JP3721662B2 - Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof - Google Patents
Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof Download PDFInfo
- Publication number
- JP3721662B2 JP3721662B2 JP29209296A JP29209296A JP3721662B2 JP 3721662 B2 JP3721662 B2 JP 3721662B2 JP 29209296 A JP29209296 A JP 29209296A JP 29209296 A JP29209296 A JP 29209296A JP 3721662 B2 JP3721662 B2 JP 3721662B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- diffraction peak
- positive electrode
- active material
- plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007774 positive electrode material Substances 0.000 title claims description 77
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims description 14
- 238000002441 X-ray diffraction Methods 0.000 claims description 88
- 239000011572 manganese Substances 0.000 claims description 56
- 229910002102 lithium manganese oxide Inorganic materials 0.000 claims description 48
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 claims description 45
- 229910052744 lithium Inorganic materials 0.000 claims description 42
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 41
- 238000010438 heat treatment Methods 0.000 claims description 31
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 27
- 229910052748 manganese Inorganic materials 0.000 claims description 27
- 239000000203 mixture Substances 0.000 claims description 25
- 230000008859 change Effects 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 239000011149 active material Substances 0.000 claims description 7
- 238000002411 thermogravimetry Methods 0.000 claims description 6
- 230000000052 comparative effect Effects 0.000 description 37
- 238000010586 diagram Methods 0.000 description 23
- 229910052596 spinel Inorganic materials 0.000 description 22
- 239000011029 spinel Substances 0.000 description 22
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 21
- 239000013078 crystal Substances 0.000 description 20
- 229910015645 LiMn Inorganic materials 0.000 description 18
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 18
- 230000006866 deterioration Effects 0.000 description 17
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 14
- RTBHLGSMKCPLCQ-UHFFFAOYSA-N [Mn].OOO Chemical compound [Mn].OOO RTBHLGSMKCPLCQ-UHFFFAOYSA-N 0.000 description 12
- 239000008188 pellet Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- -1 nickel metal hydride Chemical class 0.000 description 8
- 229910014143 LiMn2 Inorganic materials 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 239000004570 mortar (masonry) Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000006258 conductive agent Substances 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000003795 desorption Methods 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- QEXMICRJPVUPSN-UHFFFAOYSA-N lithium manganese(2+) oxygen(2-) Chemical class [O-2].[Mn+2].[Li+] QEXMICRJPVUPSN-UHFFFAOYSA-N 0.000 description 3
- 235000006748 manganese carbonate Nutrition 0.000 description 3
- 239000011656 manganese carbonate Substances 0.000 description 3
- 229940093474 manganese carbonate Drugs 0.000 description 3
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 3
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000004455 differential thermal analysis Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 150000002697 manganese compounds Chemical class 0.000 description 2
- GEYXPJBPASPPLI-UHFFFAOYSA-N manganese(iii) oxide Chemical compound O=[Mn]O[Mn]=O GEYXPJBPASPPLI-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- FGQLGYBGTRHODR-UHFFFAOYSA-N 2,2-diethoxypropane Chemical compound CCOC(C)(C)OCC FGQLGYBGTRHODR-UHFFFAOYSA-N 0.000 description 1
- HEWZVZIVELJPQZ-UHFFFAOYSA-N 2,2-dimethoxypropane Chemical compound COC(C)(C)OC HEWZVZIVELJPQZ-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- 229910015685 LixMnOy Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、ポータブル用電子機器の電源等に用いられる非水電解液二次電池及びその正極活物質の製造方法に関するものである。
【0002】
【従来の技術】
近年、電子技術の進歩により、電子機器の高性能化、小型化、ポータブル化が進み、これら電子機器には、エネルギー密度の高い二次電池が要求されている。従来、これら電子機器に使用される二次電池としては、ニッケル・カドミウム二次電池電池、鉛蓄電池、ニッケル水素電池、リチウムイオン二次電池などが挙げられる。特に、リチウムイオン二次電池は、電池電圧が高く、高エネルギー密度を有し、自己放電も少なく、かつ、サイクル特性に優れ、小型軽量電池に適合できる最も有望な電池である。
【0003】
このようなリチウムイオン二次電池の正極材料としては、LiCoO2、LiNiO2や、より低コストなLiMn2O4等のリチウムマンガン酸化物の使用が検討され、盛んに開発研究が行われている。
【0004】
しかしながら、従来から正極材料として用いられている微粉末のリチウムマンガン酸化物は、機械プレスだけで密に充填することができない。特に、シート状電極に成型した場合には、粉末としての性状から大容量で柔軟性を有するものにすることが困難で、実用的電極を作製することができない。しかも、この微粉末リチウムマンガン酸化物を正極材料として用いたリチウムイオン二次電池においては、数十回の充放電により大きくサイクル特性が低下し、リチウムの出入りに伴い充放電性能が急速に失われるといった問題もある。このように、微粉末のリチウムマンガン酸化物では、より高容量・高性能な電池を得るのが困難である。
【0005】
また、電解二酸化マンガン等から合成される大きな粒子径を有するリチウムマンガン酸化物は、比表面積が小さいことから、微粉グラファイト導電剤やアセチレンブラックといった導電剤を10%以上混合させ、接触点をより増大させ電子伝導性を高めた混合性状にして使用する必要がある。しかし、導電剤を10%以上混合させて使用したものでも、サイクルの進行とともに材料が変質し、徐々に放電容量が低下しまう。また、活物質の充放電性能を維持するために多量の導電剤や金属を添加することは、高容量化に対して推奨できるものではなく、高性能化と高容量化という相反する要望を同時に満たすことができない。
【0006】
このように、これまで正極活物質として用いられているリチウムマンガン酸化物は、微粒子の場合には、正極の充填密度がばらついたり、或いは低くなり、さらには電極の柔軟性を欠いてしまい、サイクル特性や容量の点で問題が生じしまう。また、大粒径の場合には、導電材を多く必要とするため容量を高めるのが困難である。このため、LiMn2O4の理論的容量が148mAh/gであるにもかかわらず、これまでのリチウムマンガン酸化物においては、充放電における容量が110mAh/g程度、サイクル寿命が100サイクルで、理論値の80%以下の特性しか得られない。
【0007】
【発明が解決しようとする課題】
これまで、上述した問題に対して、リチウムマンガン酸化物の組成及びその合成方法が種々検討されている。しかしながら、リチウムマンガン酸化物は、充放電に伴って可逆性が失われ、容量の低下が著しい等、未だ実用的な正極材料に至っていない。さらに、リチウムマンガン酸化物は、リチウムコバルト酸化物やリチウムニッケル酸化物と比較して大電流での充放電性能に劣っていた。
【0008】
そこで、本発明者らは、上述した問題点を解決するため、充放電サイクルに伴うリチウムイオンの挿入脱離反応をスムーズに進める結晶構造を詳細に検討した結果、本発明を完成させるに至った。
【0009】
本発明は、リチウムマンガン酸化物を正極活物質として用いながら、充放電サイクルに伴う正極材料の変質や結晶構造劣化を抑制し、放電負荷特性、サイクル特性に優れた非水電解液二次電池、及びその正極活物質の製造方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る非水電解液二次電池は、リチウムマンガン酸化物を活物質とする正極と、リチウムをドープ及び脱ドープすることが可能である負極と、非水電解液とを備えてなり、上記リチウムマンガン酸化物は、X線回折による回折ピークにおいて、(311)面と(400)面の回折ピーク強度比(400)/(311)が1.05〜1.20であり、且つ、マンガンに対するリチウムの原子比Li/Mnが0.505〜0.525であり、マンガンに対する酸素の原子比O/Mnが1.96〜2.04であり、空気中での熱重量測定における熱重量変化温度が770℃以上800℃以下であることを特徴とする。
