[go: up one dir, main page]

JP3715436B2 - Salt, electrolytic solution and electrochemical device using the same - Google Patents

Salt, electrolytic solution and electrochemical device using the same Download PDF

Info

Publication number
JP3715436B2
JP3715436B2 JP18490298A JP18490298A JP3715436B2 JP 3715436 B2 JP3715436 B2 JP 3715436B2 JP 18490298 A JP18490298 A JP 18490298A JP 18490298 A JP18490298 A JP 18490298A JP 3715436 B2 JP3715436 B2 JP 3715436B2
Authority
JP
Japan
Prior art keywords
salt
electrolytic solution
electrochemical device
mol
ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18490298A
Other languages
Japanese (ja)
Other versions
JP2000016983A (en
Inventor
倫子 佐藤
貴志 久保木
則雄 高見
隆久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18490298A priority Critical patent/JP3715436B2/en
Publication of JP2000016983A publication Critical patent/JP2000016983A/en
Application granted granted Critical
Publication of JP3715436B2 publication Critical patent/JP3715436B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は常温で液体の塩、それを用いた電解液及び前記電解液を用いた電気化学デバイスに関する。
【0002】
【従来の技術】
置換イミダゾリウムカチオンと各種アニオン、例えばCl- (J.S.Milkes.et al.,Inorg.Chem.,21,1263(1982)) やNO3 - 、NO2 - 、BF4 - 、MeCO2 - 、SO4 2-(J.S.Milkes and M.J.Zaworotko,J.Chem.Soc.,Chem.Commun.,965(1992)) 、あるいは、 AsF6 - 、PF6 - 、 (CF3 SO2 )2 N - 、 (CF3 SO2 )3 C - (V.R.Koch,et al.,J.Electrochem.Soc.,143,798(1996))とからなる塩は、一般に比較的融点が低く、化学的・電気化学的にも比較的安定であることから、該塩を溶媒として電解質を溶解させた組成物を電気化学デバイスの電解液として使用することが検討されている。それにより高い電気伝導度を有する電解液を提供することができる。特に、 (CF3 SO2 ) 2 N - をカウンターアニオンとする塩については特開平8-259543号公報に詳細に開示されている。前記公報には該塩を溶媒としメチルヘキシルイミダゾリウムヨウ化物とヨウ素を溶解させた組成物を電気化学光電池の電解液とすることが記載されている.
【0003】
【発明が解決しようとする課題】
しかしながら従来検討されてきた塩は、融点が未だ充分低くないか、または他の特性、例えば化学的/電気化学的安定性が十分でない、あるいは腐食性がありそれを電気化学デバイスの電解液として使用すると電気化学デバイスの構成部品を腐食させる場合があるなど、必ずしも満足のいくものではなかった。
本発明は、実用化に足る低い融点を有し常温で液体で、化学的・電気化学的にも安定で腐食性の少ない塩を提供することを目的とする。
さらに本発明は、化学的・電気化学的にも安定で腐食性の少ない電解液を提供することを目的とする。
さらに本発明は、長寿命、高効率かつ安全性も高い電気化学デバイスを提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は下記一般式(I) で表される塩である。
【0005】
【化2】

