[go: up one dir, main page]

JP3725413B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
JP3725413B2
JP3725413B2 JP2000307286A JP2000307286A JP3725413B2 JP 3725413 B2 JP3725413 B2 JP 3725413B2 JP 2000307286 A JP2000307286 A JP 2000307286A JP 2000307286 A JP2000307286 A JP 2000307286A JP 3725413 B2 JP3725413 B2 JP 3725413B2
Authority
JP
Japan
Prior art keywords
light emitting
light
emitting element
package
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000307286A
Other languages
Japanese (ja)
Other versions
JP2001135861A (en
Inventor
俊秀 前田
邦彦 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000307286A priority Critical patent/JP3725413B2/en
Publication of JP2001135861A publication Critical patent/JP2001135861A/en
Application granted granted Critical
Publication of JP3725413B2 publication Critical patent/JP3725413B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8514Wavelength conversion means characterised by their shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8516Wavelength conversion means having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer or wavelength conversion layer with a concentration gradient

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば青色発光の発光ダイオードによる発光を波長変換して白色発光を得るようにした半導体発光装置に関する。
【0002】
【従来の技術】
青色発光の発光ダイオード(以下、「LED」と記す)は、近来になって、GaN,GaAlN,InGaN及びInAlGaN等のGaN系化合物半導体を利用することによって、発光輝度の高い製品が得られるようになった。そして、この青(B)のLEDと旧来からの赤(R),緑(G)発光のLEDとの組合せにより、これらのLEDの3個を1ドットとする高画質のフルカラー画像の形成が可能となった。
【0003】
LEDの分野では、フルカラー対応には光の三原色のR,G,B(青)が必要であるから、これらの発光色のLEDのより一層の開発と改良が主である。その一方で、たとえばR,G,Bの合成によってしか得られない白色発光を単一のLEDで達成しようとする試みも既になされている。このような試みの一つとして、たとえば特開平7−99345号公報に開示されたものがある。
【0004】
この公報に記載のLEDは、図の概略図に示すように、発光チップ50を搭載するリードフレーム51のマウント部51aを含めて樹脂(図示せず)によって封止するいわゆるLEDランプのタイプとしたものである。そして、発光チップ50の発光波長を変えて異なった発光色とするために、発光チップ50の周りのマウント部51aに蛍光物質を含んだ樹脂52で封止した構成を持つ。すなわち、旧来のLEDランプでは発光チップを搭載するリードフレームの先端部を含めて被覆するとともにレンズ機能も兼ねるエポキシ樹脂の単層で封止していたものに代えて、発光チップ周りに波長変換用の樹脂層を形成し、その周りをエポキシ樹脂で封止したものである。
【0005】
このような波長変換用の蛍光物質を含む樹脂52で発光チップ50を封止することで、発光チップ50からの青色発光の波長が蛍光物質によって変えられ、高輝度のGaN系化合物半導体を利用した青色の発光チップを白色発光のデバイスとして使えるようになる。すなわち、GaN系化合物半導体を利用した青色発光の発光チップ50の場合では、それ自身の青色発光の成分と、樹脂52に含まれた蛍光物質によって波長変換された黄緑色の成分との混色によって白色発光が得られる。
【0006】
【発明が解決しようとする課題】
LEDランプの場合では、発光チップ50を搭載するマウント部51aの内面を光反射面として利用するので、図示の例のようにマウント部51aをすり鉢状とすることが有効である。ところが、マウント部51aがすり鉢状であると、図9の(a)に示すように、発光チップ50の発光方向と側方の樹脂52の厚さA,Bが異なる場合が多い。これらの厚さA,Bの相違はマウント部51aの形状や発光チップ50の大きさ及び樹脂52の充填厚さ等によってさまざまに変わる。このため、これらの条件をもし最適化できれば、発光チップ50周りの全方向で樹脂52の層厚を均一にすることはできる。しかしながら、樹脂52はディスペンサによってマウント部51aに注入されるので、その厚さを高精度で制御することは非常に難しく、図示のようなA,Bの厚さの関係だけでなく発光チップ50周りの樹脂52の厚さを均一化することは現状では不可能である。
【0007】
発光チップ50周りの樹脂52の厚さが異なると、厚さが大きいほど発光チップ50からの青色発光が黄緑色に変換される割合も高くなる。このため、厚さA方向では良好な白色発光が得られても、厚さB方向のマウント部51aの内周面に近い部分では黄緑色の成分が白色を上回るようになる。したがって、マウント部51aの底面及び内周面を反射面とする発光なので、中央部では白色が占め周縁部では黄色みを帯びた発光となってしまう。
【0008】
このように、蛍光物質を含む樹脂52の発光チップ50に対する全方向の厚さを均等にできないことに起因して、純粋な白色発光が得られない。すなわち、青色発光を蛍光物質によって黄緑色に変換して本来の青色発光との混色により白色を得るので、発光チップ50に対する樹脂52の層厚を最適化しない限り、黄色みを伴わない白色発光は実現されない。
【0009】
また、樹脂52をマウント部51aに注入したとき、硬化後の樹脂52に含まれる蛍光物質の量の分布が一様でないと、白色発光の中に黄色の発光が混在することにもなる。すなわち、発光チップ50からの光路はその発光方向に三次元的に広がっているので、蛍光物質の充填量(樹脂52内での蛍光物質の密度)にばらつきがあれば、波長変換度も相違してくるので、黄色の発光を含むものとなり、純粋な白色発光が得られない。
【0010】
本発明は、蛍光物質によって波長変換する半導体発光装置において、たとえば青色の発光チップからの青色発光の分布と波長変換された黄緑色の分布とを均一化して純粋な白色の発光が得られるようにすることを解決課題とする。
【0011】
【課題を解決するための手段】