【0011】
また、上記リチウムマンガン酸化物のマンガンに対するリチウムの原子比Li/Mnは、0.505〜0.525であり、マンガンに対する酸素の原子比O/Liは、1.96〜2.04であることが好ましい。
【0013】
リチウムマンガン酸化物からなる正極材料は、(400)/(311)の強度比を規制することにより、リチウムイオンがスムーズに移動しやすくなり、リチウム脱離による格子歪みが内部まで伝播して均一な性状を有するため、正極材料の変質や結晶構造の劣化が抑制される。
【0014】
したがって、本発明に係る非水電解液二次電池においては、(311)面と(400)面の強度比(400)/(311)が1.05〜1.20であるリチウムマンガン酸化物を正極活物質として用いることにより、正極材料の変質、結晶構造劣化を抑制し、サイクル寿命の安定化と、大電流での充放電性能を向上させることができる。
【0015】
本発明に係る正極活物質の製造方法は、マンガンに対するリチウムの原子比Li/Mnが0.505〜0.525となるリチウム源とマンガン源との混合物を加圧成形し、450℃以下で加熱処理を行う第一の処理工程と、第一の処理工程により得られた混合体を室温冷却後、再度粉砕混合し、650〜780℃で再び加熱処理を行う第二の処理工程とにより、X線回折による回折ピークにおいて(311)面と(400)面の回折ピーク強度比(400)/(311)が1.05〜1.20であり、且つ、マンガンに対するリチウムの原子比Li/Mnが0.505〜0.525であり、マンガンに対する酸素の原子比O/Mnが1.96〜2.04であり、空気中での熱重量測定における熱重量変化温度が770℃以上800℃以下であるリチウムマンガン酸化物を得ることを特徴とする。
【0016】
このように、本発明に係る正極活物質の製造方法においては、第一の処理工程と第二の処理工程とを経ることにより、均一な性状を有するリチウムマンガン酸化物を得ることができる。すなわち、この製造方法により、(311)面と(400)面の強度比(400)/(311)が1.05〜1.20であるリチウムマンガン酸化物を得ることができる。このように、均一な性状を有し、格子面がある規則性を有するリチウムマンガン酸化物は、リチウムの挿入脱離による結晶構造の劣化や変質がなく、サイクル寿命の安定化を図り、大電流での充放電特性を向上させるものである。
【0017】
【発明の実施の形態】
以下、本発明に係る非水電解液二次電池及びその正極活物質の製造方法について具体的に説明する。
【0018】
本発明に係る非水電解液二次電池は、リチウムマンガン酸化物を活物質とする正極と、リチウムをドープ及び脱ドープすることが可能である負極と、非水電解液とを備えている。
【0019】
正極活物質となるリチウムマンガン酸化物は、X線回折による回折ピークにおいて、(311)面と(400)面の回折ピークの強度比(400)/(311)が1.05〜1.20であることを特徴とする。(400)/(311)=1.10〜1.15であれば、より好ましい。また、主回折面である(111)面との強度比を考えると、(311)/(111)=0.45〜0.50、(400)/(111)=0.49〜0.59であることがより好ましい。
【0020】
この理由は、次のように考えることができる。
【0021】
スピネル型の結晶構造を有するLiMn2O4は、図1及び図2に示されるように、MnO八面体で囲まれた空隙にリチウムが位置しており、リチウムは、MnO八面体の斜め方向にあるトンネル空間を移動して挿入/脱離される。
【0022】
このリチウムの移動においては、移動方向の垂直方向が抵抗層となりやすい。これに抗ってリチウムが移動することによる結晶構造の劣化が、容量劣化の一因になるものと考えられる。特に、結晶の表面部分からリチウムが脱離されると、主結晶構造で格子間隔がわずかに短くなる。この歪みは、リチウム移動のトンネル方向ではなく、格子面方向に反って伝達される。つまり、このような表面部分の格子の短縮は、単位八面体の間隔を接近させ電荷のバランスをとって格子距離の変化を調整しているため、結晶内部まで伝達されないと考えられる。そのため、リチウムマンガン酸化物の結晶は、充放電サイクルに伴って不均一な歪みが生じて結晶構造が劣化している。
【0023】
このような結晶構造の劣化を抑えるためには、リチウムが規則正しく配置され、リチウムの挿入脱離に伴う格子間距離の変化が吸収されやすく、さらにリチウムの脱離による格子歪みが結晶内部まで伝達されるような均一な材料性状となっていることが必要である。
【0024】
そこで、本発明では、この材料性状の指標として、X先回折測定で観測される回折ピークにおいて、(311)面と(400)面の回折ピークの強度比(400)/(311)を利用することとする。
【0025】
上述したように、リチウムの挿入脱離による結晶構造の劣化を抑えるためには、均一な材料性状を有すること、すなわち格子面が規則性を有することが必要である。このリチウムの挿入脱離を円滑に行うための格子面の規則性とは、主格子面であるところの(111)面の規則性ではなく、この主格子面と斜めに交差しているところの、リチウムの拡散移動方向に近い(311)面と(400)面の規則性である。本発明でピーク強度比(400)/(311)を規制するのは、この理由からである。
【0026】
このように、本発明に係る非水電解液二次電池は、ピーク強度比(400)/(311)を規制したリチウムマンガン酸化物を正極活物質に用いてなることにより、正極材料そのものの変質、結晶構造劣化を抑制し、サイクル特性を向上させることができる。
【0027】
このようなリチウムマンガン酸化物LixMnOyとしては、スピネル型構造を有し、リチウムマンガン酸化物のマンガンに対するリチウムの原子比xが0.505〜0.525であり、マンガンに対する酸素の原子比O/Liは、1.96〜2.04であるLiMn2O4や、LiMn2O4とLiMn2O3との混合物が好ましく用いられる。
【0028】
また、上記リチウムマンガン酸化物としては、LiMn2O4もしくはLi2MnO3の少なくともいずれかより選ばれてなり、熱重量測定における熱重量変化温度が800℃以下であるものが好ましく用いられる。
【0029】
ところで、このような条件を満たす正極活物質は、次のような条件下で熱処理を行うことにより得られる。
【0030】
本発明に係る正極活物質の製造方法は、マンガンに対するリチウムの原子比Li/Mnが0.505〜0.525となるリチウム源とマンガン源との混合物を、450℃以下で加熱処理を行う第一の処理工程と、第一の処理工程により得られた混合体を室温冷却後再び粉砕混合し、650〜780℃で加熱処理を行う第二の処理工程とによりリチウムマンガン酸化物を得ることを特徴とする。
【0031】
具体的に、第一の処理工程において、リチウム源とマンガン源との混合物を粉砕混合し、その粉末混合体もしくは加圧成型したものを、酸素もしくは空気雰囲気下において加熱温度450℃以下で加熱処理を行う。その後、第二の処理工程において、先の焼結体を室温冷却後再び粉砕混合し、その粉末混合体もしくは再び加圧成型したものを、酸素もしくは空気雰囲気下において加熱温度650〜780℃で再び加熱処理を行えばよい。
【0032】
このように、本発明においては、第一の処理工程と第二の処理工程を経ることにより、均一な性状を有し、格子面がある規則性を有するリチウムマンガン酸化物を得ることができる。すなわち、この製造方法により、(311)面と(400)面の強度比(400)/(311)が1.05〜1.20であるリチウムマンガン酸化物を得ることができる。
【0033】
また、上述した製造方法により、スピネル型構造を有し、リチウムマンガン酸化物のマンガンに対するリチウムの原子比xが0.505〜0.525であり、マンガンに対する酸素の原子比O/Liは、1.96〜2.04であるリチウムマンガン酸化物を得ることができる。さらに、上述した製造方法により、熱重量測定における熱重量変化温度が800℃以下であるリチウムマンガン酸化物を得ることができる。
【0034】
このように、均一な性状を有し、格子面がある規則性を有するリチウムマンガン酸化物は、リチウムの挿入脱離による結晶構造の劣化や変質がなく、サイクル寿命の安定化を図り、大電流での充放電特性を向上させるものである。
【0035】
なお、これらリチウムマンガン酸化物のマンガン源としては、化学合成二酸化マンガンの他に、電解二酸化マンガン、三酸化二マンガン、四酸化三マンガン、オキシ水酸化マンガン、硫酸マンガン、炭酸マンガン、硝酸マンガン等が使用できる。リチウム源としては、硝酸リチウム、炭酸リチウム、水酸化リチウム、酢酸リチウム、シュウ酸リチウム等が使用できる。リチウムマンガン酸化物は、これらマンガン源とリチウム源とを混合し、上述した条件下において熱処理されることにより得ることができる。
【0036】
特に原料として電解二酸化マンガンを用いる場合には、価格的な点と、充填性が大幅に向上できるメリットが大きい。化学合成二酸化マンガンや他のマンガン化合物ではタップ密度が1.8であるのに対し、この電解二酸化マンガンを用いた場合には、タップ密度2.1以上が可能であり、容量の増大にも極めて効果的である。
【0037】
また、一般的なマンガン酸化物を用いて薄い電極を作製する際には、150μm以上の大きな粒子を除去すると効果的である。
【0038】
本発明は、リチウムマンガン酸化物の種類、粒子径に依存するものではないが、比表面積が0.5〜5m2であるマンガン化合物により合成されたものがより好ましい。
【0039】
一方、負極活物質としては、リチウムをドープ及び脱ドープ可能なものであれば良く、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークスなど)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂などを適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭などの炭素質材料、あるいは、金属リチウム、リチウム合金(例えば、リチウム−アルミ合金)の他、ポリアセチレン、ポリピロールなどのポリマーが挙げられる。
【0040】
電解液には、リチウム塩を電解質とし、これを0.5〜1.5モル/lなる濃度で有機溶媒に溶解させた非水電解液が用いられる。ここで有機溶媒としては、特に限定されるものではないが、例えば、炭酸プロピレン、炭酸エチレン、炭酸ブチレン、γ−ブチロラクトン、炭酸ジメチル、炭酸エチルメチル、酢酸エステル化合物、プロピオン酸エステル化合物、ジ酢酸エステル化合物、ジメトキシエタン、ジエトキシエタン、ジメトキシプロパン、ジエトキシプロパン、テトラヒドロフラン、ジオキソランなどの単独もしくは2種類以上混合した混合溶媒が挙げられる。
【0041】
電解質としては、過塩素酸リチウム、トリフルオロロメタンスルホン酸リチウム、四フッ化硼酸リチウム、六フッ化燐酸リチウム、六フッ化砒酸リチウムなどが挙げられる。
【0042】
本発明に係る非水電解液二次電池の形状は、特に限定されるものではなく、コイン型電池、円筒状渦巻式電池、平板状角型電池、インサイドアウト型円筒電池等、いずれの電池にも適用可能である。また、本発明においては、小型電池に言及しているが、価格的には、大型電池に特に好適なものである。
【0043】
【実施例】
以下、実際にLiMn2O4を主体とした正極材料を用いてコイン型二次電池を作製し、電池試験を行った。なお、本発明は、本実施例に限定されるものでないことは言うまでもない。
【0044】
実施例1
炭酸マンガンと硝酸リチウムとを原子比でMn:Li=1:0.52となるように計量し乳鉢に入れて混合した。そして、この混合物を一旦直径13mm、厚み1mmのペレット状に加圧成型し、さらに乳鉢を用いて粗く砕いた。次に、この混合物をアルミナ製坩鍋に入れ、電気炉を用いて酸素雰囲気下350℃で2時間熱処理をし、室温まで冷却した。その後再び乳鉢で混合し、ペレット状に加圧成型した。そして、この成型体をアルミナ製坩鍋に入れ、電気炉を用いて酸素雰囲気下750℃で16時間熱処理を施した後、室温まで冷却することによって正極活物質を得た。
【0045】
得られた正極活物質について、X線回折測定を行ったところ、図3に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.15であった。
【0046】
なお、X線回折測定には、X線回折装置(理学社製、商品名:ガイガーフレクス RAD−C)を使用した。
実施例2
炭酸マンガンと硝酸リチウムとを原子比でMn:Li=1:0.515となるように計量混合し、実施例1と同様にして正極活物質を得た。
【0047】