Figure 0003715436
( 式中、R1とR3はそれぞれ炭素数1 〜8 のアルキル基であり、R2、R4およびR5は水素または炭素数1 〜3 のアルキル基)
本発明に係る塩においては特に1−エチル3−メチルイミダゾリウム ビス(ペンタフルオロエタンスルホニル)アミド、1−n−ブチル−3−メチルイミダゾリウム ビス(ペンタフルオロエタンスルホニル)アミド、1−エチル−3−イソプロピル−イミダゾリウム ビス(ペンタフルオロエタンスルホニル)アミドが合成の容易性や安定性の点で特に好ましい。
本発明に係る塩は次式(II)の反応による水溶液中でのイオン交換により合成することができる。
【0006】
【化3】
Figure 0003715436
上式で、X - はハロゲン化物イオン、好ましくはCl- またはBr- を表わす。
【0007】
置換イミダゾリウムハロゲン化物は、R1,R2,R4,R5- 置換イミダゾールとハロゲン化アルキルR3X を有機溶媒中で還流することにより得られる。
(C2 F5 SO2 )2 NLi は、例えばD.D.DesMarteau,Inorg.Chem.,32,5007(1993)あるいは、米国特許第5,652,072 号に開示されている方法を用いて合成できる。
【0008】
また本発明は一般式(I) で示される第1 の塩と、第1 の塩とは異なる種類の第2 の塩あるいは酸化還元対の少なくとも1 種とを混合させてなることを特徴とする電解液である。
【0009】
ここで上記第2 の塩あるいは酸化還元対とは、各種電気化学デバイスの電解液の電解質としての働きを有する塩あるいは酸化還元対である。本発明に係る第1 の塩は常温で液体であるので、第1 の塩と、第2 の塩あるいは酸化還元対とを混合することにより、電気化学デバイスの電解液として使用することができる。
たとえば電気化学デバイスがリチウム電池の場合、第1 の塩に混合せしめる第2 の塩としては(C2 F5 SO2 )2 N Li、LiPF6 、LiBF4 、LiClO 4 に代表される各種Li塩が挙げられる。また電気化学デバイスが電気化学光電池である場合、酸化還元対例えばヨードおよび三ヨウ化物を混合せしめて電解液として使用する。
【0010】
本発明に係る電気化学デバイスは、本発明に係る上記電解液を使用したものである。電気化学デバイスとしては液状電解液を使用する電池、表示素子、電気化学光電池などが挙げられる。
本発明にかかわる一般式(I) で示される塩は低い融点を有し( 室温〜-10 ℃) 常温で液体であり電気伝導度も高い。さらに化学的・電気化学的にも安定で腐食性が少ない。
【0011】
また、本発明に係る電解液は、電気伝導度が高く、熱的にも安定で、かつ化学的・電気化学的に安定で腐食性の少ない電解液を提供することができる。
また、本発明に係る電気化学デバイスは、前記の如くの電解液を使用するため、長寿命、高効率かつ安全性も高い電気化学デバイスを提供することができる。例えば負極にリチウム金属やリチウム合金、リチウムを吸蔵・放出する炭素質物などを用い、本願発明に係る塩にリチウム塩を溶解させた電解液を用いたリチウム電池は、従来の有機溶媒に電解質を溶解させた電解液を用いた電池に比べて熱に対する安定性に優れ、かつ不燃性であるため、高温条件下あるいは低温条件下で使用しても電池の性能が維持されまた安全性が向上する。
【0012】
【発明の実施の形態】
以下に実施例に基づいて本発明を詳細に説明する。
( 実施例1)
1-エチル-3- メチル- イミダゾリウム ビス(ペンタフルオロエタンスルホニル)アミドの合成
0.3mol(24.6g) の1-メチルイミダゾールを100ml のアセトニトリルに溶解し、イミダゾールに対して10% 過剰、すなわち0.33mol のエチルブロマイドを加えて8 時間還流した。反応後、過剰のエチルブロマイドとアセトニトリルを減圧留去し、淡黄白色固体の1-エチル-3- メチルイミダゾリウムブロマイドの粗生成物を得た( 収率98%)。これを水に溶解して活性炭を加え、加熱攪拌後活性炭をろ過して取り除き、無色透明の水溶液を得た。一方、滴下漏斗とリービッヒコンデンサーを備えた1Lの三ツ口フラスコに水200ml とアセトニトリル200ml を取り、0.5mol(100g)のNa2 S2 O4 と1.0mol(82g) のNaHCO 3 を加え、窒素下で攪拌した。温度を40℃に保ちながらペンタフルオロヨードエタン0.3mol(74g) を1 時間かけて滴下し、さらに15時間攪拌した。アセトニトリルを留去した後に300ml の酢酸エチルで生成物を抽出し、100ml の飽和NaCl水溶液で3 回洗浄した。溶媒を減圧留去し、生じた固体を減圧加熱乾燥してCF3 CF2 SO2 Naを得た。
【0013】
吹き込み管と還流管を備えた1Lの三ツ口フラスコに水250ml を取り、上記で合成したCF3 CF2 SO2 Naを加え、攪拌して溶解した。ガスの出口を濃NaOH水溶液を入れたガス洗浄瓶に通し、溶液を0 ℃に保ちながら過剰の塩素ガスを10分間吹き込んだ。水溶液から分離して下層に生じた生成物の層を集め、 NaHCO3 水溶液で洗浄し、モレキュラーシーブで乾燥した後に蒸留することによりCF3 CF2 SO2 Clを得た (CF3 CF2 I からの収率80%)。
【0014】
吹き込み管と還流管を備えた1Lの三ツ口フラスコに250ml の乾燥したスルホランを入れ、1.7mol(100g)の活性弗化カリウム(KF)と0.2mol(44g) のCF3 CF2 SO2 Clを加え、窒素下、室温で3 日間攪拌した。液体窒素を用いたトラップ−ツー−トラップ法により生成物を集め、常圧で蒸留することによりCF3 CF2 SO2 F を得た( 収率85%)。
【0015】
ドライアイス/エタノールコンデンサーを備えた500ml の三ツ口フラスコに液体アンモニア200ml をとり、窒素ガスをフローしながら石油エーテル/液体窒素バスで-90 ℃に冷却してアンモニアをシャーベット状にした。0.15mol(30.3g) のCF3 CF2 SO2 F を30分かけて加えた後、-80 ℃で1 時間攪拌した。反応溶液を室温に戻し、過剰なアンモニアが除去されるまで窒素を吹き込んだ。50% 硫酸150 mlを加えて30分攪拌した後に、アセトニトリル250 mlを加えさらに30分攪拌した。2 層に分離した反応溶液の上層を集め、体積が十分の一となるまで濃縮し、24時間放置した。生成した白色固体を集め、真空乾燥することによりCF3 CF2 SO2 NH2 を得た( 収率90%)。
【0016】
0.03 mol(6.2g)のCF3 CF2 SO2 NH2 を300ml のナスフラスコにとり、メタノール50mlと0.03mol(1.21g)のNaOHを加え、均一になるまで室温で攪拌した。体積が四分の一となるまで濃縮し、徐々に冷却することにより生じた白色固体を集め、真空乾燥することによりCF3 CF2 SO2 NHNaを得た( 収率87%)。
【0017】
還流管を備えた500ml の三ツ口フラスコに0.0181mol(4.0g) のCF3 CF2 SO2 NHNaをとり、アセトニトリル80mlと100ml のHN[Si(CH3 )3 ]2 を加え、110 ℃で12時間還流した。溶媒と過剰なHN[Si(CH3 )3 ]2 を減圧留去し、生じた固体を集め100 ℃で真空加熱乾燥することにより定量的にCF3 CF2 SO2 NNaSi(CH3 )3 を得た。
【0018】
50ml のパイレックス製耐圧アンプル管に0.017mol(4.99g) のCF3 CF2 SO2 NNaSi(CH3 )3 、30mlのアセトニトリル、0.020mol(4.04g) のCF3 CF2 SO2 F をとり、十分に脱気してから密閉し、攪拌しながら80℃で48時間加熱した。溶媒を減圧留去し、生じた固体を集めて100 ℃で真空加熱乾燥することにより (CF3 CF2 SO2 )2 NNa を得た( 収率90%)。
【0019】
5gの (CF3 CF2 SO2 )2 NNa を43g の濃硫酸に溶かし、高真空下60℃で昇華させることにより (CF3 CF2 SO2 )2 NHを得た( 収率91%)。
0.01molの (CF3 CF2 SO2 )2 NHと0.095molのLiOHを水100 mlに溶解し、1 時間攪拌した後に水を減圧留去、200 ℃で真空加熱乾燥することにより定量的に (CF3 CF2 SO2 )2 NLi を得た。
【0020】
生成した塩を更に同様に水溶液中で活性炭処理を行なって無色透明のLi(C2 F 5 SO2 )2 N の水溶液を得た。1- エチル-3- メチルイミダゾリウムブロマイドを0.2mol含む水溶液にLi( CF5 SO2 )2 N を同じく0.2mol含む水溶液を攪拌しながら加えると溶液は白濁するが、充分攪拌後静置すると、やや粘度の高い層と水層の二層に分離する。 目的とする塩、1-エチル-3- メチルイミダゾリウム ビス(ペンタフルオロエタンスルホニル)アミドは下層の主成分であるので、水層と分け、更にこの層を数回水で洗浄した。それには、マグネティックスターラーを用いて攪拌後デカンテーションにより上層を除くという方法を繰り返してもよいし、分液ロートを用いて処理してもよい。こうして得た液相は、完全に無色透明であるが、場合によっては不純物を含んで着色していることがある。そのときには活性炭を用いて不純物を吸着除去するか、またはカラムを通して不純物を分離除去すればよい。生成物は常温で液体の疎水性の塩である( 収率88%)。
こうして得た塩は-25 ℃まで冷却しても凝固しなかった。Li(C2 F5 SO2 )2 N を0.5 mol/kg含む場合も-30 ℃以下まで凝固しなかった。また、熱安定性も高く、少なくとも300 ℃までは分解や炭化などの現象は観察されなかった。
【0021】
( 実施例2)
1-n- ブチル-3- メチルイミダゾリウム ビス(ペンタフルオロエタンスルホニル)アミドの合成
実施例1 記載の合成法においてエチルブロマイドの代わりにn- ブチルブロマイドを用いたほかは同様の手順に従って1-n- ブチル-3- メチルイミダゾリウムビス(ペンタフルオロエタンスルホニル)アミドを合成した。ガラス転移点は-87 ℃であった。