本発明は、フリップチップ型の発光素子と、前記発光素子を導通搭載するとともにプリント配線基板またはリードフレーム等の導通部材に導通搭載されるサブマウント素子と、前記発光素子の全体を封止して前記サブマウント素子の搭載面に接合される光透過性の樹脂を使用したパッケージとを備え、前記パッケージは、前記光透過性の樹脂に前記発光素子からの光を波長変換する蛍光物質を含有するとともに、前記発光素子の前記搭載面を除く主光取り出し面及び四方の側面の各面に対してそれぞれ平行な外郭面を合成した外形とし、かつ前記発光素子の外郭面からの厚さを発光方向の全方位でほぼ等しくしたことを特徴とする。
【0012】
このような構成では、パッケージの樹脂中に含ませる蛍光物質をほぼ一様に分散させておけば、主光取り出し面及び側面から放出される光のそれぞれについて波長変換度を均一化できるので、黄色みを帯びない純粋な白色発光が得られる。
【0013】
【発明の実施の形態】
請求項1に記載の発明は、フリップチップ型の発光素子と、前記発光素子を導通搭載するとともにプリント配線基板またはリードフレーム等の導通部材に導通搭載されるサブマウント素子と、前記発光素子の全体を封止して前記サブマウント素子の搭載面に接合される光透過性の樹脂を使用したパッケージとを備え、前記パッケージは、前記光透過性の樹脂に前記発光素子からの光を波長変換する蛍光物質を含有するとともに、前記発光素子の前記搭載面を除く主光取り出し面及び四方の側面の各面に対してそれぞれ平行な外郭面を合成した外形とし、かつ前記発光素子の外郭面からの厚さを発光方向の全方位でほぼ等しくしてなる半導体発光装置であって、発光素子の発光方向の全方位に対して蛍光物質による波長変換度を均一化し、パッケージ全体から発光素子の発光色と波長変換された発光色との混色の発光が一様に得られるという作用を有する。
【0014】
請求項2に記載の発明は、前記パッケージの上端四隅に、前記発光素子の外郭面からの厚さDと同じ半径Dの円弧面を形成した請求項1記載の半導体発光装置であって、パッケージ角部からの黄色発光を防止し、より一層純粋な白色の発光が効果的に得られる。
【0015】
請求項3に記載の発明は、前記パッケージの厚さを20〜110μmとするとともに、前記光透過性の樹脂に含まれる前記蛍光物質を50〜90重量%としてなる請求項1または2記載の半導体発光装置であり、パッケージの厚さと波長変換用の蛍光物質の含有率を最適化することで、色むらのない良好な発光が得られるという作用を有する。
【0016】
以下、本発明の実施の形態について図面に基づき説明する。なお、本実施の形態では、説明を判りやすくするため、請求項2の波長変換用の蛍光物質を含むパッケージの厚さを全方位で同じとする構成を先に説明する。
【0017】
図1は請求項1記載の発明の一実施の形態による半導体発光装置の概略斜視図、図2の(a)及び(b)はそれぞれ要部の縦断面図及び平面図である。
【0018】
図示のように、本発明の半導体発光装置は、サブマウント素子1とその上に搭載した発光素子2及びこの発光素子2の全体を封止した蛍光物質を含むパッケージ3とから構成されている。
【0019】
サブマウント素子1はn型のシリコン基板1aを用いたもので、このシリコン基板1aは図2の(a)に示すように発光素子2の搭載面側の一部に臨む部分だけをp型半導体領域1bとしている。そして、シリコン基板1aの底面にはn電極1cを形成するとともに、発光素子2の搭載面にはシリコン基板1aのn型半導体層に接合したn側電極1dを備え、更にp型半導体領域1bに含まれた部分にp側電極1eを形成している。
【0020】
発光素子2は、従来技術の項で述べたGaN系化合物半導体を利用した高輝度の青色発光のLEDである。この発光素子2は、サファイアを素材とした基板2aの表面に、たとえばGaNのn型層、InGaNの活性層及びGaNのp型層を積層したものである。そして、従来周知のように、p型層の一部をエッチングしてn型層を露出させ、この露出したn型層の表面にn側電極2cを形成し、p型層の表面にはp側電極2dを形成し、これらのn側及びp側の電極2c,2dをそれぞれバンプ電極2e,2fによってn側電極1d及びp側電極1eに接合している。
【0021】
なお、このようなサブマウント素子1と発光素子2との複合化素子では、サブマウント素子1のn電極1cをたとえばプリント基板の配線パターン上に導通搭載するとともに、パッケージ3から離れた領域のp側電極1eにワイヤを配線パターンとの間にボンディングするアセンブリであればよい。また、単に発光素子2への通電と搭載の機能だけでなく、たとえばツェナーダイオードを利用した静電気保護用の素子をサブマウント素子とすることもできる。
【0022】
パッケージ3は、従来からLEDランプの分野で使用されているエポキシ樹脂を素材とし、蛍光物質を混入したものである。エポキシ樹脂に混入する蛍光物質は、白色発光に変換する場合では、発光素子2の発光色である青色と補色の関係を持つものであればよく、蛍光染料,蛍光顔料,蛍光体などが利用でき、たとえば(Y,Gd)3(Al,Ga)512:Ce等が好適である。
【0023】
ここで、発光素子2は図2の(b)に示すように正方形の平面形状としたもので、同図の(a)中の破線で示すp型層とn型層との間の活性層2bから発光される。そして、この活性層2bからの発光は透明のサファイアを用いた基板2aを透過するので、図2の(a)において基板2aの上面が主光取り出し面となる。また、活性層2bからの光は基板2aを透過する方向だけではなく、側方やサブマウント素子1の表面にも向かい、側方へ向かうものはそのままパッケージ3から放出され、表面へ向かった発光成分は金属光沢を持つn側及びp側の電極1d,1eによって反射される。したがって、発光素子2からの光は、主光取り出し面からの発光強度が最大となるものの、発光素子2自体はその平面形状の四角形の1辺の長さが350μm程度と微小なので、発光素子2の全体から一様に発光されるといってよい。
【0024】
このような発光素子2からの発光の形態において、従来では、蛍光物質を混入した封止樹脂の厚さや充填量が一様でないことから白色発光の中に黄色発光が混じってしまうというものであった。すなわち、封止樹脂が厚い部分を抜ける光は蛍光物質による波長変換が薄い部分を抜ける光よりも促されるので、黄緑色の発光が強くなり、その結果黄色みを帯びた発光となる。
【0025】
これに対し、本発明では、図2から明らかなように、発光素子2の外郭面に対して縦方向及び横方向のパッケージ3の厚さを等しくすることで、活性層2bからの発光がパッケージ3から抜ける間に、蛍光物質による一様な波長変換が得られるようにする。すなわち、図2の(b)に示すように、発光素子2の側面からパッケージ3の表面までの距離をDとするとき、発光素子2の周囲の4側面の周りのパッケージ3の厚さは全てDとする。また、図2の(a)において、基板2aの上面からパッケージ3の上面までの厚さもDとする。
【0026】
このように発光素子2の主光取り出し面からの発光方向及び側面からの発光方向は全てDの厚さのパッケージ3で被覆される。そして、主光取り出し面からの発光が白色光となるように、パッケージ3の厚さDと蛍光体の含有率を調整すれば、パッケージ3の上面だけでなく周囲の4側面からも白色光が放出される。
【0027】
なお、発光素子2からパッケージ3の上端面の4辺の角部までの距離は、設定したパッケージ3の厚さDよりも少し長く、この部分へ向かう光については波長変換度が僅かに大きくなる。しかしながら、厚さの差は極めて微小であることと、発光素子2からの光はパッケージ3の上面と周囲の4側面から白色光が放たれるので、パッケージ3の角部から黄色みを僅かに帯びた光が放出されたとしても、周りの白色光に吸収されてしまう。そして、図2において一点鎖線で示すように、パッケージ3の全ての角部を半径がDの円弧面となるように製造すれば、発光素子2の表面からパッケージ3の全ての外郭面までの距離をDとすることができる。このようにすれば、より一層純粋な白色の発光が効果的に得られる。