得られた正極活物質について、X線回折測定を行ったところ、図4に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.13であった。
【0048】
実施例3
オキシ水酸化マンガンと硝酸リチウムとを原子比でMn:Li=1:0.51となるように計量し混合し、実施例1と同様にして正極活物質を得た。
【0049】
得られた正極活物質について、X線回折測定を行ったところ、図5に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.10であった。
【0050】
実施例4
オキシ水酸化マンガンと硝酸リチウムとを原子比でMn:Li=1:0.515となるように計量混合した。そして、最初に400℃で2時間熱処理をし、この成型体を室温まで冷却した。その後再び乳鉢で混合し、ペレット状に加圧成型し、780℃で16時間熱処理を施し、実施例1と同様にして正極活物質を得た。
【0051】
得られた正極活物質について、X線回折測定を行ったところ、図6に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.19であった。
【0052】
実施例5
オキシ水酸化マンガンと水酸化リチウムとを原子比でMn:Li=1:0.515となるように計量し乳鉢に入れて混合した。そして、この混合物を一旦直径13mm、厚み1mmのペレット状に加圧成型し、次に、この成型体をアルミナ製坩鍋に入れ、電気炉を用いて酸素雰囲気下400℃で3時間熱処理をし、室温まで冷却した。その後再び乳鉢で混合粉砕し、この混合物をアルミナ製坩鍋に入れ、電気炉を用いて酸素雰囲気下700℃で12時間熱処理を施した後、室温まで冷却することによって正極活物質を得た。
【0053】
得られた正極活物質について、X線回折測定を行ったところ、図7に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.12であった。
【0054】
実施例6
オキシ水酸化マンガンと水酸化リチウムとを原子比でMn:Li=1:0.51となるように混合し、2度目の加熱温度を750℃とし、実施例5と同様にして正極活物質を得た。
【0055】
得られた正極活物質について、X線回折測定を行ったところ、図8に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.13であった。
【0056】
実施例7
オキシ水酸化マンガンと水酸化リチウムとを原子比でMn:Li=1:0.52となるように混合し、2度目の加熱温度を650℃とし、実施例5と同様にして正極活物質を得た。
【0057】
得られた正極活物質について、X線回折測定を行ったところ、図9に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.15であった。
【0058】
実施例8
オキシ水酸化マンガンと水酸化リチウムとを原子比でMn:Li=1:0.525となるように計量混合した。そして、2度目の加熱温度を750℃とし、実施例5と同様にして正極活物質を得た。
【0059】
得られた正極活物質について、X線回折測定を行ったところ、図10に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.17であった。
【0060】
比較例1
オキシ水酸化マンガンと硝酸リチウムとを原子比でMn:Li=1:0.515となるように計量混合し、2度目の加熱温度を800℃とした以外は、実施例1と同様にして正極活物質を得た。
【0061】
得られた正極活物質について、X線回折測定を行ったところ、図11に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.21であった。
【0062】
比較例2
電解二酸化マンガンと硝酸リチウムとを原子比でMn:Li=1:0.51となるように計量混合し、2度目の加熱温度を800℃とした以外は、実施例1と同様にして正極活物質を得た。
【0063】
得られた正極活物質について、X線回折測定を行ったところ、図12に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.03であった。
【0064】
比較例3
オキシ水酸化マンガンと硝酸リチウムとを原子比でMn:Li=1:0.51となるように計量混合し、2度目の加熱温度を600℃とした以外は、実施例1と同様にして正極活物質を得た。
【0065】
得られた正極活物質について、X線回折測定を行ったところ、図13に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、0.97であった。
【0066】
比較例4
オキシ水酸化マンガンと硝酸リチウムとを原子比でMn:Li=1:0.53となるように計量混合した以外は、実施例1と同様にして正極活物質を得た。
【0067】
得られた正極活物質について、X線回折測定を行ったところ、図14に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.01であった。
【0068】
比較例5
オキシ水酸化マンガンと水酸化リチウムとを原子比でMn:Li=1:0.515となるように計量し乳鉢に入れて混合した。この混合物をアルミナ製坩鍋に入れ、電気炉を用いて空気雰囲気下400℃で3時間熱処理をし、再びそのまま750℃で12時間熱処理を施し、室温まで冷却することによって正極活物質を得た。
【0069】
得られた正極活物質について、X線回折測定を行ったところ、図15に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.05であった。
【0070】
比較例6
最初に空気雰囲気下加熱温度400℃で熱処理を施し、この成型体を室温まで冷却後再び粉砕混合し、次に、この混合体を空気雰囲気下加熱温度800℃で熱処理を施し、実施例5と同様にして正極活物質を得た。
【0071】
得られた正極活物質について、X線回折測定を行ったところ、図16に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.07であった。
【0072】
比較例7
最初に、空気雰囲気下加熱温度480℃で熱処理を施し、次に空気雰囲気下加熱温度640℃で熱処理を施し、実施例5と同様に正極活物質を得た。
【0073】
得られた正極活物質について、X線回折測定を行ったところ、図17に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.02であった。
【0074】
比較例8
オキシ水酸化マンガンと水酸化リチウムとを原子比でMn:Li=1:0.525となるように混合し、加圧成型した。この成型体を空気雰囲気下加熱温度350℃で熱処理を施し、次に空気雰囲気下加熱温度800℃で熱処理を施し、実施例5と同様にして正極活物質を得た。
【0075】
得られた正極活物質について、X線回折測定を行ったところ、図18に示すX線回折ピークが観測された。このX線回折ピークは、スピネル型LiMn2O4のX線回折ピークと一致する回折ピークを有している。なお、(311)面に対応する回折ピークと(411)面に対応する回折ピークの強度比(400)/(311)は、1.22であった。
【0076】
正極活物質の性状評価
以上、実施例1〜実施例8で得られた正極活物質は、450℃以下で加熱処理を行う第1の処理工程と、第1の処理工程で得られた混合体を再度粉砕混合して650〜780℃で加熱処理をう第2の処理工程を経て作製されている。このような処理工程を経て作製された正極活物質は、(311)面と(411)面の回折ピーク強度比(400)/(311)が1.05〜1.20に規制される。
【0077】
それに対し、比較例1〜比較例3及び比較例6〜比較例8で得られた正極活物質は、第2の処理工程の加熱温度が650℃未満もしくは780℃を越えているため、(311)面と(411)面の回折ピーク強度比(400)/(311)が上記範囲を満たしていない。また、比較例4は、リチウムマンガン酸化物のマンガンに対するリチウムの原子比xが0.525を越えるため、本発明の目的とする格子面の規則性が得られない。さらに、比較例5は、第1の処理工程と第2の処理工程との間に再混合を行っていないため、本発明の目的とする格子面の規則性が得られない。
【0078】
なお、上述した製造方法により得られた実施例1〜実施例4及び比較例1〜比較例4の正極活物質の組成を調べた。なお、Mnは鉄分離過マンガン酸直接滴定法(JIS規格M8232による)により測定し、Mn以外の金属は原子吸光法により測定した。この組成分析結果を表1に示す。
【0079】
【表1】
【0080】
表1の結果から、ほぼ原料混合比に対応した組成比で正極活物質が生成されていることが確認できた。他の実施例についても同様の結果が得られることが確認されている。
【0081】
さらに、上述した製造方法により得られた正極活物質の性状を調べるために、実施例1〜実施例4及び比較例1〜比較例4の正極活物質について、その粒径と比表面積を調べた。なお、粒子径分布は、レーザー式測定機により測定した。その結果を表2に示す。
【0082】
【表2】
【0083】
各実施例で得られた正極活物質は、表2に示されるように、粒子径と比表面積はほぼ同様の性状を示している。このことから、上述した製造条件により得られる正極活物質は、リチウム源及びマンガン源に関わらず、粉末としてほぼ同様の粉末として扱えるものである。他の実施例についても同様の結果が得られることが確認されている。
【0084】
また、実施例5〜実施例8及び比較例5〜比較例8で得られた正極活物質の粉末材料について、その重量変化温度を調べた。なお、熱重量変化の測定には、熱天秤を用い、空気中にて昇温10℃/分の定速で室温から900℃まで昇温させ、各粉末材料の重量変化温度を調べた。その結果を図20及び表3に示す。図20には、実施例1の粉末材料の重量変化曲線(TG)と示差熱分析曲線(DTA)を示した。
【0085】
【表3】
【0086】
これらの結果から、実施例5〜実施例8の正極活物質は、熱重量変化温度が800℃以下となるような性状のリチウムマンガン酸化物となっていることがわかる。他の実施例についても同様の結果が得られることが確認されている。それに対し、比較例の正極活物質は、重量変化温度が800℃以上を示す場合があり、一定していない。
【0087】
電池の組立
次に、上述のように作製された正極活物質(実施例1〜実施例8、比較例1〜比較例8)を用いて、図19に示されるコイン型電池1を次のように作製した。
【0088】
先ず始めに、各々の正極活物質を活物質として用い、これに導電剤としてグラファイト、結着剤としてポリフッ化ビニリデンを重量比で90:7:3の割合で混合した。これを50mg秤り取り、アルミニウムネットとともに加圧プレス装置で直径15mm、厚み0.3mmに加圧成型し、120℃で2時間真空乾燥させて正極ペレット2を作製した。
【0089】
負極としては、厚み1.6mmのリチウム板を用意し、直径17mmに打ち抜いて負極ペレット3を作製した。そして、予め用意された電池蓋4に負極ペレット3を加圧プレス装置で圧着した。
【0090】
次に、上記正極ペレット2を電池缶5に載せ、その上にポリプロピレン製セパレータ(ヘキスト社製、商品名:セルガード#2502)6を載置した。これに、混合溶媒(プロピレンカーボネイト:ジエチルカーボネイト=1:1)にLiPF6を1モル/lで溶解させてなる電解液を注液し、前記負極ペレット3が圧着された電池蓋4を載せ、ガスケット7によりかしめて封口した。これにより、直径20mm、厚み2.5mmのコイン型電池を得た。
【0091】
電池試験
実施例1〜実施例4及び比較例1〜比較例4で得られた正極活物質を用いて作製された上記コイン型電池について、開路電圧と、電池抵抗を測定した。その結果を表4に示す。なお、電池抵抗は、1kHzの交流電圧を与えて測定した。
【0092】
【表4】
【0093】
表4の結果からわかるように、実施例1〜実施例4及び比較例1〜比較例4の電池においては、いずれも実用に供する値を示した。他の実施例の電池についてもいずれも実用に供する値を示すことが確認されている。
【0094】
また、実施例1〜実施例8及び比較例1〜比較例8の各々のコイン型電池について、次のような充放電試験を行った。
【0095】
先ず、電流密度0.5mA/cm2、上限電圧4.2Vで12時間充電後、電流密度0.5mA/cm2で3.0Vまで放電させた。次に、電流密度1.0mA/cm2上限電圧4.2Vで5.5時間充電し、電流密度1.0mA/cm2で終止電圧3.0Vまで放電させるサイクルを5回繰り返し行った。
【0096】
そして、上記の電池について、放電負荷性能試験として、電流密度1.0mA/cm2、上限電圧4.2Vで5.5時間充電し、電流密度0.5〜5mA/cm2で3.0Vまで放電した。これらの結果を図21及び図22に示す。
【0097】