【0022】
( 実施例3)
1-エチル-3- イソプロピルイミダゾリウム ビス(ペンタフルオロエタンスルホニル)アミドの合成
実施例1 記載の合成法においてエチルブロマイドの代わりにイソプロピルブロマイドを用いたほかは同様の手順に従って1-エチル-3- イソプロピルイミダゾリウム ビス(ペンタフルオロエタンスルホニル)アミドを合成した。ガラス転移点は -83℃であった。
【0023】
( 実施例4)
1-sec-ブチル-3- メチルイミダゾリウム ビス(ペンタフルオロエタンスルホニル)アミドの合成
実施例1 記載の合成法においてエチルブロマイドの代わりにsec-ブチルブロマイドを用いたほかは同様の手順に従って1-sec-ブチル3-メチルイミダゾリウム ビス(ペンタフルオロエチルスルホニル)イミドを合成した。ガラス転移点は-79 ℃であった。
【0024】
( 実施例5)
1-エチル-3- メチルイミダゾリウム ビス(ペンタフルオロエタンスルホニル)アミドに0.5 重量モル濃度のLi(C2 F5 SO2 )2 N を溶解し、常温で液体の電解液を作製した。負極にリチウムアルミニウム合金、正極に、80重量% リチウムコバルト酸化物(LiCoO4 ) と15重量% のアセチレンブラックと5 重量% のテトラフルオロエチレン粉末からなるペレット、集電体にアルミニウム箔、セパレータにポリプロピレン製多孔質フィルムを用いて上記電解質とともにコイン型リチウム二次電池を組み立てた。この電池を0.5mA/cm2 の電流密度で2.4 〜4.0 V の範囲で充放電サイクルを行い、サイクル寿命を測定した。その結果、200 サイクルを超えても初期容量の85% を維持しており、電気化学的安定性においても優れていることがわかった。試験後、この電池を分解し電極等の観察を行なったが、何ら異常は見当たらなかった。
【0025】
( 実施例6)
Li(C2 F5 SO2 )2 N の代わりにLiPF6 を用いる以外、実施例5 と同様にして電池を構成し、充放電サイクル試験を行なったところ、200サイクルを超えても初期容量の83% を維持しており、電気化学的安定性においても優れていることがわかった。試験後、この電池を分解し電極等の観察を行なったが、何ら異常は見当たらなかった。
【0026】
( 比較例)
1-エチル-3- メチルイミダゾリウム ビス(トリフルオロメタンスルホニル)アミドに0.5 重量モル濃度のLi (CF3 SO2 )2 N を溶解し、常温で液体の電解液を作製した。この電解液を使用したほかは、電池構成は上述の実施例5 と全く同様にして充放電サイクル試験を行なった。その結果、放電容量は50サイクルに満たないうちに初期の50% 以下に低下してしまった。試験後電池を分解したところ、集電体のアルミニウム箔が腐食されていたことがわかった。
【0027】
【発明の効果】
以上述べた如く、本発明の塩は低い融点を有し常温で液体であり腐食性が少ない。さらに化学的・電気化学的にも安定である。
また、本発明に係る電解液は、電気伝導度が高く、熱的にも安定で、かつ化学的・電気化学的に安定で腐食性が少ない。
また、本発明に係る電気化学デバイスは、前記の如くの電解液を使用するため、長寿命、高効率かつ安全性も高い。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a salt that is liquid at room temperature, an electrolytic solution using the same, and an electrochemical device using the electrolytic solution.
[0002]
[Prior art]
Substituted imidazolium cation and various anions such as Cl - (.. JSMilkes.et al, Inorg.Chem, 21,1263 (1982)) and NO 3 -, NO 2 -, BF 4 -, MeCO 2 -, SO 4 2 - (.. JSMilkes and MJZaworotko, J.Chem.Soc, Chem.Commun, 965 (1992)), or, AsF 6 -, PF 6 - , (CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C - (.. VRKoch, et al, J.Electrochem.Soc, 143,798 (1996)) since a salt consisting a generally relatively low melting point, is relatively stable in chemical and electrochemical The use of a composition in which an electrolyte is dissolved using the salt as a solvent as an electrolytic solution for an electrochemical device has been studied. Thereby, an electrolytic solution having high electric conductivity can be provided. In particular, a salt having (CF 3 SO 2 ) 2 N as a counter anion is disclosed in detail in JP-A-8-259543. The above publication describes that a composition in which methyl hexylimidazolium iodide and iodine are dissolved in the salt as a solvent is used as an electrolytic solution for an electrochemical photocell.
[0003]
[Problems to be solved by the invention]
However, the salts that have been studied in the past are not yet sufficiently low in melting point, or have other characteristics such as insufficient chemical / electrochemical stability, or corrosive, and are used as electrolytes for electrochemical devices. Then, the components of the electrochemical device may be corroded, which is not always satisfactory.
An object of the present invention is to provide a salt that has a low melting point sufficient for practical use, is liquid at room temperature, is chemically and electrochemically stable, and has little corrosiveness.
It is another object of the present invention to provide an electrolytic solution that is chemically and electrochemically stable and less corrosive.
Furthermore, an object of the present invention is to provide an electrochemical device having a long life, high efficiency, and high safety.
[0004]
[Means for Solving the Problems]
The present invention is a salt represented by the following general formula (I).
[0005]
[Chemical formula 2]
Figure 0003715436
(Wherein R1 and R3 are each an alkyl group having 1 to 8 carbon atoms, and R2, R4 and R5 are hydrogen or an alkyl group having 1 to 3 carbon atoms)
Among the salts according to the present invention, 1-ethyl-3-methylimidazolium bis (pentafluoroethanesulfonyl) amide, 1-n-butyl-3-methylimidazolium bis (pentafluoroethanesulfonyl) amide, 1-ethyl-3 -Isopropyl-imidazolium bis (pentafluoroethanesulfonyl) amide is particularly preferred from the standpoint of ease of synthesis and stability.
The salt according to the present invention can be synthesized by ion exchange in an aqueous solution by the reaction of the following formula (II).