【0028】
このように、発光素子2を封止するパッケージ3の厚さを発光素子2の底面側を除く全方位でほぼ同じとしたことによって、発光素子2からの光の蛍光物質による波長変換度がほぼ均一化される。したがって、パッケージ3から放出される光を純粋な白色光として得ることができる。
【0029】
ここで、先に述べたように、パッケージ3の厚さDと蛍光物質の含有率との関係が、良好な白色光がパッケージ3の全体から放出されるための一つの重要な因子である。これは、発光素子2からの光がパッケージ3を抜ける間に蛍光物質により青色発光が波長変換されて黄緑色の成分となり、発光素子2からの青色発光成分との混色によって白色発光となることを考えれば明らかである。本発明者らは、パッケージ3の厚さDと蛍光物質の含有率との関係について研究を重ね、パッケージ3の厚さDは20〜110μm程度で、蛍光物質の含有率は50〜90重量%であれば、最適な白色光が得られることを知見によって得た。
【0030】
下記の(表1)はパッケージ3の厚さDと蛍光物質の含有率との関係による色度座標x,yの値を実験によって測定した実測値である。
【0031】
【表1】

Figure 0003725413
【0032】
測定に際しては、パッケージ3としてエポキシ樹脂を用い、蛍光物質としては(Y,Gd)3(Al,Ga)512:Ceを用いた。(表1)から明らかなように、パッケージ3の厚さが20〜110μmであって、蛍光物質の含有率が50〜90重量%のとき、白色(x=0.25〜0.40,y=0.25〜0.40)の値に近似した値の発光色が得られることが判る。
【0033】
図3,図4は図1及び図2に示した半導体発光装置の製造方法を示す概略図である。
【0034】
図3はフォトリソグラフィー法を利用したもので、シリコンウエハー10に図2で示したp型半導体領域1bを形成するとともに、n電極1c,n側電極1d,p側電極1eをパターン形成したシリコンウエハー10をまず準備する。そして、n側及びp側の電極2c,2dにそれぞれバンプ電極2e,2fを形成した発光素子2をn側電極1d,p側電極1eのパターンに合わせて実装し、図3の(a)に示すように蛍光体ペースト11をシリコンウエハー10の表面に一様の厚さで塗布する。この蛍光体ペースト11はたとえばアクリル系樹脂等の紫外線硬化性の樹脂に先に例示した(Y,Gd)3(Al,Ga)512:Ce等の蛍光物質を混入したものである。
【0035】
蛍光体ペースト11の塗布の後、同図(b)のようにパターン形成用のマスク12を被せて上から紫外線を照射し、発光素子2を被覆する部分の蛍光体ペースト11を硬化させる。この後、現像工程に移して蛍光体ペースト11の不要な部分を除去することによってパッケージ3が形成され(図3の(c))、ダイシングによって図1及び図2に示したような半導体発光装置を得ることができる。
【0036】
図4はスクリーン印刷法を利用したもので、シリコンウエハー10への発光素子2の実装までの工程は図3の例と同様である。この発光素子2の実装の後、予め製作しておいたメタルマスク13をシリコンウエハー10の上に載せ(図4の(a)〜(b))、蛍光体ペースト14をスクリーン印刷法によって塗布する。この蛍光体ペースト14は紫外線硬化性のものではなく、エポキシ樹脂等の樹脂に蛍光物質とチキソトロピック材を混入したものである。蛍光体ペースト14を塗布した後には、メタルマスク13を取り外し、熱硬化することによってシリコンウエハー10の表面に発光素子2を封止したパッケージ3が形成され(図4の(c))、ダイシングによって半導体発光装置の単体が得られる。
【0037】
図5は転写法を利用したもので、転写板15の表面に蛍光体ペースト16を予め塗布したものを準備し、発光素子2を実装したシリコンウエハー10を上下反転した姿勢に保持する(図5の(a))。次いで、発光素子2が蛍光体ペースト16の中に浸漬されるようにシリコンウエハー10を転写板15の上に被せ(同図の(b))、その後シリコンウエハー10を引き上げると同図の(c)のように発光素子2が蛍光体ペースト16によって封止したものが得られる。そして、ダイシング工程によって半導体発光装置の単体が得られる。蛍光体ペースト16は先の例と同様に樹脂に蛍光物質を含ませたものであるが、転写法による製造の場合では、蛍光体ペースト16に用いる樹脂はアクリル系樹脂やエポキシ樹脂に限られず、その他のものであってもよい。
【0044】
【発明の効果】
本発明では、光透過性の樹脂に前記発光素子からの光を波長変換する蛍光物質を含有するとともに、発光素子の搭載面を除く主光取り出し面及び四方の側面の各面に対してそれぞれ平行な外郭面を合成した外形とし、かつ発光素子の外郭面からの厚さを発光方向の全方位でほぼ等しくすることで、樹脂に含ませた蛍光物質による波長変換度を一様化してパッケージの表面から放出でき、色むらのない鮮明な発光が得られる。
【図面の簡単な説明】
【図1】本発明の一実施の形態による半導体発光装置の概略斜視図
【図2】(a)は図1の半導体発光装置の要部縦断面図
(b)は図1の半導体発光装置の平面図
【図3】フォトリソグラフィー法による半導体発光装置の製造工程を示す概略図
【図4】スクリーン印刷法による半導体発光装置の製造工程を示す概略図
【図5】転写法による半導体発光装置の製造工程を示す概略図
【図】従来例の概略であって、
(a)は要部の縦断面図
(b)は平面図
【符号の説明】
1 サブマウント素子
1a シリコン基板
1b p型半導体領域
1c n電極
1d n側電極
1e p側電極
2 発光素子
2a 基板
2b 活性層
2c n側電極
2d p側電極
2e,2f バンプ電極
3 パッケージ
4 基台
4a 接着剤
5 パッケージ
5a,5b 孔
6a,6b ワイヤ
7a リード
7b マウント部
7c リード
10 シリコンウエハー
11 蛍光体ペースト
12 マスク
13 メタルマスク
14 蛍光体ペースト
15 転写板
16 蛍光体ペースト
20 ウエハー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor light emitting device that obtains white light emission by converting the wavelength of light emitted from, for example, a blue light emitting diode.
[0002]
[Prior art]
Blue light-emitting diodes (hereinafter referred to as “LEDs”) have recently come to be able to obtain products with high emission brightness by using GaN-based compound semiconductors such as GaN, GaAlN, InGaN, and InAlGaN. became. And, by combining this blue (B) LED with the traditional red (R) and green (G) LEDs, it is possible to form a high-quality full-color image with three of these LEDs as one dot. It became.