また、上記の電池について、放充電サイクル試験として、電流密度1.0mA/cm2、上限電圧4.2Vで5.5時間充電し、電流密度1.0mA/cm2で3.0Vまで放電させるサイクル試験を繰り返し行った。これらの結果を図23及び図24に示す。
【0098】
図21〜図24の結果からわかるように、実施例1〜実施例8の各電池は、X線回折による回折ピークにおいて、(311)面と(400)面の回折ピークの強度比(400)/(311)が1.05〜1.20であるリチウムマンガン酸化物を正極活物質に用いてなるため、比較例の各電池に比べ、放電負荷特性が高く、サイクル特性に優れている。さらに、(400)/(311)=1.10〜1.15の強度比にある実施例1〜実施例3及び実施例5〜実施例7は、特に放電負荷特性に優れているのがわかる。
【0099】
それに対し、比較例1〜比較例3及び比較例6〜比較例8は、第2の処理工程において、650〜780℃の温度条件内で加熱処理を行わなかったため、放電負荷特性及びサイクル特性に劣っている。また、上記温度範囲を満たしていても、第1の処理工程の後、再度粉砕混合を行わなかった比較例5は、格子面が規則性を有していないため、放電負荷特性及びサイクル特性に劣っている。また、比較例4の結果と比べてわかるように、リチウムマンガン酸化物のマンガンに対するリチウムの原子比xは、0.505〜0.525であることがより好ましい。このように、上記条件を満たしていない比較例の各電池は、正極活物質の(400)/(311)の強度比が規定の範囲内に入らず、結晶構造劣化が進行しやすいため、良好な電池特性が発揮されない。
【0100】
以上の結果から、本発明においては、マンガンに対するリチウムの原子比Li/Mnが0.505〜0.525となるリチウムマンガン源を450℃以下で加熱処理を行う第1の処理工程と、第1の処理工程で得られた混合体を再度粉砕混合して650〜780℃で加熱処理を行う第2の処理工程とを経てなることから、スピネル構造を有し、(311)面と(411)面の回折ピーク強度比(400)/(311)が1.05〜1.20となるリチウムマンガン酸化物を得ることができる。また、このようにして得られる正極活物質は、熱重量変化温度が800℃以下となる。
【0101】
また、上述した製造方法により得られた正極活物質を用いてなるコイン型電池は、正極活物質の(311)面と(400)面との回折ピークの強度比が規制され、熱重量変化温度が800℃以下に規制されてなることから、充放電サイクルに伴うリチウムイオンの挿入脱離反応がスムーズに進行し、正極活物質そのものの変質や結晶構造劣化が抑制され、放電負荷特性、サイクル特性に優れたものとなる。
【0102】
【発明の効果】
以上の説明からも明らかなように、本発明によれば、スピネル構造を有し、(311)面と(400)面の回折ピーク強度比(400)/(311)が1.05〜1.20に規制されたリチウムマンガン酸化物を得ることができる。また、本発明によれば、このリチウムマンガン酸化物を正極活物質に用いることにより、正極材料そのものの変質、結晶構造劣化が抑制され、放電負荷特性、サイクル特性に優れた非水電解液二次電池を提供できる。
【図面の簡単な説明】
【図1】スピネル型構造を示す模式図である。
【図2】LiMn2O4のスピネル型構造のトンネルの網状構造を説明する模式図である。
【図3】実施例1のX線回折ピークを示す特性図である。
【図4】実施例2のX線回折ピークを示す特性図である。
【図5】実施例3のX線回折ピークを示す特性図である。
【図6】実施例4のX線回折ピークを示す特性図である。
【図7】実施例5のX線回折ピークを示す特性図である。
【図8】実施例6のX線回折ピークを示す特性図である。
【図9】実施例7のX線回折ピークを示す特性図である。
【図10】実施例8のX線回折ピークを示す特性図である。
【図11】比較例1のX線回折ピークを示す特性図である。
【図12】比較例2のX線回折ピークを示す特性図である。
【図13】比較例3のX線回折ピークを示す特性図である。
【図14】比較例4のX線回折ピークを示す特性図である。
【図15】比較例5のX線回折ピークを示す特性図である。
【図16】比較例6のX線回折ピークを示す特性図である。
【図17】比較例7のX線回折ピークを示す特性図である。
【図18】比較例8のX線回折ピークを示す特性図である。
【図19】本発明を適用したコイン型二次電池の断面図である。
【図20】実施例1の正極活物質の熱分析法による分析結果を示す特性図である。
【図21】電流密度と放電容量との関係を示す特性図である。
【図22】電流密度と放電容量との関係を示す特性図である。
【図23】サイクル数と放電容量との関係を示す特性図である。
【図24】サイクル数と放電容量との関係を示す特性図である。
【符号の説明】
1 コイン型電池、2 正極ペレット、3 負極ペレット、4 電池蓋、5 電池缶、6 セパレータ、7 ガスケット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery used for a power source or the like of a portable electronic device and a method for producing a positive electrode active material thereof.
[0002]
[Prior art]
In recent years, due to advances in electronic technology, electronic devices have been improved in performance, size, and portability, and secondary batteries with high energy density are required for these electronic devices. Conventionally, secondary batteries used in these electronic devices include nickel / cadmium secondary battery, lead acid battery, nickel metal hydride battery, lithium ion secondary battery, and the like. In particular, a lithium ion secondary battery is the most promising battery having a high battery voltage, high energy density, low self-discharge, excellent cycle characteristics, and adaptable to a small and lightweight battery.
[0003]
As a positive electrode material of such a lithium ion secondary battery, LiCoO2, LiNiO2And lower cost LiMn2OFourThe use of lithium manganese oxides such as these has been studied, and development research has been actively conducted.
[0004]
However, the finely powdered lithium manganese oxide conventionally used as a positive electrode material cannot be densely filled only by a mechanical press. In particular, when it is molded into a sheet-like electrode, it is difficult to make it flexible with a large capacity due to its properties as a powder, and a practical electrode cannot be produced. Moreover, in a lithium ion secondary battery using this fine powder lithium manganese oxide as a positive electrode material, the cycle characteristics are greatly degraded by several tens of charge / discharge cycles, and the charge / discharge performance is rapidly lost as lithium enters and exits. There is also a problem. Thus, it is difficult to obtain a battery with higher capacity and higher performance with fine powder lithium manganese oxide.
[0005]
In addition, lithium manganese oxide having a large particle size synthesized from electrolytic manganese dioxide and the like has a small specific surface area. Therefore, the contact point is further increased by mixing 10% or more of a conductive agent such as fine graphite conductive agent or acetylene black. Therefore, it is necessary to use it in a mixed state with enhanced electron conductivity. However, even if the conductive agent is used by mixing 10% or more, the material changes in quality as the cycle progresses, and the discharge capacity gradually decreases. In addition, adding a large amount of conductive agent or metal to maintain the charge / discharge performance of the active material is not recommended for higher capacity, and conflicting demands for higher performance and higher capacity are simultaneously met. I can't meet.
[0006]
Thus, the lithium manganese oxide that has been used as the positive electrode active material so far, in the case of fine particles, the packing density of the positive electrode varies or becomes low, and further, the flexibility of the electrode is lost, and the cycle is reduced. Problems arise in terms of characteristics and capacity. In the case of a large particle size, it is difficult to increase the capacity because a large amount of conductive material is required. For this reason, LiMn2OFourIn spite of the fact that the theoretical capacity of 148 mAh / g of lithium manganese oxide, the conventional lithium manganese oxide has a charge / discharge capacity of about 110 mAh / g, a cycle life of 100 cycles, and a characteristic of 80% or less of the theoretical value. Can only be obtained.