[0006]
[Chemical 3]
Figure 0003715436
In the above formula, X represents a halide ion, preferably Cl or Br .
[0007]
Substituted imidazolium halides are obtained by refluxing R1, R2, R4, R5-substituted imidazole and alkyl halide R3X in an organic solvent.
(C 2 F 5 SO 2 ) 2 NLi can be synthesized, for example, using the method disclosed in DDDesMarteau, Inorg. Chem., 32,5007 (1993) or US Pat. No. 5,652,072.
[0008]
Further, the present invention is characterized in that the first salt represented by the general formula (I) is mixed with at least one second salt or redox couple of a different type from the first salt. Electrolytic solution.
[0009]
Here, the second salt or redox couple is a salt or redox couple that functions as an electrolyte of the electrolyte solution of various electrochemical devices. Since the first salt according to the present invention is a liquid at room temperature, it can be used as an electrolytic solution for an electrochemical device by mixing the first salt with the second salt or a redox couple.
For example, when the electrochemical device is a lithium battery, the second salt mixed with the first salt includes various Li salts represented by (C 2 F 5 SO 2 ) 2 N Li, LiPF 6 , LiBF 4 , and LiClO 4. Is mentioned. When the electrochemical device is an electrochemical photovoltaic cell, a redox couple such as iodine and triiodide is mixed and used as an electrolytic solution.
[0010]
The electrochemical device according to the present invention uses the electrolytic solution according to the present invention. Examples of the electrochemical device include a battery using a liquid electrolyte, a display element, and an electrochemical photocell.
The salt represented by the general formula (I) according to the present invention has a low melting point (room temperature to −10 ° C.) and is liquid at room temperature and has high electrical conductivity. Furthermore, it is chemically and electrochemically stable and less corrosive.
[0011]
In addition, the electrolytic solution according to the present invention can provide an electrolytic solution that has high electrical conductivity, is thermally stable, is chemically and electrochemically stable, and is less corrosive.
In addition, since the electrochemical device according to the present invention uses the electrolytic solution as described above, it is possible to provide an electrochemical device having a long life, high efficiency, and high safety. For example, lithium batteries using lithium metal or lithium alloys, carbonaceous materials that occlude and release lithium, and electrolytes in which lithium salts are dissolved in the salt according to the present invention are dissolved in conventional organic solvents. Compared to a battery using the electrolyte solution, the heat stability and nonflammability are maintained, so that the battery performance is maintained and the safety is improved even when used under high or low temperature conditions.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on examples.
(Example 1)
Synthesis of 1-ethyl-3-methyl-imidazolium bis (pentafluoroethanesulfonyl) amide
0.3 mol (24.6 g) of 1-methylimidazole was dissolved in 100 ml of acetonitrile, 10% excess with respect to imidazole, that is, 0.33 mol of ethyl bromide was added, and the mixture was refluxed for 8 hours. After the reaction, excess ethyl bromide and acetonitrile were distilled off under reduced pressure to obtain a pale yellowish white solid crude product of 1-ethyl-3-methylimidazolium bromide (yield 98%). This was dissolved in water, activated carbon was added, and after heating and stirring, the activated carbon was removed by filtration to obtain a colorless and transparent aqueous solution. On the other hand, in a 1 L three- necked flask equipped with a dropping funnel and a Liebig condenser, take 200 ml of water and 200 ml of acetonitrile, add 0.5 mol (100 g) Na 2 S 2 O 4 and 1.0 mol (82 g) NaHCO 3 , and under nitrogen. Stir. While maintaining the temperature at 40 ° C., 0.3 mol (74 g) of pentafluoroiodoethane was added dropwise over 1 hour, and the mixture was further stirred for 15 hours. After acetonitrile was distilled off, the product was extracted with 300 ml of ethyl acetate and washed three times with 100 ml of saturated aqueous NaCl solution. The solvent was distilled off under reduced pressure, and the resulting solid was heated and dried under reduced pressure to obtain CF 3 CF 2 SO 2 Na.