[0003]
In the field of LEDs, full-color correspondence requires R, G, B (blue) of the three primary colors of light, so further development and improvement of these light emitting color LEDs is main. On the other hand, attempts have already been made to achieve white light emission with a single LED, which can be obtained only by the synthesis of R, G, B, for example. One such attempt is disclosed in, for example, Japanese Patent Application Laid-Open No. 7-99345.
[0004]
As shown in the schematic diagram of FIG. 6 , the LED described in this publication includes a so-called LED lamp type that is sealed with a resin (not shown) including a mount portion 51a of a lead frame 51 on which a light emitting chip 50 is mounted. It is a thing. Then, in order to change the emission wavelength of the light emitting chip 50 to have different emission colors, the mount portion 51a around the light emitting chip 50 is sealed with a resin 52 containing a fluorescent material. In other words, in the conventional LED lamp, instead of the LED lamp that covers the tip of the lead frame on which the light-emitting chip is mounted and is sealed with a single layer of epoxy resin that also functions as a lens, it is used for wavelength conversion around the light-emitting chip. The resin layer is formed and the periphery thereof is sealed with an epoxy resin.
[0005]
By sealing the light emitting chip 50 with the resin 52 containing the wavelength converting fluorescent material, the wavelength of blue light emitted from the light emitting chip 50 is changed by the fluorescent material, and a high-luminance GaN-based compound semiconductor is used. The blue light emitting chip can be used as a white light emitting device. That is, in the case of the light emitting chip 50 that emits blue light using a GaN-based compound semiconductor, a white color is produced by mixing the blue light emitting component itself with the yellow-green component that has been wavelength-converted by the fluorescent material contained in the resin 52. Luminescence is obtained.
[0006]
[Problems to be solved by the invention]
In the case of an LED lamp, the inner surface of the mount portion 51a on which the light emitting chip 50 is mounted is used as a light reflecting surface. Therefore, it is effective to make the mount portion 51a into a mortar shape as in the illustrated example. However, when the mount portion 51a has a mortar shape, the light emitting direction of the light emitting chip 50 and the thicknesses A and B of the side resins 52 are often different as shown in FIG. The difference between the thicknesses A and B varies depending on the shape of the mount 51a, the size of the light emitting chip 50, the filling thickness of the resin 52, and the like. Therefore, if these conditions can be optimized, the layer thickness of the resin 52 can be made uniform in all directions around the light emitting chip 50. However, since the resin 52 is injected into the mount portion 51a by the dispenser, it is very difficult to control the thickness thereof with high accuracy. Not only the relationship between the thicknesses A and B as shown, but also the surroundings of the light emitting chip 50 It is currently impossible to make the thickness of the resin 52 uniform.