[0007]
[Problems to be solved by the invention]
So far, various compositions of lithium manganese oxide and methods for synthesizing the same have been studied for the above-described problems. However, lithium manganese oxide has not yet reached a practical positive electrode material, such as loss of reversibility with charge / discharge and significant reduction in capacity. Further, lithium manganese oxide was inferior in charge / discharge performance at a large current as compared with lithium cobalt oxide and lithium nickel oxide.
[0008]
In order to solve the above-mentioned problems, the present inventors have studied the crystal structure that smoothly promotes the insertion / desorption reaction of lithium ions accompanying the charge / discharge cycle, and as a result, the present invention has been completed. .
[0009]
The present invention uses a lithium manganese oxide as a positive electrode active material, suppresses deterioration of the positive electrode material and crystal structure deterioration associated with charge / discharge cycles, and has a non-aqueous electrolyte secondary battery excellent in discharge load characteristics and cycle characteristics, And it aims at providing the manufacturing method of the positive electrode active material.
[0010]
[Means for Solving the Problems]
A non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode using lithium manganese oxide as an active material, a negative electrode capable of doping and dedoping lithium, and a non-aqueous electrolyte. The lithium manganese oxide has a diffraction peak intensity ratio (400) / (311) of (311) plane to (400) plane of 1.05 to 1.20 in the diffraction peak by X-ray diffraction, and manganese. The atomic ratio Li / Mn of lithium to 0.505 to 0.525, the atomic ratio of oxygen to manganese O / Mn is 1.96 to 2.04, and thermogravimetric change in thermogravimetry in air The temperature is 770 ° C. or higher and 800 ° C. or lower.
[0011]
Further, the atomic ratio Li / Mn of lithium to manganese of the lithium manganese oxide is 0.505 to 0.525, and the atomic ratio O / Li of oxygen to manganese is 1.96 to 2.04. Is preferred.
[0013]
The positive electrode material made of lithium manganese oxide regulates the intensity ratio of (400) / (311), so that lithium ions can move smoothly, and the lattice distortion due to lithium desorption propagates to the inside and is uniform. Due to the properties, deterioration of the positive electrode material and deterioration of the crystal structure are suppressed.
[0014]
Therefore, in the nonaqueous electrolyte secondary battery according to the present invention, a lithium manganese oxide having a strength ratio (400) / (311) of (311) plane to (400) plane of 1.05 to 1.20 is used. By using it as a positive electrode active material, it is possible to suppress deterioration of the positive electrode material and deterioration of the crystal structure, stabilize cycle life, and improve charge / discharge performance at a large current.
[0015]
In the method for producing a positive electrode active material according to the present invention, a mixture of a lithium source and a manganese source having an atomic ratio Li / Mn of lithium to manganese of 0.505 to 0.525 is pressure-molded and heated at 450 ° C. or lower. A first treatment step for carrying out the treatment and a second treatment step in which the mixture obtained in the first treatment step is cooled to room temperature and then pulverized and mixed again, followed by heat treatment again at 650 to 780 ° C. The diffraction peak intensity ratio (400) / (311) between the (311) plane and the (400) plane is 1.05 to 1.20 in the diffraction peak by line diffraction, and the atomic ratio Li / Mn of lithium to manganese is 0.505 to 0.525, the atomic ratio O / Mn of oxygen to manganese is 1.96 to 2.04, and the thermogravimetric change temperature in thermogravimetry in air is 770 ° C. or higher and 800 ° C. or lower. Ah Characterized in that to obtain a lithium manganese oxide.
[0016]
Thus, in the method for producing a positive electrode active material according to the present invention, a lithium manganese oxide having uniform properties can be obtained through the first treatment step and the second treatment step. That is, by this manufacturing method, a lithium manganese oxide having an intensity ratio (400) / (311) of (311) plane to (400) plane of 1.05 to 1.20 can be obtained. In this way, the lithium manganese oxide having uniform properties and regularity with lattice planes has no deterioration or alteration of the crystal structure due to lithium insertion / extraction, stabilizes cycle life, It improves the charge / discharge characteristics at the same time.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the nonaqueous electrolyte secondary battery according to the present invention and the method for producing the positive electrode active material will be specifically described.
[0018]
The non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode using lithium manganese oxide as an active material, a negative electrode capable of doping and dedoping lithium, and a non-aqueous electrolyte.
[0019]
The lithium manganese oxide serving as the positive electrode active material has an intensity ratio (400) / (311) between the diffraction peak of (311) plane and (400) plane of 1.05 to 1.20 in the diffraction peak by X-ray diffraction. It is characterized by being. (400) / (311) = 1.10 to 1.15 is more preferable. Considering the intensity ratio with the (111) plane which is the main diffraction surface, (311) / (111) = 0.45 to 0.50, (400) / (111) = 0.49 to 0.59. It is more preferable that
[0020]
The reason for this can be considered as follows.
[0021]
LiMn with spinel crystal structure2OFourAs shown in FIG. 1 and FIG. 2, lithium is located in the void surrounded by the MnO octahedron, and the lithium moves through the tunnel space in the oblique direction of the MnO octahedron and is inserted / desorbed. It is.
[0022]
In this lithium movement, the direction perpendicular to the movement direction tends to be a resistance layer. It is considered that the deterioration of the crystal structure due to the movement of lithium against this causes the capacity deterioration. In particular, when lithium is desorbed from the surface portion of the crystal, the lattice spacing becomes slightly shorter in the main crystal structure. This strain is transmitted not in the tunnel direction of lithium movement but in the lattice plane direction. That is, it is considered that such shortening of the lattice of the surface portion is not transmitted to the inside of the crystal because the unit octahedron interval is made close to balance the electric charge to adjust the change of the lattice distance. For this reason, the crystal of the lithium manganese oxide is deteriorated in crystal structure due to uneven distortion caused by the charge / discharge cycle.
[0023]
In order to suppress such deterioration of the crystal structure, lithium is regularly arranged, the change in interstitial distance associated with lithium insertion / extraction is easily absorbed, and lattice strain due to lithium desorption is transmitted to the inside of the crystal. It is necessary to have uniform material properties.
[0024]
Therefore, in the present invention, the intensity ratio (400) / (311) of the diffraction peaks of the (311) plane and the (400) plane is used as an index of the material property in the diffraction peak observed by the X-ray diffraction measurement. I will do it.
[0025]
As described above, in order to suppress the deterioration of the crystal structure due to insertion / extraction of lithium, it is necessary to have uniform material properties, that is, the lattice plane must have regularity. The regularity of the lattice plane for smooth insertion / extraction of lithium is not the regularity of the (111) plane that is the main lattice plane, but the crossing of the main lattice plane obliquely. The regularity of the (311) plane and (400) plane close to the diffusion movement direction of lithium. This is the reason why the peak intensity ratio (400) / (311) is regulated in the present invention.
[0026]
As described above, the non-aqueous electrolyte secondary battery according to the present invention uses the lithium manganese oxide that regulates the peak intensity ratio (400) / (311) as the positive electrode active material, thereby altering the positive electrode material itself. In addition, the deterioration of the crystal structure can be suppressed and the cycle characteristics can be improved.
[0027]
Such lithium manganese oxide LixMnOyAs, it has a spinel structure, the atomic ratio x of lithium to manganese of the lithium manganese oxide is 0.505 to 0.525, and the atomic ratio O / Li of oxygen to manganese is 1.96 to 2. LiMn which is 042OFourLiMn2OFourAnd LiMn2OThreeAnd a mixture thereof are preferably used.
[0028]
Moreover, as the lithium manganese oxide, LiMn2OFourOr Li2MnOThreeA thermogravimetric change temperature in thermogravimetry is preferably 800 ° C. or lower.
[0029]
By the way, the positive electrode active material satisfying such conditions can be obtained by performing heat treatment under the following conditions.
[0030]
In the method for producing a positive electrode active material according to the present invention, a mixture of a lithium source and a manganese source in which the atomic ratio Li / Mn of lithium to manganese is 0.505 to 0.525 is heat-treated at 450 ° C. or lower. Lithium manganese oxide is obtained by one treatment step and a second treatment step in which the mixture obtained in the first treatment step is cooled to room temperature and then pulverized and mixed again, followed by heat treatment at 650 to 780 ° C. Features.
[0031]
Specifically, in the first treatment step, a mixture of a lithium source and a manganese source is pulverized and mixed, and the powder mixture or pressure-molded product is heated at a heating temperature of 450 ° C. or lower in an oxygen or air atmosphere. I do. Thereafter, in the second treatment step, the sintered body is pulverized and mixed again after being cooled to room temperature, and the powder mixture or again pressure-molded is again heated at a heating temperature of 650 to 780 ° C. in an oxygen or air atmosphere. Heat treatment may be performed.
[0032]
Thus, in the present invention, a lithium manganese oxide having uniform properties and regularity with a lattice plane can be obtained by passing through the first treatment step and the second treatment step. That is, by this manufacturing method, a lithium manganese oxide having an intensity ratio (400) / (311) of (311) plane to (400) plane of 1.05 to 1.20 can be obtained.
[0033]
Further, according to the manufacturing method described above, the lithium manganese oxide has a lithium atomic ratio x to manganese of 0.505 to 0.525, and the oxygen atomic ratio O / Li to manganese is 1 The lithium manganese oxide which is .96 to 2.04 can be obtained. Furthermore, by the manufacturing method described above, a lithium manganese oxide having a thermogravimetric change temperature of 800 ° C. or less in thermogravimetry can be obtained.
[0034]
In this way, the lithium manganese oxide having uniform properties and regularity with lattice planes has no deterioration or alteration of the crystal structure due to lithium insertion / extraction, stabilizes cycle life, It improves the charge / discharge characteristics at the same time.