[0013]
To a 1 L three- necked flask equipped with a blowing tube and a reflux tube, 250 ml of water was taken, and the CF 3 CF 2 SO 2 Na synthesized above was added and dissolved by stirring. The gas outlet was passed through a gas washing bottle containing concentrated NaOH aqueous solution, and excess chlorine gas was blown in for 10 minutes while maintaining the solution at 0 ° C. The product layer that was separated from the aqueous solution and formed in the lower layer was collected, washed with aqueous NaHCO 3 solution, dried over molecular sieves, and then distilled to obtain CF 3 CF 2 SO 2 Cl (from CF 3 CF 2 I Yield 80%).
[0014]
Place 250 ml of dry sulfolane in a 1 L three-necked flask equipped with a bubbling tube and a reflux tube, and add 1.7 mol (100 g) of activated potassium fluoride (KF) and 0.2 mol (44 g) of CF 3 CF 2 SO 2 Cl. And stirred at room temperature for 3 days under nitrogen. The product was collected by a trap-to-trap method using liquid nitrogen and distilled at normal pressure to obtain CF 3 CF 2 SO 2 F (yield 85%).
[0015]
In a 500 ml three-necked flask equipped with a dry ice / ethanol condenser, 200 ml of liquid ammonia was taken and cooled to −90 ° C. in a petroleum ether / liquid nitrogen bath while flowing nitrogen gas to make ammonia into a sherbet. After adding 0.15 mol (30.3 g) of CF 3 CF 2 SO 2 F over 30 minutes, the mixture was stirred at −80 ° C. for 1 hour. The reaction solution was returned to room temperature and nitrogen was bubbled in until excess ammonia was removed. After adding 150 ml of 50% sulfuric acid and stirring for 30 minutes, 250 ml of acetonitrile was added and stirred for another 30 minutes. The upper layers of the reaction solution separated into two layers were collected, concentrated until the volume became a sufficient volume, and allowed to stand for 24 hours. The produced white solid was collected and vacuum-dried to obtain CF 3 CF 2 SO 2 NH 2 (yield 90%).
[0016]
0.03 mol (6.2 g) of CF 3 CF 2 SO 2 NH 2 was placed in a 300 ml eggplant flask, 50 ml of methanol and 0.03 mol (1.21 g) of NaOH were added, and the mixture was stirred at room temperature until uniform. The solid was generated by concentrating the volume to a quarter and gradually cooling, and then vacuum-dried to obtain CF 3 CF 2 SO 2 NHNa (yield 87%).
[0017]
Take 0.0181 mol (4.0 g) of CF 3 CF 2 SO 2 NHNa in a 500 ml three- necked flask equipped with a reflux tube, add 80 ml of acetonitrile and 100 ml of HN [Si (CH 3 ) 3 ] 2 and heat at 110 ° C for 12 hours. Refluxed. The solvent and excess HN [Si (CH 3 ) 3 ] 2 were distilled off under reduced pressure, and the resulting solid was collected and vacuum dried at 100 ° C. to quantitatively obtain CF 3 CF 2 SO 2 NNaSi (CH 3 ) 3 . Obtained.
[0018]
Take 0.017 mol (4.99 g) CF 3 CF 2 SO 2 NNaSi (CH 3 ) 3 , 30 ml acetonitrile, 0.020 mol (4.04 g) CF 3 CF 2 SO 2 F in a 50 ml Pyrex pressure ampule tube The mixture was degassed and sealed, and heated at 80 ° C. for 48 hours with stirring. The solvent was distilled off under reduced pressure, and the resulting solid was collected and dried under vacuum heating at 100 ° C. to obtain (CF 3 CF 2 SO 2 ) 2 NNa (yield 90%).
[0019]
5 g of (CF 3 CF 2 SO 2 ) 2 NNa was dissolved in 43 g of concentrated sulfuric acid and sublimated at 60 ° C. under high vacuum to obtain (CF 3 CF 2 SO 2 ) 2 NH (yield 91%).
Dissolve 0.01 mol (CF 3 CF 2 SO 2 ) 2 NH and 0.095 mol LiOH in 100 ml of water, stir for 1 hour, distill off the water under reduced pressure, and dry by heating at 200 ° C in a vacuum (quantity ( CF 3 CF 2 SO 2 ) 2 NLi was obtained.
[0020]
The resulting salt was further treated with activated carbon in an aqueous solution to obtain a colorless and transparent aqueous solution of Li (C 2 F 5 SO 2 ) 2 N. When an aqueous solution containing 0.2 mol of Li (CF 5 SO 2 ) 2 N is added to an aqueous solution containing 0.2 mol of 1-ethyl-3-methylimidazolium bromide while stirring, the solution becomes cloudy. Separate into two layers, a slightly viscous layer and an aqueous layer. Since the target salt, 1-ethyl-3-methylimidazolium bis (pentafluoroethanesulfonyl) amide, is the main component of the lower layer, it was separated from the aqueous layer, and this layer was washed several times with water. For this purpose, a method of removing the upper layer by decantation after stirring using a magnetic stirrer may be repeated, or treatment may be performed using a separatory funnel. The liquid phase thus obtained is completely colorless and transparent, but in some cases, it may be colored with impurities. At that time, activated carbon may be used to adsorb and remove impurities, or impurities may be separated and removed through a column. The product is a hydrophobic salt that is liquid at ambient temperature (88% yield).