[0007]
When the thickness of the resin 52 around the light emitting chip 50 is different, the ratio of the blue light emission from the light emitting chip 50 converted to yellowish green increases as the thickness increases. For this reason, even if good white light emission is obtained in the thickness A direction, the yellow-green component exceeds white in the portion near the inner peripheral surface of the mount portion 51a in the thickness B direction. Therefore, since the light emission has the bottom surface and the inner peripheral surface of the mount portion 51a as the reflection surfaces, white is occupied in the central portion, and the yellow light is emitted in the peripheral portion.
[0008]
Thus, pure white light emission cannot be obtained due to the fact that the thickness of the resin 52 containing the fluorescent material in all directions with respect to the light emitting chip 50 cannot be made uniform. That is, since blue light emission is converted into yellowish green by a fluorescent material and white color is obtained by mixing with the original blue light emission, white light emission without yellowing is performed unless the layer thickness of the resin 52 with respect to the light emitting chip 50 is optimized. Not realized.
[0009]
Further, when the resin 52 is injected into the mount portion 51a, if the distribution of the amount of the fluorescent substance contained in the cured resin 52 is not uniform, yellow light emission may be mixed in the white light emission. That is, since the optical path from the light emitting chip 50 spreads three-dimensionally in the light emitting direction, if the filling amount of the fluorescent material (density of the fluorescent material in the resin 52) varies, the wavelength conversion degree also differs. Therefore, yellow light emission is included, and pure white light emission cannot be obtained.
[0010]
The present invention provides a semiconductor light-emitting device that converts a wavelength with a fluorescent material so that, for example, a blue light emission distribution from a blue light-emitting chip and a wavelength-converted yellow-green distribution are uniformed to obtain pure white light emission. To solve it.
[0011]
[Means for Solving the Problems]
The present invention includes a flip chip type light emitting element, a submount element that is conductively mounted on the light emitting element and is conductively mounted on a conductive member such as a printed wiring board or a lead frame, and the entire light emitting element is sealed. A package using a light transmissive resin bonded to the mounting surface of the submount element, and the package contains a fluorescent material that converts the wavelength of light from the light emitting element in the light transmissive resin. And an outer shape obtained by synthesizing outer surfaces parallel to each of the main light extraction surface and the four side surfaces excluding the mounting surface of the light emitting element, and a thickness from the outer surface of the light emitting element is a light emitting direction. It is characterized by being almost equal in all directions.
[0012]
In such a configuration, if the phosphor contained in the resin of the package is dispersed almost uniformly, the degree of wavelength conversion can be made uniform for each of the light emitted from the main light extraction surface and the side surface. Pure white light emission without tinge is obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a flip-chip type light emitting element, a submount element in which the light emitting element is conductively mounted and conductively mounted on a conductive member such as a printed wiring board or a lead frame, and the entire light emitting element. And a package using a light transmissive resin bonded to the mounting surface of the submount element, and the package converts the wavelength of light from the light emitting element into the light transmissive resin. The outer shape contains a fluorescent material, and has an outer shape obtained by synthesizing outer surfaces parallel to each of the main light extraction surface and the four side surfaces excluding the mounting surface of the light emitting element, and from the outer surface of the light emitting element. A semiconductor light emitting device in which the thickness is almost equal in all directions in the light emitting direction. Has the effect of light emission can be obtained uniformly mixed color from the entire over-di and emission color and the wavelength converted light emission color of the light emitting element.
[0014]
The invention according to claim 2 is the semiconductor light emitting device according to claim 1, wherein an arc surface having the same radius D as the thickness D from the outer surface of the light emitting element is formed at the upper four corners of the package. Yellow light emission from the corner is prevented, and even more pure white light emission can be effectively obtained.
[0015]
The invention according to claim 3 is the semiconductor according to claim 1 or 2, wherein the thickness of the package is 20 to 110 μm and the fluorescent material contained in the light-transmitting resin is 50 to 90% by weight. It is a light emitting device, and has an effect that good light emission without color unevenness can be obtained by optimizing the thickness of the package and the content of the fluorescent substance for wavelength conversion.
[0016]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, in order to make the description easy to understand, a configuration in which the thickness of the package containing the wavelength converting fluorescent material according to claim 2 is the same in all directions will be described first.
[0017]
FIG. 1 is a schematic perspective view of a semiconductor light emitting device according to an embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are a longitudinal sectional view and a plan view of a main part, respectively.
[0018]
As shown in the figure, the semiconductor light emitting device of the present invention comprises a submount element 1, a light emitting element 2 mounted thereon, and a package 3 containing a fluorescent material that seals the entire light emitting element 2.
[0019]
The submount element 1 uses an n-type silicon substrate 1a. As shown in FIG. 2 (a), the silicon substrate 1a has only a portion facing a part on the mounting surface side of the light-emitting element 2 as a p-type semiconductor. Region 1b is set. An n-electrode 1c is formed on the bottom surface of the silicon substrate 1a, and an n-side electrode 1d bonded to the n-type semiconductor layer of the silicon substrate 1a is provided on the mounting surface of the light emitting element 2, and the p-type semiconductor region 1b is further provided with a p-type semiconductor region 1b. A p-side electrode 1e is formed in the included portion.
[0020]
The light emitting element 2 is a high-luminance blue light emitting LED using the GaN-based compound semiconductor described in the section of the prior art. In the light emitting element 2, for example, a GaN n-type layer, an InGaN active layer, and a GaN p-type layer are stacked on the surface of a substrate 2a made of sapphire. Then, as is well known in the art, a part of the p-type layer is etched to expose the n-type layer, and the n-side electrode 2c is formed on the exposed surface of the n-type layer. A side electrode 2d is formed, and these n-side and p-side electrodes 2c and 2d are joined to the n-side electrode 1d and the p-side electrode 1e by bump electrodes 2e and 2f, respectively.
[0021]
Note that, in such a composite element of the submount element 1 and the light emitting element 2, the n electrode 1c of the submount element 1 is conductively mounted on, for example, a wiring pattern of a printed circuit board, and p in a region away from the package 3 is provided. What is necessary is just an assembly which bonds a wire between the side electrode 1e and a wiring pattern. Further, not only a function of energizing and mounting the light emitting element 2 but also an element for electrostatic protection using, for example, a Zener diode can be used as the submount element.
[0022]
The package 3 is made of an epoxy resin conventionally used in the field of LED lamps and mixed with a fluorescent material. The fluorescent material mixed in the epoxy resin may be any material that has a complementary color relationship with the blue light emission color of the light emitting element 2 when converted to white light emission, and fluorescent dyes, fluorescent pigments, phosphors, and the like can be used. For example, (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce is suitable.
[0023]
Here, the light emitting element 2 has a square planar shape as shown in FIG. 2B, and is an active layer between the p-type layer and the n-type layer indicated by a broken line in FIG. Light is emitted from 2b. Since the light emitted from the active layer 2b is transmitted through the substrate 2a using transparent sapphire, the upper surface of the substrate 2a is the main light extraction surface in FIG. The light from the active layer 2b is not only transmitted in the direction of transmitting through the substrate 2a but also directed to the side and the surface of the submount element 1, and the light directed toward the side is emitted from the package 3 as it is and emitted toward the surface. The component is reflected by the n-side and p-side electrodes 1d and 1e having a metallic luster. Therefore, although the light emitted from the light emitting element 2 has the maximum light emission intensity from the main light extraction surface, the light emitting element 2 itself has a small one side length of about 350 μm, and therefore the light emitting element 2 It can be said that light is emitted uniformly from the whole.
[0024]
Conventionally, in such a form of light emission from the light emitting element 2, yellow light emission is mixed with white light emission because the thickness and filling amount of the sealing resin mixed with the fluorescent material are not uniform. It was. That is, the light that passes through the thick portion of the sealing resin is promoted more than the light that passes through the portion where the wavelength conversion by the fluorescent material is thin, so that yellow-green light emission becomes stronger, resulting in yellowish light emission.
[0025]
On the other hand, in the present invention, as apparent from FIG. 2, the thickness of the package 3 in the vertical direction and the horizontal direction with respect to the outer surface of the light emitting element 2 is equalized, so that the light emission from the active layer 2 b is the package. While exiting from step 3, uniform wavelength conversion by the fluorescent material is obtained. That is, as shown in FIG. 2B, when the distance from the side surface of the light emitting element 2 to the surface of the package 3 is D, the thickness of the package 3 around the four side surfaces around the light emitting element 2 is all D. 2A, the thickness from the upper surface of the substrate 2a to the upper surface of the package 3 is also D.
[0026]
As described above, the light emitting direction from the main light extraction surface and the light emitting direction from the side surface of the light emitting element 2 are all covered with the package 3 having a thickness of D. If the thickness D of the package 3 and the phosphor content are adjusted so that the light emitted from the main light extraction surface becomes white light, white light can be emitted not only from the upper surface of the package 3 but also from the surrounding four side surfaces. Released.
[0027]
Note that the distance from the light emitting element 2 to the corners of the four sides of the upper end surface of the package 3 is slightly longer than the set thickness D of the package 3, and the wavelength conversion degree is slightly increased for light traveling toward this portion. . However, the difference in thickness is extremely small, and the light from the light-emitting element 2 is emitted from the top surface of the package 3 and the four surrounding sides, so that the yellow color is slightly removed from the corners of the package 3. Even if tinged light is emitted, it is absorbed by the surrounding white light. Then, as shown by the alternate long and short dash line in FIG. 2, if all the corners of the package 3 are manufactured to be circular arc surfaces having a radius D, the distance from the surface of the light emitting element 2 to all the outer surfaces of the package 3. Can be D. In this way, even more pure white light emission can be effectively obtained.
[0028]
Thus, by making the thickness of the package 3 for sealing the light emitting element 2 substantially the same in all directions except the bottom surface side of the light emitting element 2, the wavelength conversion degree of the light from the light emitting element 2 by the fluorescent substance is almost the same. It is made uniform. Therefore, the light emitted from the package 3 can be obtained as pure white light.
[0029]
Here, as described above, the relationship between the thickness D of the package 3 and the content of the fluorescent material is one important factor for good white light to be emitted from the entire package 3. This is because blue light emission is wavelength-converted by the fluorescent material while the light from the light emitting element 2 passes through the package 3 to become a yellow-green component, and white light emission is caused by a color mixture with the blue light emitting component from the light emitting element 2. It is clear if you think about it. The inventors have repeatedly studied the relationship between the thickness D of the package 3 and the content of the fluorescent material. The thickness D of the package 3 is about 20 to 110 μm, and the content of the fluorescent material is 50 to 90% by weight. Then, it was obtained by knowledge that an optimal white light can be obtained.
[0030]
The following (Table 1) is an actual measurement value obtained by experimentally measuring the values of the chromaticity coordinates x and y based on the relationship between the thickness D of the package 3 and the phosphor content.
[0031]
[Table 1]
Figure 0003725413
[0032]
In the measurement, an epoxy resin was used as the package 3 and (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce was used as the fluorescent material. As apparent from Table 1, when the thickness of the package 3 is 20 to 110 μm and the content of the fluorescent material is 50 to 90% by weight, white (x = 0.25 to 0.40, y It can be seen that an emission color having a value approximate to the value of = 0.25 to 0.40) is obtained.
[0033]
3 and 4 are schematic views showing a method of manufacturing the semiconductor light emitting device shown in FIGS.
[0034]
FIG. 3 shows a silicon wafer in which the p-type semiconductor region 1b shown in FIG. 2 is formed on the silicon wafer 10 and the n-electrode 1c, the n-side electrode 1d, and the p-side electrode 1e are patterned. First prepare 10. Then, the light-emitting element 2 in which bump electrodes 2e and 2f are formed on the n-side and p-side electrodes 2c and 2d, respectively, is mounted according to the pattern of the n-side electrode 1d and p-side electrode 1e, and is shown in FIG. As shown, the phosphor paste 11 is applied to the surface of the silicon wafer 10 with a uniform thickness. This phosphor paste 11 is obtained by mixing a fluorescent substance such as (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce exemplified above in an ultraviolet curable resin such as an acrylic resin.
[0035]
After the application of the phosphor paste 11, as shown in FIG. 5B, the pattern forming mask 12 is put on and irradiated with ultraviolet rays from above to cure the portion of the phosphor paste 11 covering the light emitting element 2. Thereafter, the development step is carried out to remove unnecessary portions of the phosphor paste 11 to form the package 3 (FIG. 3C), and the semiconductor light emitting device as shown in FIGS. 1 and 2 by dicing. Can be obtained.
[0036]
FIG. 4 uses a screen printing method, and the process until the light emitting element 2 is mounted on the silicon wafer 10 is the same as the example of FIG. After mounting the light emitting element 2, a metal mask 13 produced in advance is placed on the silicon wafer 10 (FIGS. 4A to 4B), and the phosphor paste 14 is applied by screen printing. . The phosphor paste 14 is not ultraviolet curable, and is a mixture of a fluorescent material and a thixotropic material in a resin such as an epoxy resin. After the phosphor paste 14 is applied, the metal mask 13 is removed and thermally cured to form a package 3 in which the light emitting element 2 is sealed on the surface of the silicon wafer 10 ((c) in FIG. 4). A single semiconductor light emitting device is obtained.
[0037]
FIG. 5 uses a transfer method, in which a phosphor paste 16 is applied in advance to the surface of a transfer plate 15 and the silicon wafer 10 on which the light emitting element 2 is mounted is held in an upside down position (FIG. 5). (A)). Next, the silicon wafer 10 is placed on the transfer plate 15 so that the light emitting element 2 is immersed in the phosphor paste 16 ((b) in the figure), and then the silicon wafer 10 is pulled up (c) in the figure. The light emitting element 2 is sealed with the phosphor paste 16 as shown in FIG. And the single-piece | unit of a semiconductor light-emitting device is obtained by a dicing process. The phosphor paste 16 is made of a resin containing a phosphor as in the previous example. However, in the case of manufacturing by a transfer method, the resin used for the phosphor paste 16 is not limited to an acrylic resin or an epoxy resin. Others may be used.
[0044]
【The invention's effect】
In the present invention, the light-transmitting resin contains a fluorescent substance that converts the wavelength of light from the light emitting element, and is parallel to each of the main light extraction surface and the four side surfaces excluding the mounting surface of the light emitting element. The outer shape of the outer surface is combined, and the thickness from the outer surface of the light emitting element is almost equal in all directions of the light emitting direction, so that the wavelength conversion degree by the fluorescent material contained in the resin is made uniform and the package It can be emitted from the surface, and clear light emission without color unevenness can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a semiconductor light emitting device according to an embodiment of the present invention. FIG. 2A is a longitudinal sectional view of a main part of the semiconductor light emitting device of FIG. FIG. 3 is a schematic view showing a manufacturing process of a semiconductor light emitting device by a photolithography method. FIG. 4 is a schematic view showing a manufacturing process of a semiconductor light emitting device by a screen printing method. FIG. 6 is a schematic diagram showing a conventional process.
(A) is a longitudinal sectional view of the main part (b) is a plan view [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Submount element 1a Silicon substrate 1b p-type semiconductor region 1c n electrode 1d n side electrode 1e p side electrode 2 light emitting element 2a substrate 2b active layer 2c n side electrode 2d p side electrode 2e, 2f bump electrode 3 package 4 base 4a Adhesive 5 Package 5a, 5b Hole 6a, 6b Wire 7a Lead 7b Mount 7c Lead 10 Silicon wafer 11 Phosphor paste 12 Mask 13 Metal mask 14 Phosphor paste 15 Transfer plate 16 Phosphor paste 20 Wafer

Claims (3)

フリップチップ型の発光素子と、前記発光素子を導通搭載するとともにプリント配線基板またはリードフレーム等の導通部材に導通搭載されるサブマウント素子と、前記発光素子の全体を封止して前記サブマウント素子の搭載面に接合される光透過性の樹脂を使用したパッケージとを備え、前記パッケージは、前記光透過性の樹脂に前記発光素子からの光を波長変換する蛍光物質を含有するとともに、前記発光素子の前記搭載面を除く、正方形の平面形状からなる主光取り出し面及び四方の側面の各面に対してそれぞれ平行な外郭面を合成した外形とし、かつ前記発光素子の外郭面からの厚さを発光方向の全方位でほぼ等しくしてなる半導体発光装置。A flip-chip type light emitting element, a submount element in which the light emitting element is conductively mounted and conductively mounted on a conductive member such as a printed wiring board or a lead frame, and the light emitting element is sealed to form the submount element And a package using a light-transmitting resin bonded to the mounting surface, the package containing a fluorescent material that converts the wavelength of light from the light-emitting element in the light-transmitting resin, and the light emission A main light extraction surface having a square planar shape excluding the mounting surface of the element , and an outer shape obtained by synthesizing outer surfaces parallel to each of the four side surfaces, and a thickness from the outer surface of the light emitting element A semiconductor light emitting device in which the thickness is made substantially equal in all directions of the light emitting direction. 前記パッケージの上端四隅に、前記発光素子の外郭面からの厚さDと同じ半径Dの円弧面を形成した請求項1記載の半導体発光装置。  2. The semiconductor light emitting device according to claim 1, wherein an arc surface having the same radius D as the thickness D from the outer surface of the light emitting element is formed at the four upper corners of the package. 前記パッケージがエポキシ樹脂であって厚さを20〜110μmとするとともに、前記光透過性の樹脂に含まれる前記蛍光物質を(Y,Gd)3(Al,Ga)512:Ceとし50〜90重量%含有させてなる請求項1または2記載の半導体発光装置。The package is made of epoxy resin and has a thickness of 20 to 110 μm, and the fluorescent material contained in the light transmissive resin is (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce 3. The semiconductor light emitting device according to claim 1, wherein 90% by weight is contained.
JP2000307286A 2000-10-06 2000-10-06 Semiconductor light emitting device Expired - Lifetime JP3725413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000307286A JP3725413B2 (en) 2000-10-06 2000-10-06 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000307286A JP3725413B2 (en) 2000-10-06 2000-10-06 Semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP378899A Division JP2000208822A (en) 1999-01-11 1999-01-11 Semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005205282A Division JP2005311395A (en) 2005-07-14 2005-07-14 Manufacturing method of semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2001135861A JP2001135861A (en) 2001-05-18
JP3725413B2 true JP3725413B2 (en) 2005-12-14

Family

ID=18787822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000307286A Expired - Lifetime JP3725413B2 (en) 2000-10-06 2000-10-06 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP3725413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104923B2 (en) 2006-10-12 2012-01-31 Panasonic Corporation Light-emitting apparatus

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007329511A (en) * 2001-09-03 2007-12-20 Matsushita Electric Ind Co Ltd Semiconductor light emitting device
WO2003021691A1 (en) 2001-09-03 2003-03-13 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting device
JP3707688B2 (en) 2002-05-31 2005-10-19 スタンレー電気株式会社 Light emitting device and manufacturing method thereof
JP2004207341A (en) * 2002-12-24 2004-07-22 Sanken Electric Co Ltd Emitted light wavelength converting semiconductor light emitting device and its manufacturing method
WO2006006255A1 (en) * 2003-09-19 2006-01-19 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting device
JP4496774B2 (en) 2003-12-22 2010-07-07 日亜化学工業株式会社 Manufacturing method of semiconductor device
CN100440555C (en) * 2004-04-28 2008-12-03 松下电器产业株式会社 Light emitting device and manufacturing method thereof
TW200644746A (en) * 2005-05-12 2006-12-16 Matsushita Electric Industrial Co Ltd Apparatus for forming phosphor layer and method for forming phosphor layer using the apparatus
JP4557824B2 (en) * 2005-07-04 2010-10-06 株式会社東芝 Light emitting device and manufacturing method thereof
KR101161383B1 (en) * 2005-07-04 2012-07-02 서울반도체 주식회사 Light emitting diode and method for producing the same
WO2008044759A1 (en) 2006-10-12 2008-04-17 Panasonic Corporation Light-emitting device and method for manufacturing the same
US8288936B2 (en) 2007-06-05 2012-10-16 Sharp Kabushiki Kaisha Light emitting apparatus, method for manufacturing the light emitting apparatus, electronic device and cell phone device
KR100984126B1 (en) 2009-03-30 2010-09-28 서울대학교산학협력단 Method for coating light emitting device, light coupler and method for fabricating light coupler
KR101007145B1 (en) * 2010-01-14 2011-01-10 엘지이노텍 주식회사 Method of manufacturing light emitting device chip, light emitting device package and light emitting device chip
KR101077861B1 (en) 2010-07-30 2011-10-28 우리엘에스티 주식회사 Coating method of light emitting diode
KR101077862B1 (en) 2010-07-30 2011-10-28 우리엘에스티 주식회사 Coating method of light emitting diode
KR101131884B1 (en) 2010-07-30 2012-04-03 우리엘에스티 주식회사 Coating method of light emitting device
KR101135093B1 (en) 2011-02-22 2012-04-16 서울대학교산학협력단 Method for producing uniform coating on light emitting diode
US8669126B2 (en) 2012-03-30 2014-03-11 Snu R&Db Foundation Uniform coating method for light emitting diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104923B2 (en) 2006-10-12 2012-01-31 Panasonic Corporation Light-emitting apparatus

Also Published As

Publication number Publication date
JP2001135861A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
JP3725413B2 (en) Semiconductor light emitting device
JP2000208822A (en) Semiconductor light emitting device
US9882097B2 (en) Optoelectronic semiconductor chip, optoelectronic semiconductor component, and a method for producing an optoelectronic semiconductor component
KR100425566B1 (en) Light emitting diode
JP3486345B2 (en) Semiconductor light emitting device
US8508118B2 (en) Light emitting device that suppresses color unevenness
CN100411198C (en) light emitting device
CN100440555C (en) Light emitting device and manufacturing method thereof
CN102299246B (en) Light emitting device
JP3640153B2 (en) Illumination light source
EP2461380B1 (en) Light emitting diode device package and manufacturing method thereof
KR20100058779A (en) Light emitting diode package and manufacturing method thereof
JP4045710B2 (en) Manufacturing method of semiconductor light emitting device
JP2001298216A (en) Surface mount type semiconductor light emitting device
JP2001177157A (en) Semiconductor light emitting device
JP2005311395A (en) Manufacturing method of semiconductor light emitting device
JP2002241586A (en) Wavelength conversion paste material, composite light-emitting element, semiconductor light-emitting device, and method for manufacturing the same
JP2007324630A (en) Semiconductor light emitting device
JP2001358370A (en) Wavelength conversion paste material, semiconductor light emitting device and method of manufacturing the same
JP2002134792A (en) Method for manufacturing white semiconductor light emitting device
JP2006059851A (en) Semiconductor light emitting device, lighting device using the same, and method for manufacturing the same
JP2018022859A (en) Light-emitting device and method for manufacturing the same
JP3412601B2 (en) Method for manufacturing semiconductor light emitting device
KR100748707B1 (en) Manufacturing method of light emitting device
JP2002100813A (en) Wavelength conversion paste material, semiconductor light emitting device, and method of manufacturing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

EXPY Cancellation because of completion of term