[0035]
The manganese source of these lithium manganese oxides includes, in addition to chemically synthesized manganese dioxide, electrolytic manganese dioxide, dimanganese trioxide, trimanganese tetroxide, manganese oxyhydroxide, manganese sulfate, manganese carbonate, manganese nitrate, and the like. Can be used. As the lithium source, lithium nitrate, lithium carbonate, lithium hydroxide, lithium acetate, lithium oxalate and the like can be used. The lithium manganese oxide can be obtained by mixing these manganese sources and lithium sources and heat-treating them under the conditions described above.
[0036]
In particular, when electrolytic manganese dioxide is used as a raw material, there are great advantages in terms of cost and significant improvement in filling properties. Chemically synthesized manganese dioxide and other manganese compounds have a tap density of 1.8, whereas when this electrolytic manganese dioxide is used, a tap density of 2.1 or higher is possible, which is extremely effective in increasing capacity. It is effective.
[0037]
Moreover, when producing a thin electrode using a general manganese oxide, it is effective to remove large particles of 150 μm or more.
[0038]
The present invention does not depend on the type of lithium manganese oxide and the particle diameter, but the specific surface area is 0.5 to 5 m.2What was synthesize | combined with the manganese compound which is is more preferable.
[0039]
On the other hand, the negative electrode active material may be any material that can be doped and dedoped with lithium, such as pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organics. Polymer compound fired body (phenol resin, furan resin, etc., fired at a suitable temperature and carbonized), carbon fiber, carbonaceous material such as activated carbon, metallic lithium, lithium alloy (for example, lithium-aluminum alloy) In addition, polymers such as polyacetylene and polypyrrole can be used.
[0040]
As the electrolytic solution, a nonaqueous electrolytic solution in which a lithium salt is used as an electrolyte and dissolved in an organic solvent at a concentration of 0.5 to 1.5 mol / l is used. Here, the organic solvent is not particularly limited. For example, propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, acetate compound, propionate compound, diacetate ester. Examples thereof include a compound, dimethoxyethane, diethoxyethane, dimethoxypropane, diethoxypropane, tetrahydrofuran, dioxolane and the like, or a mixed solvent in which two or more kinds are mixed.
[0041]
Examples of the electrolyte include lithium perchlorate, lithium trifluoromethanesulfonate, lithium tetrafluoroborate, lithium hexafluorophosphate, and lithium hexafluoroarsenate.
[0042]
The shape of the nonaqueous electrolyte secondary battery according to the present invention is not particularly limited, and any battery such as a coin-type battery, a cylindrical spiral battery, a flat prismatic battery, an inside-out cylindrical battery, or the like can be used. Is also applicable. In the present invention, a small battery is mentioned, but from the viewpoint of price, it is particularly suitable for a large battery.
[0043]
【Example】
Hereinafter, actually LiMn2OFourA coin-type secondary battery was fabricated using a positive electrode material mainly composed of, and a battery test was performed. Needless to say, the present invention is not limited to this embodiment.
[0044]
Example 1
Manganese carbonate and lithium nitrate were weighed so as to have an atomic ratio of Mn: Li = 1: 0.52 and mixed in a mortar. The mixture was once press-molded into a pellet having a diameter of 13 mm and a thickness of 1 mm, and further crushed using a mortar. Next, this mixture was put into an alumina pot and heat-treated at 350 ° C. for 2 hours in an oxygen atmosphere using an electric furnace and cooled to room temperature. Thereafter, the mixture was mixed again in a mortar and pressure-molded into a pellet. Then, this molded body was put in an alumina ladle, subjected to heat treatment at 750 ° C. for 16 hours in an oxygen atmosphere using an electric furnace, and then cooled to room temperature to obtain a positive electrode active material.
[0045]
When the obtained positive electrode active material was subjected to X-ray diffraction measurement, the X-ray diffraction peak shown in FIG. 3 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.15.
[0046]
In addition, the X-ray-diffraction measurement (The Rigaku company make, brand name: Geiger flex RAD-C) was used for the X-ray-diffraction measurement.
Example 2
Manganese carbonate and lithium nitrate were weighed and mixed so that the atomic ratio was Mn: Li = 1: 0.515, and a positive electrode active material was obtained in the same manner as in Example 1.
[0047]
When the obtained positive electrode active material was subjected to X-ray diffraction measurement, an X-ray diffraction peak shown in FIG. 4 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.13.
[0048]
Example 3
Manganese oxyhydroxide and lithium nitrate were weighed and mixed so that the atomic ratio was Mn: Li = 1: 0.51, and a positive electrode active material was obtained in the same manner as in Example 1.
[0049]
When the obtained positive electrode active material was subjected to X-ray diffraction measurement, the X-ray diffraction peak shown in FIG. 5 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.10.
[0050]
Example 4
Manganese oxyhydroxide and lithium nitrate were weighed and mixed so that the atomic ratio was Mn: Li = 1: 0.515. First, heat treatment was performed at 400 ° C. for 2 hours, and the molded body was cooled to room temperature. Thereafter, the mixture was again mixed in a mortar, pressure-molded into a pellet, and heat-treated at 780 ° C. for 16 hours to obtain a positive electrode active material in the same manner as in Example 1.
[0051]
When the obtained positive electrode active material was subjected to X-ray diffraction measurement, an X-ray diffraction peak shown in FIG. 6 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.19.
[0052]
Example 5
Manganese oxyhydroxide and lithium hydroxide were weighed in an atomic ratio such that Mn: Li = 1: 0.515 and mixed in a mortar. The mixture is once pressure-molded into a pellet having a diameter of 13 mm and a thickness of 1 mm. Next, the molded body is placed in an alumina pot and heat-treated at 400 ° C. for 3 hours in an oxygen atmosphere. And cooled to room temperature. Thereafter, the mixture was pulverized again in a mortar, and the mixture was placed in an alumina ladle, subjected to heat treatment in an oxygen atmosphere at 700 ° C. for 12 hours, and then cooled to room temperature to obtain a positive electrode active material.
[0053]
When X-ray diffraction measurement was performed on the obtained positive electrode active material, an X-ray diffraction peak shown in FIG. 7 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.12.
[0054]
Example 6
Manganese oxyhydroxide and lithium hydroxide were mixed so that the atomic ratio was Mn: Li = 1: 0.51, the second heating temperature was 750 ° C., and the positive electrode active material was prepared in the same manner as in Example 5. Obtained.
[0055]
When the obtained positive electrode active material was subjected to X-ray diffraction measurement, the X-ray diffraction peak shown in FIG. 8 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.13.
[0056]
Example 7
Manganese oxyhydroxide and lithium hydroxide were mixed at an atomic ratio of Mn: Li = 1: 0.52, the second heating temperature was 650 ° C., and the positive electrode active material was prepared in the same manner as in Example 5. Obtained.
[0057]
When the obtained positive electrode active material was subjected to X-ray diffraction measurement, an X-ray diffraction peak shown in FIG. 9 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.15.
[0058]
Example 8
Manganese oxyhydroxide and lithium hydroxide were weighed and mixed so that the atomic ratio was Mn: Li = 1: 0.525. And the heating temperature of the 2nd time was 750 degreeC, and it carried out similarly to Example 5, and obtained the positive electrode active material.
[0059]
When the obtained positive electrode active material was subjected to X-ray diffraction measurement, an X-ray diffraction peak shown in FIG. 10 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.17.
[0060]
Comparative Example 1
Manganese oxyhydroxide and lithium nitrate were mixed by metering so that the atomic ratio was Mn: Li = 1: 0.515, and the positive electrode was the same as in Example 1 except that the second heating temperature was 800 ° C. An active material was obtained.
[0061]
When the obtained positive electrode active material was measured by X-ray diffraction, the X-ray diffraction peak shown in FIG. 11 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.21.
[0062]
Comparative Example 2
Electrolytic manganese dioxide and lithium nitrate were weighed and mixed at an atomic ratio of Mn: Li = 1: 0.51, and the positive electrode active was performed in the same manner as in Example 1 except that the second heating temperature was 800 ° C. Obtained material.
[0063]
When the obtained positive electrode active material was subjected to X-ray diffraction measurement, the X-ray diffraction peak shown in FIG. 12 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.03.
[0064]
Comparative Example 3
Manganese oxyhydroxide and lithium nitrate were mixed by metering so that the atomic ratio was Mn: Li = 1: 0.51, and the positive electrode was the same as in Example 1 except that the second heating temperature was 600 ° C. An active material was obtained.
[0065]
When the obtained positive electrode active material was measured by X-ray diffraction, the X-ray diffraction peak shown in FIG. 13 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 0.97.
[0066]
Comparative Example 4
A positive electrode active material was obtained in the same manner as in Example 1, except that manganese oxyhydroxide and lithium nitrate were weighed and mixed so that the atomic ratio was Mn: Li = 1: 0.53.
[0067]
When the obtained positive electrode active material was subjected to X-ray diffraction measurement, an X-ray diffraction peak shown in FIG. 14 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.01.
[0068]
Comparative Example 5
Manganese oxyhydroxide and lithium hydroxide were weighed in an atomic ratio such that Mn: Li = 1: 0.515 and mixed in a mortar. This mixture was placed in an alumina pot and heat-treated at 400 ° C. for 3 hours in an air atmosphere using an electric furnace. The heat treatment was again performed at 750 ° C. for 12 hours and cooled to room temperature to obtain a positive electrode active material. .
[0069]
When X-ray diffraction measurement was performed on the obtained positive electrode active material, an X-ray diffraction peak shown in FIG. 15 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.05.
[0070]
Comparative Example 6
First, heat treatment was performed at a heating temperature of 400 ° C. in an air atmosphere, the molded body was cooled to room temperature, and then pulverized and mixed again. Next, the mixture was heat-treated at a heating temperature of 800 ° C. in an air atmosphere. Similarly, a positive electrode active material was obtained.
[0071]
When the obtained positive electrode active material was subjected to X-ray diffraction measurement, an X-ray diffraction peak shown in FIG. 16 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.07.
[0072]
Comparative Example 7
First, heat treatment was performed at a heating temperature of 480 ° C. in an air atmosphere, and then heat treatment was performed at a heating temperature of 640 ° C. in an air atmosphere, whereby a positive electrode active material was obtained in the same manner as in Example 5.
[0073]
When the obtained positive electrode active material was subjected to X-ray diffraction measurement, an X-ray diffraction peak shown in FIG. 17 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.02.
[0074]
Comparative Example 8
Manganese oxyhydroxide and lithium hydroxide were mixed so as to have an atomic ratio of Mn: Li = 1: 0.525, followed by pressure molding. This molded body was heat-treated at a heating temperature of 350 ° C. in an air atmosphere, and then heat-treated at a heating temperature of 800 ° C. in an air atmosphere, and a positive electrode active material was obtained in the same manner as in Example 5.
[0075]
When X-ray diffraction measurement was performed on the obtained positive electrode active material, an X-ray diffraction peak shown in FIG. 18 was observed. This X-ray diffraction peak shows spinel type LiMn.2OFourIt has a diffraction peak that matches the X-ray diffraction peak. The intensity ratio (400) / (311) of the diffraction peak corresponding to the (311) plane and the diffraction peak corresponding to the (411) plane was 1.22.
[0076]
Properties evaluation of cathode active material
As described above, the positive electrode active materials obtained in Example 1 to Example 8 are obtained by pulverizing and mixing again the first treatment step in which heat treatment is performed at 450 ° C. or less and the mixture obtained in the first treatment step. It is manufactured through a second processing step in which heat treatment is performed at 650 to 780 ° C. In the positive electrode active material manufactured through such processing steps, the diffraction peak intensity ratio (400) / (311) between the (311) plane and the (411) plane is regulated to 1.05 to 1.20.
[0077]
On the other hand, the positive electrode active materials obtained in Comparative Examples 1 to 3 and Comparative Examples 6 to 8 have a heating temperature of less than 650 ° C. or more than 780 ° C. in the second treatment step. ) Plane and (411) plane diffraction peak intensity ratio (400) / (311) does not satisfy the above range. In Comparative Example 4, since the atomic ratio x of lithium to manganese in the lithium manganese oxide exceeds 0.525, the regularity of the lattice plane intended by the present invention cannot be obtained. Furthermore, since the comparative example 5 does not perform remixing between the first processing step and the second processing step, the regularity of the lattice plane that is the object of the present invention cannot be obtained.
[0078]
In addition, the composition of the positive electrode active material of Examples 1 to 4 and Comparative Examples 1 to 4 obtained by the manufacturing method described above was examined. Mn was measured by an iron-separated permanganate direct titration method (according to JIS standard M8232), and metals other than Mn were measured by an atomic absorption method. The composition analysis results are shown in Table 1.
[0079]
[Table 1]
[0080]
From the results in Table 1, it was confirmed that the positive electrode active material was generated at a composition ratio substantially corresponding to the raw material mixing ratio. It has been confirmed that similar results can be obtained for other examples.
[0081]
Furthermore, in order to investigate the property of the positive electrode active material obtained by the manufacturing method described above, the particle diameter and specific surface area of the positive electrode active materials of Examples 1 to 4 and Comparative Examples 1 to 4 were examined. . The particle size distribution was measured with a laser type measuring machine. The results are shown in Table 2.
[0082]
[Table 2]
[0083]
As shown in Table 2, the positive electrode active material obtained in each example has almost the same properties in terms of particle diameter and specific surface area. From this, the positive electrode active material obtained by the manufacturing conditions described above can be handled as a powder that is almost the same as a powder regardless of the lithium source and the manganese source. It has been confirmed that similar results can be obtained for other examples.
[0084]
Moreover, about the powder material of the positive electrode active material obtained in Example 5-Example 8 and Comparative Example 5-Comparative Example 8, the weight change temperature was investigated. For measuring the thermogravimetric change, a thermobalance was used, the temperature was raised from room temperature to 900 ° C. at a constant rate of 10 ° C./min in air, and the weight change temperature of each powder material was examined. The results are shown in FIG. FIG. 20 shows a weight change curve (TG) and a differential thermal analysis curve (DTA) of the powder material of Example 1.
[0085]
[Table 3]
[0086]
From these results, it can be seen that the positive electrode active materials of Examples 5 to 8 are lithium manganese oxides having such properties that the thermogravimetric change temperature is 800 ° C. or lower. It has been confirmed that similar results can be obtained for other examples. On the other hand, the positive electrode active material of the comparative example may have a weight change temperature of 800 ° C. or higher and is not constant.
[0087]
Battery assembly
Next, using the positive electrode active materials (Examples 1 to 8 and Comparative Examples 1 to 8) produced as described above, the coin-
[0088]
First, each positive electrode active material was used as an active material, and graphite as a conductive agent and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90: 7: 3. 50 mg of this was weighed, pressed together with an aluminum net with a pressure press machine to a diameter of 15 mm and a thickness of 0.3 mm, and vacuum dried at 120 ° C. for 2 hours to produce
[0089]
As a negative electrode, a 1.6 mm thick lithium plate was prepared and punched out to a diameter of 17 mm to prepare a
[0090]
Next, the
[0091]
Battery test
With respect to the coin-type battery produced using the positive electrode active materials obtained in Examples 1 to 4 and Comparative Examples 1 to 4, the open circuit voltage and battery resistance were measured. The results are shown in Table 4. The battery resistance was measured by applying an alternating voltage of 1 kHz.
[0092]
[Table 4]
[0093]
As can be seen from the results of Table 4, in the batteries of Examples 1 to 4 and Comparative Examples 1 to 4, the values provided for practical use were all shown. It has been confirmed that the batteries of other examples all show practical values.
[0094]
Moreover, the following charging / discharging test was done about each coin-type battery of Example 1- Example 8 and Comparative Example 1- Comparative Example 8.
[0095]
First, current density 0.5mA / cm2After charging for 12 hours at an upper limit voltage of 4.2 V, a current density of 0.5 mA / cm2The battery was discharged to 3.0V. Next, a current density of 1.0 mA / cm2Charging for 5.5 hours at an upper limit voltage of 4.2 V, current density of 1.0 mA / cm2The cycle of discharging to a final voltage of 3.0 V was repeated 5 times.
[0096]
And about said battery, current density 1.0mA / cm as a discharge load performance test2The battery is charged with an upper limit voltage of 4.2 V for 5.5 hours, and a current density of 0.5 to 5 mA / cm.2Was discharged to 3.0V. These results are shown in FIG. 21 and FIG.
[0097]
Moreover, about said battery, as a discharge-and-charge cycle test, current density 1.0mA / cm2The battery is charged with an upper limit voltage of 4.2 V for 5.5 hours, and a current density of 1.0 mA / cm.2The cycle test for discharging to 3.0V was repeated. These results are shown in FIGS.
[0098]
As can be seen from the results of FIGS. 21 to 24, each of the batteries of Examples 1 to 8 has the diffraction peak intensity ratio (400) between the (311) plane and the (400) plane in the diffraction peak by X-ray diffraction. Since lithium manganese oxide having a / (311) of 1.05 to 1.20 is used as the positive electrode active material, the discharge load characteristics are higher and the cycle characteristics are better than the batteries of the comparative example. Furthermore, it can be seen that Examples 1 to 3 and Examples 5 to 7 having an intensity ratio of (400) / (311) = 1.10 to 1.15 are particularly excellent in discharge load characteristics. .
[0099]
On the other hand, Comparative Example 1 to Comparative Example 3 and Comparative Example 6 to Comparative Example 8 were not subjected to heat treatment within a temperature condition of 650 to 780 ° C. in the second treatment step, so that the discharge load characteristics and cycle characteristics were improved. Inferior. Moreover, even if the above temperature range is satisfied, Comparative Example 5 in which the pulverization and mixing were not performed again after the first treatment step has no regularity in the lattice plane, so that the discharge load characteristics and the cycle characteristics are improved. Inferior. Further, as can be seen from the result of Comparative Example 4, the atomic ratio x of lithium to manganese in the lithium manganese oxide is more preferably 0.505 to 0.525. Thus, each battery of the comparative example that does not satisfy the above conditions is good because the strength ratio of (400) / (311) of the positive electrode active material does not fall within the specified range, and the crystal structure deterioration easily proceeds. Battery characteristics are not exhibited.
[0100]
From the above results, in the present invention, the first treatment step in which the lithium manganese source in which the atomic ratio Li / Mn of lithium to manganese is 0.505 to 0.525 is heat-treated at 450 ° C. or lower; The mixture obtained in the above treatment step is pulverized and mixed again and subjected to a second treatment step in which heat treatment is performed at 650 to 780 ° C., so that it has a spinel structure, and has a (311) plane and (411) A lithium manganese oxide having a diffraction peak intensity ratio (400) / (311) of 1.05 to 1.20 on the surface can be obtained. Further, the positive electrode active material thus obtained has a thermogravimetric change temperature of 800 ° C. or lower.
[0101]
Further, in the coin-type battery using the positive electrode active material obtained by the above-described manufacturing method, the intensity ratio of the diffraction peak between the (311) plane and the (400) plane of the positive electrode active material is regulated, and the thermogravimetric change temperature. Is regulated to 800 ° C. or less, the lithium ion insertion / desorption reaction during the charge / discharge cycle proceeds smoothly, the deterioration of the positive electrode active material itself and the deterioration of the crystal structure are suppressed, and the discharge load characteristics and cycle characteristics It will be excellent.
[0102]
【The invention's effect】
As is clear from the above description, according to the present invention, it has a spinel structure, and the diffraction peak intensity ratio (400) / (311) between the (311) plane and the (400) plane is 1.05-1. A lithium manganese oxide regulated to 20 can be obtained. In addition, according to the present invention, by using this lithium manganese oxide for the positive electrode active material, the alteration of the positive electrode material itself and the deterioration of the crystal structure are suppressed, and the non-aqueous electrolyte secondary solution having excellent discharge load characteristics and cycle characteristics. Battery can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a spinel structure.
FIG. 2 LiMn2OFourIt is a schematic diagram explaining the network structure of the tunnel of this spinel type structure.
3 is a characteristic diagram showing an X-ray diffraction peak of Example 1. FIG.
4 is a characteristic diagram showing an X-ray diffraction peak of Example 2. FIG.
5 is a characteristic diagram showing an X-ray diffraction peak of Example 3. FIG.
6 is a characteristic diagram showing an X-ray diffraction peak of Example 4. FIG.
7 is a characteristic diagram showing an X-ray diffraction peak of Example 5. FIG.
8 is a characteristic diagram showing an X-ray diffraction peak of Example 6. FIG.
9 is a characteristic diagram showing an X-ray diffraction peak of Example 7. FIG.
10 is a characteristic diagram showing an X-ray diffraction peak of Example 8. FIG.
11 is a characteristic diagram showing an X-ray diffraction peak of Comparative Example 1. FIG.
12 is a characteristic diagram showing an X-ray diffraction peak of Comparative Example 2. FIG.
13 is a characteristic diagram showing an X-ray diffraction peak of Comparative Example 3. FIG.
14 is a characteristic diagram showing an X-ray diffraction peak of Comparative Example 4. FIG.
15 is a characteristic diagram showing an X-ray diffraction peak of Comparative Example 5. FIG.
16 is a characteristic diagram showing an X-ray diffraction peak of Comparative Example 6. FIG.
17 is a characteristic diagram showing an X-ray diffraction peak of Comparative Example 7. FIG.
18 is a characteristic diagram showing an X-ray diffraction peak of Comparative Example 8. FIG.
FIG. 19 is a cross-sectional view of a coin-type secondary battery to which the present invention is applied.
20 is a characteristic diagram showing an analysis result of the positive electrode active material of Example 1 by a thermal analysis method. FIG.
FIG. 21 is a characteristic diagram showing the relationship between current density and discharge capacity.
FIG. 22 is a characteristic diagram showing the relationship between current density and discharge capacity.
FIG. 23 is a characteristic diagram showing the relationship between the number of cycles and the discharge capacity.
FIG. 24 is a characteristic diagram showing the relationship between the number of cycles and the discharge capacity.
[Explanation of symbols]
1 coin type battery, 2 positive electrode pellet, 3 negative electrode pellet, 4 battery cover, 5 battery can, 6 separator, 7 gasket
Claims (2)
上記リチウムマンガン酸化物は、X線回折による回折ピークにおいて、(311)面と(400)面の回折ピーク強度比(400)/(311)が1.05〜1.20であり、且つ、マンガンに対するリチウムの原子比Li/Mnが0.505〜0.525であり、マンガンに対する酸素の原子比O/Mnが1.96〜2.04であり、空気中での熱重量測定における熱重量変化温度が770℃以上800℃以下であることを特徴とする非水電解液二次電池。Comprising a positive electrode using lithium manganese oxide as an active material, a negative electrode capable of doping and dedoping lithium, and a non-aqueous electrolyte,
The lithium manganese oxide has a diffraction peak intensity ratio (400) / (311) of (311) plane to (400) plane of 1.05 to 1.20 in the diffraction peak by X-ray diffraction, and manganese. The atomic ratio Li / Mn of lithium to 0.505 to 0.525, the atomic ratio of oxygen to manganese O / Mn is 1.96 to 2.04, and thermogravimetric change in thermogravimetry in air A nonaqueous electrolyte secondary battery, characterized in that the temperature is 770 ° C. or higher and 800 ° C. or lower.
第一の処理工程により得られた混合体を室温冷却後、再度粉砕混合し、650〜780℃で再び加熱処理を行う第二の処理工程とにより、
X線回折による回折ピークにおいて(311)面と(400)面の回折ピーク強度比(400)/(311)が1.05〜1.20であり、且つ、マンガンに対するリチウムの原子比Li/Mnが0.505〜0.525であり、マンガンに対する酸素の原子比O/Mnが1.96〜2.04であり、空気中での熱重量測定における熱重量変化温度が770℃以上800℃以下であるリチウムマンガン酸化物を得ることを特徴とする正極活物質の製造方法。A first treatment step in which a mixture of a lithium source and a manganese source with an atomic ratio Li / Mn of lithium to manganese of 0.505 to 0.525 is pressure-molded and heat-treated at 450 ° C. or lower;
The mixture obtained in the first treatment step is cooled to room temperature, then pulverized and mixed again, and the second treatment step in which heat treatment is performed again at 650 to 780 ° C.,
The diffraction peak intensity ratio (400) / (311) between the (311) plane and the (400) plane is 1.05-1.20 in the diffraction peak by X-ray diffraction, and the atomic ratio of lithium to manganese Li / Mn Is 0.505 to 0.525, the atomic ratio O / Mn of oxygen to manganese is 1.96 to 2.04, and the thermogravimetric change temperature in thermogravimetry in air is 770 ° C. or higher and 800 ° C. or lower. The manufacturing method of the positive electrode active material characterized by obtaining the lithium manganese oxide which is this.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP29209296A JP3721662B2 (en) | 1996-08-29 | 1996-11-01 | Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP22896796 | 1996-08-29 | ||
| JP8-228967 | 1996-08-29 | ||
| JP29209296A JP3721662B2 (en) | 1996-08-29 | 1996-11-01 | Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH10125324A JPH10125324A (en) | 1998-05-15 |
| JP3721662B2 true JP3721662B2 (en) | 2005-11-30 |
Family
ID=26528565
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP29209296A Expired - Lifetime JP3721662B2 (en) | 1996-08-29 | 1996-11-01 | Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3721662B2 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104064743A (en) * | 2013-03-19 | 2014-09-24 | 南通瑞翔新材料有限公司 | Preparation method for manganese-based positive electrode material of lithium battery |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3497420B2 (en) * | 1999-07-30 | 2004-02-16 | 日本碍子株式会社 | Lithium secondary battery |
| JP4644895B2 (en) * | 2000-01-24 | 2011-03-09 | 株式会社豊田中央研究所 | Lithium secondary battery |
| JP2002124258A (en) * | 2000-10-13 | 2002-04-26 | Toda Kogyo Corp | Lithium manganate particle powder and its manufacturing method |
| JP2002151070A (en) * | 2000-11-06 | 2002-05-24 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
| KR100406816B1 (en) | 2001-06-05 | 2003-11-21 | 삼성에스디아이 주식회사 | Method of preparing positive active material for rechargeable lithium battery |
| JP4617717B2 (en) * | 2004-05-12 | 2011-01-26 | 三菱化学株式会社 | Lithium transition metal composite oxide and production method thereof, positive electrode for lithium secondary battery and lithium secondary battery |
| JP5246057B2 (en) * | 2009-06-22 | 2013-07-24 | ソニー株式会社 | Battery positive electrode and non-aqueous electrolyte secondary battery using the same |
-
1996
- 1996-11-01 JP JP29209296A patent/JP3721662B2/en not_active Expired - Lifetime
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104064743A (en) * | 2013-03-19 | 2014-09-24 | 南通瑞翔新材料有限公司 | Preparation method for manganese-based positive electrode material of lithium battery |
| CN104064743B (en) * | 2013-03-19 | 2016-04-06 | 南通瑞翔新材料有限公司 | A kind of preparation method of lithium battery manganese-based anode material |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH10125324A (en) | 1998-05-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4491946B2 (en) | Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery | |
| JP3921931B2 (en) | Cathode active material and non-aqueous electrolyte battery | |
| JP3997702B2 (en) | Nonaqueous electrolyte secondary battery | |
| JP4151210B2 (en) | Positive electrode active material and method for producing the same, non-aqueous electrolyte battery and method for producing the same | |
| JP4742413B2 (en) | Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery | |
| JP4734700B2 (en) | Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery | |
| JP4524881B2 (en) | Nonaqueous electrolyte secondary battery | |
| JP4734701B2 (en) | Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery | |
| KR100949444B1 (en) | Method for producing cathode active material and method for producing non-aqueous electrolyte cell | |
| JP3008228B2 (en) | Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof | |
| JPH0935715A (en) | Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery | |
| JP4103285B2 (en) | Lithium battery and manufacturing method thereof | |
| WO2011148569A1 (en) | Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same | |
| EP4067311A1 (en) | Cathode active material for lithium secondary battery and lithium secondary battery including the same | |
| JP2001076727A (en) | Positive electrode active material for nonaqueous electrolyte battery and nonaqueous electrolyte battery | |
| WO2003069701A1 (en) | Production methods for positive electrode active matter and non-aqueous electrolytic battery | |
| CN113646262A (en) | Nonaqueous electrolyte secondary battery | |
| JP4491949B2 (en) | Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery | |
| JP3929548B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
| EP0936685A1 (en) | Carbonaceous precursor, carbonaceous anode material, and nonaqueous rechargeable battery | |
| JP2006318926A (en) | Positive electrode active material and non-aqueous electrolyte secondary battery | |
| JP4491950B2 (en) | Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery | |
| JP4724911B2 (en) | Nonaqueous electrolyte secondary battery | |
| JP3721662B2 (en) | Nonaqueous electrolyte secondary battery and method for producing positive electrode active material thereof | |
| JP4543658B2 (en) | Electrode active material, method for producing the same, and nonaqueous electrolyte secondary battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040319 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040330 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040528 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050607 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050728 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050823 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050905 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080922 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090922 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100922 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110922 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120922 Year of fee payment: 7 |