The salt thus obtained did not solidify upon cooling to -25 ° C. Even when 0.5 mol / kg of Li (C 2 F 5 SO 2 ) 2 N was contained, it did not solidify to -30 ° C or lower. Also, the thermal stability is high, and phenomena such as decomposition and carbonization were not observed up to at least 300 ° C.
[0021]
(Example 2)
Synthesis of 1-n-butyl-3-methylimidazolium bis (pentafluoroethanesulfonyl) amide Example 1 According to the same procedure except that n-butyl bromide was used instead of ethyl bromide in the synthesis method described in 1-n -Butyl-3-methylimidazolium bis (pentafluoroethanesulfonyl) amide was synthesized. The glass transition point was -87 ° C.
[0022]
(Example 3)
Synthesis of 1-ethyl-3-isopropylimidazolium bis (pentafluoroethanesulfonyl) amide Example 1 According to the same procedure except that isopropyl bromide was used instead of ethyl bromide in the synthesis method described in 1-ethyl-3-isopropyl Imidazolium bis (pentafluoroethanesulfonyl) amide was synthesized. The glass transition point was -83 ° C.
[0023]
(Example 4)
Synthesis of 1-sec-butyl-3-methylimidazolium bis (pentafluoroethanesulfonyl) amide Example 1 The procedure described in Example 1 was repeated except that sec-butyl bromide was used instead of ethyl bromide. -Butyl 3-methylimidazolium bis (pentafluoroethylsulfonyl) imide was synthesized. The glass transition point was -79 ° C.
[0024]
(Example 5)
1-ethyl-3-methylimidazolium bis (pentafluoroethanesulfonyl) amide was dissolved in 0.5 wt molar concentration of Li (C 2 F 5 SO 2 ) 2 N to prepare a liquid electrolyte at room temperature. Lithium aluminum alloy for the negative electrode, 80% by weight lithium cobalt oxide (LiCoO 4 ), 15% by weight acetylene black and 5% by weight tetrafluoroethylene powder for the positive electrode, aluminum foil for the current collector, and polypropylene for the separator A coin-type lithium secondary battery was assembled together with the electrolyte using a porous film. This battery was subjected to a charge / discharge cycle in the range of 2.4 to 4.0 V at a current density of 0.5 mA / cm 2 to measure the cycle life. As a result, 85% of the initial capacity was maintained even after exceeding 200 cycles, and it was found that the electrochemical stability was also excellent. After the test, the battery was disassembled and the electrodes and the like were observed, but no abnormality was found.
[0025]
(Example 6)
A battery was constructed in the same manner as in Example 5 except that LiPF 6 was used instead of Li (C 2 F 5 SO 2 ) 2 N, and a charge / discharge cycle test was conducted. 83% was maintained, and it was found that the electrochemical stability was also excellent. After the test, the battery was disassembled and the electrodes and the like were observed, but no abnormality was found.
[0026]
(Comparative example)
1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide was dissolved in 0.5 wt molar concentration of Li (CF 3 SO 2 ) 2 N to prepare a liquid electrolyte at room temperature. A charge / discharge cycle test was conducted in the same manner as in Example 5 except that this electrolytic solution was used. As a result, the discharge capacity decreased to 50% or less of the initial value before reaching 50 cycles. When the battery was disassembled after the test, it was found that the aluminum foil of the current collector was corroded.
[0027]
【The invention's effect】
As described above, the salt of the present invention has a low melting point, is a liquid at room temperature, and is not corrosive. Furthermore, it is stable chemically and electrochemically.
Moreover, the electrolytic solution according to the present invention has high electrical conductivity, is thermally stable, is chemically and electrochemically stable, and has little corrosiveness.
Moreover, since the electrochemical device according to the present invention uses the electrolytic solution as described above, it has a long life, high efficiency, and high safety.

Claims (3)

一般式(I) で示されることを特徴とする塩。
Figure 0003715436
( 式中、R1とR3はそれぞれ炭素数1 〜8 のアルキル基であり、R2、R4およびR5は水素または炭素数1 〜3 のアルキル基)
A salt represented by the general formula (I):
Figure 0003715436
(Wherein R1 and R3 are each an alkyl group having 1 to 8 carbon atoms, and R2, R4 and R5 are hydrogen or an alkyl group having 1 to 3 carbon atoms)
前記一般式(I) で示される第1 の塩と、第1 の塩とは異なる種類の第2 の塩あるいは酸化還元対の少なくとも1 種とを混合させてなることを特徴とする電解液。An electrolytic solution comprising a mixture of a first salt represented by the general formula (I) and at least one second salt of a different type from the first salt or a redox couple. 請求項2記載の電解液を用いることを特徴とする電気化学デバイス。An electrochemical device using the electrolytic solution according to claim 2.
JP18490298A 1998-06-30 1998-06-30 Salt, electrolytic solution and electrochemical device using the same Expired - Fee Related JP3715436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18490298A JP3715436B2 (en) 1998-06-30 1998-06-30 Salt, electrolytic solution and electrochemical device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18490298A JP3715436B2 (en) 1998-06-30 1998-06-30 Salt, electrolytic solution and electrochemical device using the same

Publications (2)

Publication Number Publication Date
JP2000016983A JP2000016983A (en) 2000-01-18
JP3715436B2 true JP3715436B2 (en) 2005-11-09

Family

ID=16161335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18490298A Expired - Fee Related JP3715436B2 (en) 1998-06-30 1998-06-30 Salt, electrolytic solution and electrochemical device using the same

Country Status (1)

Country Link
JP (1) JP3715436B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4790105B2 (en) * 2000-08-29 2011-10-12 富士フイルム株式会社 Electrolyte composition and electrochemical cell using the same
JP4641646B2 (en) * 2001-04-06 2011-03-02 株式会社トクヤマ Electrolyte for non-aqueous electrolyte
KR20040036896A (en) * 2001-10-25 2004-05-03 산요덴키가부시키가이샤 Non-aqueous electrolyte secondary cell
EP1646054A4 (en) 2003-07-11 2010-05-19 Ube Industries BASE AND ACID MIXTURE AND ION CONDUCTOR COMPRISING SAID MIXTURE
JP2005135776A (en) * 2003-10-30 2005-05-26 Yuasa Corp Nonaqueous electrolytes and electrochemical devices
JP5402216B2 (en) * 2009-04-28 2014-01-29 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2000016983A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
US9991559B2 (en) Functionalized ionic liquid electrolytes for lithium ion batteries
TWI574950B (en) Sulfur-containing additives for electrochemical or optoelectronic devices
US6548567B2 (en) Ionic compounds with delocalized anionic charge, and their use as ion conducting components or as catalysts
CA3005799C (en) Silane functionalized ionic liquids
US6841301B2 (en) Fluoroalkyl phosphates for use in electrochemical cells
JP3728236B2 (en) Tetrakisfluoroalkylborate and their use as conductive salts
US6423454B1 (en) Lithium fluoroalkylphosphates and their use as electrolyte salts
US9742034B2 (en) Cyano-benzimidazole salts for electrochemical cells and method for synthesis thereof
US20020160261A1 (en) Borate salts for use in electrochemical cells
KR20200044121A (en) Magnesium salt
JP2001220393A (en) Alkylspiroboric acid salt to be used for electrochemical cell
US20080193853A1 (en) Lithium Salts of Pyrroldinium Type Zwitterion and the Preparation Method of the Same
TW527357B (en) Lithium salts, process for preparing them, nonaqueous electrolyte and electrochemical cell
US20020122979A1 (en) Fluoroalkylphosphate salts, and process for the preparation of these substances
US7820323B1 (en) Metal borate synthesis process
JP3715436B2 (en) Salt, electrolytic solution and electrochemical device using the same
CA2324630A1 (en) Complex salts for use in electrochemical cells
JP5099107B2 (en) Electrolytes and electrochemical devices
JP2019099388A (en) Solution, electrolyte and lithium ion battery containing the same
JP4483164B2 (en) Electrolytes and electrochemical devices
CN102952098B (en) Pyrazine ionic liquid and its preparation method and application
JP2004031567A (en) Electric double layer capacitor and ionic compound

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040910

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees