 3b formed on the tubular member 2, the inner spline 3b is damaged on the tip side of the outer spline 3a. Therefore, the variation of the press-fit fitting load is small.
[0031]
That is, a force of a predetermined value or more acts in the axial direction of the power transmission device, and the shaft member 1 and the tubular member 2 move relative to each other in the axial direction while receiving a frictional resistance by the spline joint 3, thereby causing an axial impact. When absorbing energy, the magnitude of the frictional resistance corresponds to the press-fitting load when the shaft member 1 and the tubular member 2 are further press-fitted from the initial state. It becomes a load in a substantially flat region where there is little change in the fitting load. That is, the press-fitting fitting load, that is, the frictional resistance is less varied than the peak value.
[0032]
Therefore, when a force of a predetermined value or more is applied in the axial direction of the power transmission device, the outer spline 3a formed on the shaft member 1 and the inner spline 3b formed on the tubular member 2 are subjected to frictional resistance in the axial direction. The frictional resistance of the spline joint 3 has a small variation and becomes stable when absorbing the impact energy in the axial direction.
[0033]
Therefore, it is possible to obtain a power transmission device capable of absorbing the impact by absorbing the impact energy by the stable frictional resistance of the spline joint 3.
[0034]
FIGS. 4 to 6 are views showing other embodiments of the present invention. The difference between these embodiments is that the outer splines 3a formed on the shaft member 1 and the tubular member 2 are formed. One or both of the inner splines 3b are helical splines. Hereinafter, these embodiments will be described. In the description, the same components as those in the above-described embodiment are denoted by the same reference numerals, and redundant description thereof is omitted.
[0035]
First, in the embodiment shown in FIG. 4, the outer spline 3a formed on the shaft member 1 is a spline parallel to the axial direction, and the inner spline 3b formed on the tubular member 2 is a helical spline.
[0036]
In the embodiment shown in FIG. 5, the outer spline 3a formed on the shaft member 1 is a helical spline, and the inner spline 3b formed on the tubular member 2 is a spline parallel to the axial direction.
[0037]
In the embodiment shown in FIG. 6, both the outer spline 3a formed on the shaft member 1 and the inner spline 3b formed on the tubular member 2 are helical splines.
[0038]
Also in such a configuration, in the initial state where the shaft member 1 and the tubular member 2 are connected, both ends of the outer spline 3a formed on the shaft member 1 are axially directed from the end of the inner spline 3b formed on the tubular member 2. Therefore, when a force of a predetermined value or more acts in the axial direction of the power transmission device to absorb the impact energy, the frictional resistance of the spline joint 3 is small and stable.
[0039]
Therefore, also in these embodiments, a power transmission device capable of absorbing the impact and capable of absorbing the impact energy by the stable frictional resistance of the spline joint 3 can be obtained.
[0040]
In addition, since one or both of the outer spline 3a formed on the shaft member 1 and the inner spline 3b formed on the tubular member 2 are helical splines, the clearance in the tooth width direction of the splines 3a and 3b can be reduced. Further, rattling in the rotational direction of the power transmission device is prevented.
[0041]
In particular, by forming the outer spline 3a formed on the shaft member 1 as a helical spline, the spline can be easily processed as compared with the case where the inner spline 3b formed on the tubular member 2 is a helical spline.
[0042]
Although the embodiment has been described with reference to the drawings, the specific configuration is not limited to this embodiment and can be changed without departing from the gist of the invention.
[0043]
【The invention's effect】
As described above in detail, according to the present invention, a power transmission device capable of absorbing an impact and capable of absorbing the impact energy by a stable frictional resistance of the spline joint can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of a power transmission device capable of absorbing shock according to the present invention.
FIG. 2 is an explanatory view showing a state before the shaft member shown in FIG. 1 is fitted to the tubular member by a shaft member (A) and a tubular member (B).
FIG. 3 is a load characteristic diagram showing a relationship between a press-fitting load and a press-fitting stroke when the outer spline formed on the shaft member shown in FIG. 1 is press-fitted to the inner spline formed on the tubular member.
FIG. 4 is a view similar to FIG. 2, showing another embodiment of the present invention.
FIG. 5 is a view similar to FIG. 2, showing another embodiment of the present invention.
FIG. 6 is a view similar to FIG. 2, showing another embodiment of the present invention.
[Explanation of symbols]
1 Shaft member 2 Tubular member 3 Spline joint 3a Outer spline 3b Inner spline 4 Tube

Claims (3)

軸部材とこの軸部材に嵌り合う管状部材とが、スプライン継手によって軸方向に相対移動可能でかつ回転方向に相対回動不能に連結されてなる、衝撃吸収可能な動力伝達装置において、
前記軸部材に形成した外スプラインが管状部材に形成した内スプラインに圧入嵌合されると共に、
前記軸部材に形成した外スプラインが管状部材に形成した内スプラインよりも軸方向に長く形成されてなり、
前記軸部材と管状部材とが連結された初期状態において軸部材に形成した外スプラインの両端が管状部材に形成した内スプラインの端部から軸方向に突出していることを特徴とする、衝撃吸収可能な動力伝達装置。
In a power transmission device capable of absorbing an impact, wherein a shaft member and a tubular member fitted to the shaft member are connected to each other by a spline joint so as to be relatively movable in the axial direction and not to be relatively rotatable in the rotational direction.
The outer spline formed on the shaft member is press-fitted to the inner spline formed on the tubular member,
The outer spline formed on the shaft member is formed longer in the axial direction than the inner spline formed on the tubular member,
In the initial state where the shaft member and the tubular member are connected, both ends of the outer spline formed on the shaft member protrude in the axial direction from the end of the inner spline formed on the tubular member, and can absorb shocks. Power transmission device.
前記軸部材に形成した外スプラインと管状部材に形成した内スプラインとの何れか一方または両方がヘリカルスプラインであることを特徴とする、請求項1記載の衝撃吸収可能な動力伝達装置。The power transmission device capable of absorbing an impact according to claim 1, wherein one or both of an outer spline formed on the shaft member and an inner spline formed on the tubular member are helical splines. 前記軸部材に形成した外スプラインがヘリカルスプラインであることを特徴とする、請求項2記載の衝撃吸収可能な動力伝達装置。The power transmission device capable of absorbing shock according to claim 2, wherein the outer spline formed on the shaft member is a helical spline.
JP27838598A 1998-09-30 1998-09-30 Power transmission device capable of absorbing shock Expired - Fee Related JP3712540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27838598A JP3712540B2 (en) 1998-09-30 1998-09-30 Power transmission device capable of absorbing shock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27838598A JP3712540B2 (en) 1998-09-30 1998-09-30 Power transmission device capable of absorbing shock

Publications (2)

Publication Number Publication Date
JP2000108701A JP2000108701A (en) 2000-04-18
JP3712540B2 true JP3712540B2 (en) 2005-11-02

Family

ID=17596614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27838598A Expired - Fee Related JP3712540B2 (en) 1998-09-30 1998-09-30 Power transmission device capable of absorbing shock

Country Status (1)

Country Link
JP (1) JP3712540B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030069B1 (en) 2005-11-10 2011-04-20 한국델파이주식회사 Shock Absorption Structure of Automotive Steering Column

Also Published As

Publication number Publication date
JP2000108701A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
US7413222B2 (en) Position adjustment type steering column device for vehicles
KR0155028B1 (en) Method of manufacturing a shock absorbing type steering shaft
JP2001347954A (en) Connecting structure of telescopic shaft
JP2007290635A (en) Fastener
EP2666700A1 (en) Steering device
JP2009040302A (en) Energy absorbing shaft for steering device
JP3712540B2 (en) Power transmission device capable of absorbing shock
JP3409614B2 (en) Shrink load adjustment method for shock absorbing steering shaft
GB2256027A (en) Adjustable length vehicle steering column
JP6673309B2 (en) Torque transmission shaft
JP7671053B2 (en) Intermediate Shaft
JPH1045005A (en) Power transmission shaft of steering device and method for assembling it
US5544542A (en) Shock absorbing steering device and method of manufacturing the device
JPS63502021A (en) Steering column with adjustable reach
JPH09267753A (en) Intermediate shaft of steering device
JP3833052B2 (en) Power transmission shaft
JP3832962B2 (en) Universal joint slidable in the axial direction
JP2013252860A (en) Method of manufacturing impact absorbing steering shaft
JPH0140333Y2 (en)
JP2001140918A (en) Elastic shaft coupling
KR101093263B1 (en) Sliding universal joint
JP6524937B2 (en) Cross joint
JP2570835Y2 (en) Telescopic steering shaft
JP2003170839A (en) Shock absorber for steering device
JP2011225089A (en) Transmission shaft of steering device, and steering device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050817

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees