[go: up one dir, main page]

JP3850288B2 - Semiconductor laser device and manufacturing method thereof - Google Patents

Semiconductor laser device and manufacturing method thereof Download PDF

Info

Publication number
JP3850288B2
JP3850288B2 JP2001390925A JP2001390925A JP3850288B2 JP 3850288 B2 JP3850288 B2 JP 3850288B2 JP 2001390925 A JP2001390925 A JP 2001390925A JP 2001390925 A JP2001390925 A JP 2001390925A JP 3850288 B2 JP3850288 B2 JP 3850288B2
Authority
JP
Japan
Prior art keywords
layer
conductivity type
gaas
current confinement
optical waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001390925A
Other languages
Japanese (ja)
Other versions
JP2003198063A (en
Inventor
敏明 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2001390925A priority Critical patent/JP3850288B2/en
Priority to US10/328,011 priority patent/US6690698B2/en
Publication of JP2003198063A publication Critical patent/JP2003198063A/en
Application granted granted Critical
Publication of JP3850288B2 publication Critical patent/JP3850288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体レーザ素子に関し、特に、発振波長が980nm帯であり、ARROW構造を有する半導体レーザ素子に関するものである。
【0002】
【従来の技術】
光ファイバ増幅器励起用の光源として、信頼性の高い回折限界の高品質ビームを有する高出力半導体レーザが期待されている。現在、980nm帯の高出力の回折限界発振可能な半導体レーザとして、米国特許第5606570号において、InGaAsを活性層とし、InGaAlPを電流狭窄層とし、GaAsを高屈折率媒質とした、非共鳴の反射光閉じ込め(Antiresonant Reflecting Optical Waveguide)構造(以下、ARROW構造と称する)を備えた半導体レーザ素子が、高出力化が可能であるものとして報告されている。ARROW構造とは、低屈折率の複数のコア領域、該コア領域間および両外側に設けられる高屈折率領域、該コア領域および高屈折率領域のさらに外側に設けられる、コア領域と略同一の屈折率を有する低屈折率領域およびさらに最外側に設けられる高屈折率領域を備えるものであり、各コア領域に光閉じ込めを行うものである。本構造によると、コア領域の両外側に設けられた高屈折率領域が基本横モードに対する反射部(reflector)として作用し、さらに外側に設けられた低屈折率領域により光の漏れを抑制することにより基本横モード制御を行うことができる。なお、基本横モード制御を行う際、発振波長をλとし、コア領域の等価屈折率をnc、コア領域幅をdc、該コア領域の両外側に設けられた高屈折率領域の等価屈折率と幅をそれぞれnbおよびdb1としたとき、
【数1】

Figure 0003850288
となり、その外側となる低屈折率領域の幅がdc/2となるように、さらに複数コアの各コア間に設けられた高屈折率領域の幅db2
【数2】
Figure 0003850288
となるようにすることが望ましいことが報告されている。
【0003】
【発明が解決しようとする課題】
上記特許に例示されている半導体レーザ素子は、再成長技術を要する構造であって、さらに、その際、InGaP層、InAlP層およびGaAs層が再成長前に表面に露出する構造であるため、再成長時の昇温過程でPとAsの表面での相互拡散が生じ、再成長不良を起こしやすいという欠点があり、実用化に適していない。
【0004】
本発明は上記事情に鑑みて、ARROW構造を有する半導体レーザ素子であって、低出力から高出力まで信頼性の高い半導体レーザ素子およびその半導体レーザ素子を容易に製造する方法を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明の半導体レーザ素子は、第一導電型GaAs基板上に、第一導電型のIn0.49Ga0.51PまたはAlz1Ga1-z1As(ただし、0.2≦z1≦0.8)からなる下部クラッド層、第一導電型またはアンドープのGaAs下部光導波層、Inx3Ga1-x3As1-y3y3圧縮歪量子井戸活性層(ただし、0.49y3<x3≦0.4,0≦y3≦0.1)、第二導電型またはアンドープのGaAs上部光導波層をこの順に積層してなる積層体上に、共振器の共振方向にストライプ状に、電流注入領域および該電流注入領域の両側にそれぞれ所定距離離れた領域に開口を有する第二導電型Inx8Ga1-x8P第一エッチング阻止層(ただし、0≦x8≦1)および第一導電型GaAs電流狭窄層をこの順に備え、第一導電型GaAs電流狭窄層上および電流注入領域以外の領域の前記開口に露出する前記上部光導波層上に、第一導電型あるいは第二導電型Inx9Ga1-x9P第二エッチング阻止層(ただし、0≦x9≦1)および第一導電型Alz1Ga1-z1As電流狭窄層をこの順に備え、第一導電型Alz1Ga1-z1As電流狭窄層上および電流注入領域の開口に露出する上部光導波層上に、第二導電型Alz1Ga1-z1As上部クラッド層および第二導電型GaAsコンタクト層を備えてなることを特徴とするものである。
【0006】
第一導電型Alz1Ga1-z1As電流狭窄層上に、第一導電型あるいは第二導電型のGaAsキャップ層が設けられていてもよい。
【0007】
Inx8Ga1-x8P第一エッチング阻止層と第一導電型GaAs電流狭窄層との間に第二導電型GaAs層が設けられていてもよい。
【0008】
なお、電流注入領域の幅は3μm以上であることが望ましい。
【0009】
第一導電型GaAs電流狭窄層の積層方向の途中に、活性層よりバンドギャップが小さいInGaAs量子井戸層を備えていてもよい。
【0010】
本発明の半導体レーザ素子の製造方法は、第一導電型GaAs基板上に、第一導電型のIn0.49Ga0.51PまたはAlz1Ga1-z1As(ただし、0.2≦z1≦0.8)からなる下部クラッド層、第一導電型またはアンドープのGaAs下部光導波層、Inx3Ga1-x3As1-y3y3圧縮歪量子井戸活性層(ただし、0.49y3<x3≦0.4,0≦y3≦0.1)、第二導電型またはアンドープのGaAs上部光導波層、第二導電型Inx8Ga1-x8P第一エッチング阻止層(ただし、0≦x8≦1)、第一導電型GaAs電流狭窄層をこの順に積層し、第一導電型GaAs電流狭窄層と第二導電型Inx8Ga1-x8P第一エッチング阻止層とを、電流注入領域および該電流注入領域の両側から所定距離離れた領域を共振器方向にストライプ状に除去して上部光導波層を露出させ、As雰囲気で昇温した後、第一導電型GaAs電流狭窄層上および前記露出された上部光導波層上に、再成長により第一導電型あるいは第二導電型Inx9Ga1-x9P第二エッチング阻止層(ただし、0≦x9≦1)および第一導電型Alz1Ga1-z1As電流狭窄層をこの順に積層し、電流注入領域の、第一導電型Alz1Ga1-z1As電流狭窄層およびInx9Ga1-x9P第二エッチング阻止層を除去して、上部光導波層を露出させ、As雰囲気で昇温した後、第一導電型Alz1Ga1-z1As電流狭窄層上および露出された上部光導波層上に、再成長により第二導電型Alz1Ga1-z1As上部クラッド層および第二導電型GaAsコンタクト層をこの順に積層することを特徴とするものである。
【0011】
第一導電型Alz1Ga1-z1As電流狭窄層の上に第一導電型あるいは第二導電型のGaAs層を成長してもよい。
【0012】
なお、上記第一導電型と第二導電型とは、逆極性を示すものであり、例えば、第一導電型がn型であれば、第二導電型はp型であることを示す。
【0013】
また、上記アンドープとは導電性不純物が導入されていないことを示す。
【0014】
【発明の効果】
本発明の半導体レーザ素子によれば、上述のような層構成を備えたことにより、活性層に水平な方向において、ストライプ状の電流注入開口によって規定されるコア領域を中心として、その両側にコア領域の等価屈折率よりも高い等価屈折率である高屈折率領域、その外側にコア領域と同等の等価屈折率である低屈折率領域、さらにその外側に第二の高屈折率領域を備えた、いわゆるARROW構造を構成したものとすることができる。
【0015】
このARROW構造を備えたことにより、ARROW構造を備えない素子と比較して、ストライプ幅を広くしても横モード制御がなされた単峰性のビームを発振することができる。すなわち、ARROW構造を備えない素子においては、横モード制御を行うために、ストライプ幅を3μmより小さくする必要があったため、それに応じて活性領域幅が制限され、高出力化を図ると活性層への光密度が高くなり端面劣化を引き起こすために高出力発振を行うことができなかった。しかし、上述したような等価屈折率分布のARROW構造を有する素子であるため、幅広のストライプ幅の領域に良好な光閉じ込めを行うことができ、幅広の活性領域からの横基本モード発振が可能となる。なお、3μm以上の幅広の活性領域を備えれば活性層の光密度が低減できるので、端面の光吸収再結合による温度上昇を低減でき、ARROW構造を備えない素子と比較して高出力の光ビームを得ることができる。
【0016】
また特に、光導波層とGaAs電流狭窄層とにGaAsを用いたことにより、高屈折率領域の屈折率の制御が容易であるので、水平方向の等価屈折率分布の制御性が高いARROW構造を得ることができる。
【0017】
また、第一導電型GaAs電流狭窄層の積層方向の途中に、活性層よりバンドギャップの小さいInGaAs量子井戸層を備えたものとすれば、InGaAs量子井戸層において光吸収が起こるために基本横モード発振の利得を高くすることができる。
【0018】
本発明の半導体レーザ素子の製造方法によれば、活性層に水平な方向において、ストライプ状の電流注入開口によって規定されるコア領域を中心として、その両側にコア領域の等価屈折率よりも高い等価屈折率である高屈折率領域、その外側にコア領域と同等の等価屈折率である低屈折率領域、さらにその外側に第二の高屈折率領域を備えた、いわゆるARROW構造を備えた半導体レーザ素子を高精度にかつ容易に製造することができる。
【0019】
また、再成長前に露出する層がほぼAlGaAs電流狭窄層とGaAs上部光導波層のみとなり、一回の再成長前に露出する層にAsとPとが同時に存在することがないので両者の相互拡散を抑制し、再成長の結晶品質を向上させることができる。
【0020】
また、エッチング阻止層をInGaP層にすることにより、GaAsエッチング精度が高くなり、ARROW構造に必要な屈折率分布を高精度に形成することができる。
【0021】
また、第一導電型Alz1Ga1-z1As電流狭窄層上に、第一導電型あるいは第二導電型のGaAsキャップ層を成長することにより、上部クラッド層の再成長の際にAlGaAs電流狭窄層の露出が少ないため、Alの酸化を低減することができるので、結晶品質が良好となり信頼性を向上させることができる。
【0022】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて詳細に説明する。
【0023】
本発明の第1の実施の形態による半導体レーザ素子について説明する。図1にその半導体レーザ素子の断面図を示す。
【0024】
図1に示すように、本実施の形態の半導体レーザ素子は、n−GaAs基板1上に、n−Alz1Ga -z1As下部クラッド層2(0.2≦z1≦0.8)、n−またはi−GaAs下部光導波層3、Inx3Ga1-x3As1-y3y3圧縮歪量子井戸活性層(0.49y3<x3≦0.4,0≦y3≦0.1)4、p−またはi−GaAs上部光導波層5を積層した積層体上に、共振器方向に延びるストライプ状に、幅dcの電流注入領域20および該電流注入領域20の両側にそれぞれdb1離れたdc/2幅の領域に開口を有するp−Inx8Ga -x8P第一エッチング阻止層6(0≦x8≦1)およびn−GaAs電流狭窄層7を備え、該n−GaAs電流狭窄層7上および電流注入領域20以外の開口に露出するp−GaAs上部光導波層5上に、p−Inx9Ga -x9P第二エッチング阻止層8(0≦x9≦1)を備え、該第二エッチング阻止層8上に、電流注入領域20に開口を有するn−Alz1Ga -z1As電流狭窄層9を備え、さらに、このn−Alz1Ga -z1As電流狭窄層9上および電流注入領域20の開口に露出するGaAs上部光導波層5上に、p−Alz1Ga -z1As上部クラッド層10およびp−GaAsコンタクト層11を備えてなるものである。
【0025】
本実施の形態で、下部クラッド層の組成をGaAsに格子整合するp−In0.49Ga0.51Pとしてもよく、同様にARROW構造の形成に必要な屈折率分布が得られる。
【0026】
この半導体レーザ素子は、上述の層構成により、活性層に水平な方向において、ストライプ状の電流注入領域20によって規定されるコア領域を中心として、その両側にコア領域の等価屈折率ncよりも高い等価屈折率nbである高屈折率領域、その外側にコア領域と同等の等価屈折率ncである低屈折率領域を備え、さらにその外側に等価屈折率nbである第二の高屈折率領域を備えた、図2に示すような等価屈折率分布が形成されている。
【0027】
なお、前述のとおり、発振波長をλとし、コア領域の等価屈折率をnc、コア領域の両側の高屈折率領域の屈折率をnbとしたとき、コア領域の両側の高屈折率領域の幅db1は、
【数3】
Figure 0003850288
であることが望ましい。なお、mは正の整数である。さらに、この高屈折率領域の外側に設けられたdc/2幅の低屈折率領域により、光出力の横方向(等価屈折率分布を有する方向)への漏れを抑制し、回折限界の単峰性の発振が得られる良好なARROW構造を形成することができる。
【0028】
次に、本発明の第2の実施の形態による半導体レーザ素子について説明する。その半導体レーザ素子の断面図を図3に示す。なお、第1の実施の形態と同等の層には同符号を付し詳細な説明を省略する(以下、同様とする)。本実施の形態の半導体レーザ素子は、n−GaAs電流狭窄層7の積層方向の途中に量子井戸活性層4よりもバンドギャップが小さいInGaAs量子井戸層14を備えてなるものである。このInGaAs量子井戸層14を備えた素子は、InGaAs量子井戸層14において光吸収が起こるために基本横モード発振の利得が高くなる。
【0029】
また、本発明は、上述のような単一コアのARROW構造に限るものではなく、マルチコアを有する構造であってもよい。マルチコアのARROW構造とする場合には、活性層に水平な方向における等価屈折率分布が図4のようになるようにする。この場合、幅dcの複数のコア領域の両端に配される高屈折率領域の幅db1は上式を満たし、各コア領域間の高屈折率領域は、その幅db2が、
【数4】
Figure 0003850288
を満たすことが望ましい。なお、mは正の整数である。
【0030】
次に、本発明の第3の実施の形態による半導体レーザ素子について説明する。その半導体レーザ素子の断面図を図5に示す。上述のようにマルチコアを有するARROW構造を有する素子の断面図を示す。本実施の形態は第1の実施の形態の半導体レーザ素子と層構成は同一であるが、幅db2間隔で設けられた幅dcの3つの電流注入領域21a,21b,21cおよび該両端の電流注入領域21a,21cの両側にそれぞれdb1離れたdc/2幅の領域に開口を有するp−Inx8Ga -x8P第一エッチング阻止層6およびn−GaAs電流狭窄層7を備えたことにより、3つのコア領域を有するものである点で異なる。このようにマルチコアにすることによりさらに高出力化が可能となる。
【0031】
なお、上記半導体層の成長法しては、固体あるいはガスを原料とする分子線エピタキシャル成長法を用いてもよい。上記構造はn型層を最初に成長しているが、p型層から成長しても良く、その場合、導電性を反転するだけでよい。
【0032】
活性層は多重量子井戸構造でもよい。また、活性層を挟むように、活性層の圧縮歪を補償する引張り歪i-Inx4Ga1-x4As1-y4y4(0≦x4<0.49y4,0<y4≦0.4)障壁層を設けてもよい。これにより活性層近傍トータル歪を低減し、活性層の結晶性を向上させることができる。
【0033】
なお、GaAs上部光導波層5の厚みが100nm以下である場合、n−GaAs電流狭窄層7とp−Inx8Ga -x8P第一エッチング阻止層6との間にp−GaAs層を設けることにより、n−GaAs電流狭窄層7からの電流の漏れを防止することができるので、電気特性を向上させることができる。
【0034】
また、発振時の端面での光吸収による再結合非発光電流を抑制するために、共振器端面近傍のp−GaAsコンタクト層11を除去することにより、より高出力化を図ることができる。
【0035】
【実施例】
以下に、図1に示した半導体レーザ素子の具体的な層構成およびその製造方法の一実施例を図6を参照して説明する。なお、成長用原料として、トリメチルガリウム(TMG)、トリメチルインジュウム(TMI)、トリメチルアルミニウム(TMA)、アルシンおよびフォスフィンを原料とし、n型ドーパントガスとして、シランガスを用い、p型ドーパントとしてジメチルジンク(DMZ)を用いる。
【0036】
図6(a)に示すように、有機金属気相成長法により(001)n−GaAs基板1上に、n−Alz1Ga1-z1As下部クラッド層2、nまたはi−GaAs下部光導波層3、i-Inx3Ga1-x3As1-y3y3圧縮歪量子井戸活性層4(0.49y3<x3≦0.4,0≦y3≦0.1,厚さ5から20nm程度)、pまたはi−GaAs上部光導波層5、p−Inx8Ga1-x8P第一エッチング阻止層6、n−GaAs電流狭窄層7(0.5μm)を積層する。なおここで、x3=0.2, y3=0とすれば発振波長は980nmとなり、また活性層の組成を変化させることにより発振波長を、900<λ<1200(nm)の範囲で制御することができる。
【0037】
次に、図6(b)に示すように、フォトリソグラフィ法によって幅6μmのストライプ状の電流注入領域20、およびその両側に1.8μmの間隔を空けて3μm幅の領域のレジストパターンを開口し、レジストをマスクとして硫酸と過酸化水素水系のエッチング液でn−GaAs電流狭窄層7をエッチングした。この時、自動的にp−Inx8Ga1-x8P第一エッチング阻止層6でエッチングが停止した。引き続きレジストを除去し、塩酸系エッチング液で、p−Inx8Ga1-x8P第一エッチング阻止層6をエッチングした。この時自動的にGaAs上部光導波層5でエッチングが停止し、GaAs上部光導波層5が露出する。引き続き、As雰囲気で昇温を行い、その後、順次ガス切り替えを行うことにより、露出されたGaAs上部光導波層5およびn−GaAs電流狭窄層7上にp−Inx9Ga1-x9P第二エッチング阻止層8(0≦x9≦1)およびn−Alz1Ga1-z1As電流狭窄層9(厚さ0.5μm)をこの順に成長した。なお、第二エッチング阻止層8はn−Inx9Ga1-x9Pでもよい。
【0038】
次に、図6(c)に示すように、レジストを塗布し、電流注入領域のレジストを除去し、硫酸と過酸化水素水系のエッチング液で、レジストをマスクとしてn−Alz1Ga1-z1As電流狭窄層9をエッチングした。この時、自動的に、p−Inx9Ga1-x9P第二エッチング阻止層8で自動的にエッチングが停止した。レジストを除去後、塩酸系のエッチング液で、p−Inx9Ga1-x9P第二エッチング阻止層8を除去した。この時、自動的にGaAs上部光導波層5でエッチングが停止し、ストライプ領域に電流注入領域が形成された。
【0039】
次に、図6(d)に示すように、再成長表面がGaAs及びAlGaAsとなった状態でAs雰囲気で昇温し、p−Alz1Ga1-z1As上部クラッド層10およびp−GaAsコンタクト層11を形成した。引き続き、p側電極12を形成後、基板を研磨し、n側電極13を形成し、試料をへき開して形成した共振器面の一方に高反射率コート、他方に低反射コートを行い、その後、チップ化して半導体レーザ素子を形成する。
【0040】
なお、n−Alz1Ga1-z1As電流狭窄層9を積層した後に第一導電型あるいは第二導電型のGaAsキャップ層を積層してもよい。そして、このGaAsキャップ層のパターニングはn−Alz1Ga1-z1As電流狭窄層9をエッチングする際にエッチングできる。
【0041】
本発明の半導体レーザ素子は、高出力まで信頼性が高いので、高速な情報・画像処理及び通信、計測、医療、印刷の分野での光源として応用可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態による半導体レーザ素子を示す断面図
【図2】単一コアのARROW構造を備えた半導体レーザ素子の活性層に水平方向の等価屈折率分布を示す図
【図3】本発明の第2の実施の形態による半導体レーザ素子を示す断面図
【図4】マルチコアを有するARROW構造を備えた半導体レーザ素子における活性層に水平方向の等価屈折率分布を示す図
【図5】本発明の第3の実施の形態による半導体レーザ素子を示す断面図
【図6】本発明の一実施例の半導体レーザ素子を示す断面図
【符号の説明】
1 n−GaAs基板
2 n−Alz1Ga -z1As下部クラッド層
3 n−またはi−GaAs下部光導波層
4 Inx3Ga1-x3As1-y3y3圧縮歪量子井戸活性層
5 p−またはi−GaAs上部光導波層
6 p−Inx8Ga -x8P第一エッチング阻止層
7 n−GaAs電流狭窄層
8 p−Inx9Ga1-x9P第二エッチング阻止層
9 n−Alz1Ga -z1As電流狭窄層
10 p−Alz1Ga -z1As上部クラッド層
11 p−GaAsコンタクト層
12 p側電極
13 n側電極
20 電流注入領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor laser device, and more particularly to a semiconductor laser device having an oscillation wavelength of 980 nm band and an ARROW structure.
[0002]
[Prior art]
As a light source for exciting an optical fiber amplifier, a high-power semiconductor laser having a highly reliable diffraction-limited high-quality beam is expected. Currently, as a semiconductor laser capable of high-power diffraction limited oscillation in the 980 nm band, US Pat. No. 5,606,570, non-resonant reflection using InGaAs as an active layer, InGaAlP as a current confinement layer, and GaAs as a high refractive index medium. It has been reported that a semiconductor laser device having an optical confinement (Antiresonant Reflecting Optical Waveguide) structure (hereinafter referred to as an ARROW structure) is capable of high output. The ARROW structure is composed of a plurality of low refractive index core regions, a high refractive index region provided between and outside the core regions, and substantially the same as the core region provided further outside the core region and the high refractive index region. A low refractive index region having a refractive index and a high refractive index region provided on the outermost side are provided, and light confinement is performed in each core region. According to this structure, the high refractive index regions provided on both outer sides of the core region act as a reflector for the fundamental transverse mode, and further the light leakage is suppressed by the low refractive index region provided on the outer side. Thus, basic transverse mode control can be performed. When performing the fundamental transverse mode control, the oscillation wavelength is λ, the equivalent refractive index of the core region is nc, the core region width is dc, and the equivalent refractive index of the high refractive index region provided on both outer sides of the core region is When the width is nb and db 1 , respectively
[Expression 1]
Figure 0003850288
And the width db 2 of the high refractive index region provided between the cores of the plurality of cores so that the width of the low refractive index region on the outside is dc / 2.
Figure 0003850288
It is reported that it is desirable to
[0003]
[Problems to be solved by the invention]
The semiconductor laser device exemplified in the above-mentioned patent has a structure that requires a regrowth technique, and at that time, the InGaP layer, the InAlP layer, and the GaAs layer are exposed on the surface before the regrowth. During the temperature rise process during growth, mutual diffusion occurs on the surface of P and As, which is liable to cause regrowth failure, and is not suitable for practical use.
[0004]
In view of the above circumstances, an object of the present invention is to provide a semiconductor laser element having an ARROW structure, which is highly reliable from low output to high output, and a method for easily manufacturing the semiconductor laser element. It is what.
[0005]
[Means for Solving the Problems]
A semiconductor laser device according to the present invention includes a lower cladding layer made of In 0.49 Ga 0.51 P or Al z1 Ga 1 -z1 As (where 0.2 ≦ z1 ≦ 0.8) on a first conductivity type GaAs substrate, a first conductivity type or an undoped GaAs lower optical waveguide layer of, in x3 Ga 1-x3 As 1-y3 P y3 compressive strain quantum well active layer (where, 0.49y3 <x3 ≦ 0.4,0 ≦ y3 ≦ 0.1), the second On a laminate formed by laminating conductive or undoped GaAs upper optical waveguide layers in this order, in a stripe shape in the resonance direction of the resonator, in a current injection region and a region separated by a predetermined distance on both sides of the current injection region. A first conductivity type GaAs current confinement layer comprising an opening having a second conductivity type In x8 Ga 1-x8 P first etching blocking layer (where 0 ≦ x8 ≦ 1) and a first conductivity type GaAs current confinement layer in this order The opening in the region other than the upper and current injection region Said upper optical waveguide layer on the exposed first conductivity type or the second conductivity type In x9 Ga 1-x9 P second etching stop layer (where, 0 ≦ x9 ≦ 1) and the first conductivity type Al z1 Ga 1- z1 As current includes a blocking layer in this order, the upper optical waveguide layer that is exposed to the first conductivity type Al z1 Ga 1-z1 As current opening of confinement layer and the current injection region, the second conductivity type Al z1 Ga 1- A z1 As upper cladding layer and a second conductivity type GaAs contact layer are provided.
[0006]
A GaAs cap layer of the first conductivity type or the second conductivity type may be provided on the first conductivity type Al z1 Ga 1 -z1 As current confinement layer.
[0007]
A second conductivity type GaAs layer may be provided between the In x8 Ga 1-x8 P first etching stop layer and the first conductivity type GaAs current confinement layer.
[0008]
The width of the current injection region is desirably 3 μm or more.
[0009]
An InGaAs quantum well layer having a band gap smaller than that of the active layer may be provided in the middle of the stacking direction of the first conductivity type GaAs current confinement layer.
[0010]
The method of manufacturing a semiconductor laser device according to the present invention comprises a first conductive type In 0.49 Ga 0.51 P or Al z1 Ga 1 -z1 As (provided that 0.2 ≦ z1 ≦ 0.8) on a first conductive type GaAs substrate. cladding layer, the first conductive type or an undoped GaAs lower optical waveguide layer of, in x3 Ga 1-x3 As 1-y3 P y3 compressive strain quantum well active layer (where, 0.49y3 <x3 ≦ 0.4,0 ≦ y3 ≦ 0.1) The second conductive type or undoped GaAs upper optical waveguide layer, the second conductive type In x8 Ga 1-x8 P first etching blocking layer (where 0 ≦ x8 ≦ 1), the first conductive type GaAs current confinement layer The first conductivity type GaAs current confinement layer and the second conductivity type In x8 Ga 1-x8 P first etching stop layer are laminated in order, and the current injection region and a region separated by a predetermined distance from both sides of the current injection region are resonated. The upper optical waveguide layer is exposed by striping in the direction of the vessel, and As After the temperature is raised in the atmosphere, the first conductive type or second conductive type In x9 Ga 1-x9 P second etching is performed on the first conductive type GaAs current confinement layer and the exposed upper optical waveguide layer by regrowth. blocking layer (where, 0 ≦ x9 ≦ 1) and a first conductivity type Al z1 Ga 1-z1 As current confinement layer are laminated in this order, the current injection region, a first conductivity type Al z1 Ga 1-z1 As current confinement Layer and In x9 Ga 1-x9 P second etching blocking layer are exposed to expose the upper optical waveguide layer, and the temperature is raised in the As atmosphere, and then on the first conductivity type Al z1 Ga 1 -z1 As current confinement layer A second conductivity type Al z1 Ga 1 -z1 As upper cladding layer and a second conductivity type GaAs contact layer are laminated in this order on the exposed upper optical waveguide layer by re-growth.
[0011]
A GaAs layer of the first conductivity type or the second conductivity type may be grown on the first conductivity type Al z1 Ga 1 -z1 As current confinement layer.
[0012]
The first conductivity type and the second conductivity type indicate opposite polarities. For example, if the first conductivity type is n-type, it indicates that the second conductivity type is p-type.
[0013]
The undoped means that no conductive impurities are introduced.
[0014]
【The invention's effect】
According to the semiconductor laser device of the present invention, since the layer structure as described above is provided, the core region is defined on the both sides of the core region defined by the stripe-shaped current injection opening in the direction horizontal to the active layer. A high refractive index region having an equivalent refractive index higher than the equivalent refractive index of the region, a low refractive index region having an equivalent refractive index equivalent to that of the core region on the outside thereof, and a second high refractive index region on the outside thereof A so-called ARROW structure can be formed.
[0015]
By providing this ARROW structure, it is possible to oscillate a unimodal beam in which the transverse mode control is performed even if the stripe width is widened, as compared with an element not having the ARROW structure. That is, in the element not having the ARROW structure, the stripe width needs to be smaller than 3 μm in order to perform the transverse mode control. Therefore, the active region width is limited accordingly, and when the output is increased, the active layer is moved to the active layer. High light oscillation could not be carried out because the light density of the device increased and caused the end face to deteriorate. However, since it is an element having an ARROW structure with an equivalent refractive index distribution as described above, it is possible to perform good optical confinement in a wide stripe width region and to enable transverse fundamental mode oscillation from a wide active region. Become. In addition, since the light density of the active layer can be reduced if a wide active region of 3 μm or more is provided, the temperature rise due to light absorption recombination at the end face can be reduced, and high output light compared with an element not having the ARROW structure. A beam can be obtained.
[0016]
In particular, since GaAs is used for the optical waveguide layer and the GaAs current confinement layer, it is easy to control the refractive index in the high refractive index region. Therefore, an ARROW structure with high controllability of the horizontal equivalent refractive index distribution is provided. Obtainable.
[0017]
If an InGaAs quantum well layer having a band gap smaller than that of the active layer is provided in the middle of the stacking direction of the first conductivity type GaAs current confinement layer, light absorption occurs in the InGaAs quantum well layer, so that the fundamental transverse mode is obtained. The oscillation gain can be increased.
[0018]
According to the method for manufacturing a semiconductor laser device of the present invention, in the direction horizontal to the active layer, the core region defined by the stripe-shaped current injection opening is the center and the equivalent refractive index higher than the equivalent refractive index of the core region is formed on both sides thereof. A semiconductor laser having a so-called ARROW structure having a high refractive index region which is a refractive index, a low refractive index region having an equivalent refractive index equivalent to that of the core region on the outer side, and a second high refractive index region on the outer side. The element can be easily manufactured with high accuracy.
[0019]
In addition, the layers exposed before the regrowth are almost only the AlGaAs current confinement layer and the GaAs upper optical waveguide layer, and As and P do not exist at the same time in the layer exposed before one regrowth. Diffusion can be suppressed and the regrowth crystal quality can be improved.
[0020]
Further, by using an InGaP layer as the etching stopper layer, the GaAs etching accuracy is increased, and the refractive index distribution necessary for the ARROW structure can be formed with high accuracy.
[0021]
Further, by growing a GaAs cap layer of the first conductivity type or the second conductivity type on the first conductivity type Al z1 Ga 1 -z1 As current confinement layer, the AlGaAs current confinement is performed during the regrowth of the upper clad layer. Since the exposure of the layer is small, the oxidation of Al can be reduced, so that the crystal quality is improved and the reliability can be improved.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0023]
A semiconductor laser device according to the first embodiment of the present invention will be described. FIG. 1 shows a cross-sectional view of the semiconductor laser device.
[0024]
As shown in FIG. 1, the semiconductor laser device according to the present embodiment has an n-Al z1 Ga 1 -z1 As lower cladding layer 2 (0.2 ≦ z1 ≦ 0.8), n− or i on an n-GaAs substrate 1. -GaAs lower optical waveguide layer 3, In x3 Ga 1-x3 As 1-y3 P y3 compressive strain quantum well active layer (0.49y3 <x3 ≦ 0.4,0 ≦ y3 ≦ 0.1) 4, p- or i-GaAs upper optical guide On the laminated body in which the wave layers 5 are laminated, openings are formed in a stripe shape extending in the direction of the resonator in a current injection region 20 having a width dc and a region having a dc / 2 width separated by db 1 on both sides of the current injection region 20. A p-In x8 Ga 1 -x8 P first etching blocking layer 6 (0 ≦ x8 ≦ 1) and an n-GaAs current confinement layer 7, and on the n-GaAs current confinement layer 7 and other than the current injection region 20. on the p-GaAs upper optical waveguide layer 5 exposed in the opening, p-in x9 Ga 1 -x9 P second etching stop layer 8 (0 ≦ x9 ≦ 1), and an n-Al z1 Ga 1 -z1 As current confinement layer 9 having an opening in the current injection region 20 is provided on the second etching stop layer 8, and this n-Al z1 Ga 1 A p-Al z1 Ga 1 -z1 As upper cladding layer 10 and a p-GaAs contact layer 11 are provided on the -z1 As current confinement layer 9 and the GaAs upper optical waveguide layer 5 exposed at the opening of the current injection region 20. It will be.
[0025]
In the present embodiment, the composition of the lower cladding layer may be p-In 0.49 Ga 0.51 P lattice-matched with GaAs, and the refractive index distribution necessary for the formation of the ARROW structure is obtained in the same manner.
[0026]
This semiconductor laser device is higher than the equivalent refractive index nc of the core region on both sides of the core region defined by the stripe-shaped current injection region 20 in the direction horizontal to the active layer, due to the layer configuration described above. A high refractive index region having an equivalent refractive index nb, a low refractive index region having an equivalent refractive index nc equivalent to that of the core region on the outside thereof, and a second high refractive index region having an equivalent refractive index nb on the outside thereof. An equivalent refractive index distribution as shown in FIG. 2 is formed.
[0027]
As described above, when the oscillation wavelength is λ, the equivalent refractive index of the core region is nc, and the refractive index of the high refractive index region on both sides of the core region is nb, the width of the high refractive index region on both sides of the core region db 1
[Equation 3]
Figure 0003850288
It is desirable that Note that m is a positive integer. In addition, the dc / 2-width low-refractive index region provided outside this high-refractive index region suppresses leakage of light output in the lateral direction (direction with an equivalent refractive index distribution), and is a diffraction-limited single peak. It is possible to form a good ARROW structure in which a characteristic oscillation can be obtained.
[0028]
Next explained is a semiconductor laser device according to the second embodiment of the invention. A sectional view of the semiconductor laser element is shown in FIG. In addition, the same code | symbol is attached | subjected to the layer equivalent to 1st Embodiment, and detailed description is abbreviate | omitted (hereinafter the same). The semiconductor laser device of the present embodiment includes an InGaAs quantum well layer 14 having a band gap smaller than that of the quantum well active layer 4 in the middle of the stacking direction of the n-GaAs current confinement layer 7. In the device including the InGaAs quantum well layer 14, light absorption occurs in the InGaAs quantum well layer 14, so that the fundamental transverse mode oscillation gain is increased.
[0029]
Further, the present invention is not limited to the single-core ARROW structure as described above, and may be a structure having a multi-core. In the case of a multi-core ARROW structure, the equivalent refractive index distribution in the direction horizontal to the active layer is as shown in FIG. In this case, the width db 1 of the high refractive index region arranged at both ends of the plurality of core regions having the width dc satisfies the above formula, and the high refractive index region between the core regions has the width db 2
[Expression 4]
Figure 0003850288
It is desirable to satisfy. Note that m is a positive integer.
[0030]
Next explained is a semiconductor laser device according to the third embodiment of the invention. A sectional view of the semiconductor laser element is shown in FIG. A cross-sectional view of an element having an ARROW structure having a multi-core as described above is shown. Although this embodiment has the same layer structure as the semiconductor laser device of the first embodiment, it has three current injection regions 21a, 21b, 21c of width dc provided at intervals of width db 2 and currents at both ends. The p-In x8 Ga 1 -x8 P first etching blocking layer 6 and the n-GaAs current confinement layer 7 each having an opening in a dc / 2 width region separated by db 1 are provided on both sides of the implantation regions 21a and 21c. Is different in that it has three core regions. In this way, higher output can be achieved by using a multi-core.
[0031]
As a method for growing the semiconductor layer, a molecular beam epitaxial growth method using a solid or gas as a raw material may be used. The above structure grows the n-type layer first, but may grow from the p-type layer, in which case it is only necessary to reverse the conductivity.
[0032]
The active layer may have a multiple quantum well structure. Also, a tensile strain i-In x4 Ga 1-x4 As 1-y4 P y4 (0 ≦ x4 <0.49y4, 0 <y4 ≦ 0.4) barrier layer that compensates for the compressive strain of the active layer is sandwiched between the active layers. It may be provided. Thereby, the total strain near the active layer can be reduced and the crystallinity of the active layer can be improved.
[0033]
When the thickness of the GaAs upper optical waveguide layer 5 is 100 nm or less, a p-GaAs layer is provided between the n-GaAs current confinement layer 7 and the p-In x8 Ga 1 -x8 P first etching blocking layer 6. As a result, current leakage from the n-GaAs current confinement layer 7 can be prevented, and electrical characteristics can be improved.
[0034]
Further, in order to suppress the recombination non-light emission current due to light absorption at the end face during oscillation, higher output can be achieved by removing the p-GaAs contact layer 11 in the vicinity of the resonator end face.
[0035]
【Example】
An example of a specific layer structure of the semiconductor laser element shown in FIG. 1 and a method for manufacturing the same will be described below with reference to FIG. As growth materials, trimethylgallium (TMG), trimethylindium (TMI), trimethylaluminum (TMA), arsine and phosphine are used as raw materials, silane gas is used as an n-type dopant gas, and dimethyl zinc ( DMZ).
[0036]
As shown in FIG. 6A , an n- Alz1Ga1 -z1As lower cladding layer 2, n- or i-GaAs lower optical waveguide is formed on a (001) n-GaAs substrate 1 by metal organic vapor phase epitaxy. layer 3, i-In x3 Ga 1 -x3 As 1-y3 P y3 compressive strain quantum well active layer 4 (0.49y3 <x3 ≦ 0.4,0 ≦ y3 ≦ 0.1, about 20nm thick 5), p or An i-GaAs upper optical waveguide layer 5, a p-In x8 Ga 1-x8 P first etching blocking layer 6, and an n-GaAs current confinement layer 7 (0.5 μm) are laminated. Here, if x3 = 0.2 and y3 = 0, the oscillation wavelength is 980 nm, and the oscillation wavelength can be controlled in the range of 900 <λ <1200 (nm) by changing the composition of the active layer. .
[0037]
Next, as shown in FIG. 6B, a stripe-shaped current injection region 20 having a width of 6 μm and a resist pattern in a region having a width of 3 μm are opened on both sides of the current injection region 20 by a photolithographic method, Using the resist as a mask, the n-GaAs current confinement layer 7 was etched with an etching solution of sulfuric acid and hydrogen peroxide. At this time, etching automatically stopped at the p-In x8 Ga 1-x8 P first etching stop layer 6. Subsequently, the resist was removed, and the p-In x8 Ga 1-x8 P first etching blocking layer 6 was etched with a hydrochloric acid-based etching solution. At this time, etching automatically stops at the GaAs upper optical waveguide layer 5 and the GaAs upper optical waveguide layer 5 is exposed. Subsequently, the temperature is raised in the As atmosphere, and then the gas is sequentially switched, whereby the p-In x9 Ga 1-x9 P second layer is formed on the exposed GaAs upper optical waveguide layer 5 and n-GaAs current confinement layer 7. An etching stop layer 8 (0 ≦ x9 ≦ 1) and an n-Al z1 Ga 1 -z1 As current confinement layer 9 (thickness 0.5 μm) were grown in this order. The second etching stop layer 8 may be n-In x9 Ga 1-x9 P.
[0038]
Next, as shown in FIG. 6C, a resist is applied, the resist in the current injection region is removed, and an n-Al z1 Ga 1 -z1 resist is masked with an etching solution of sulfuric acid and hydrogen peroxide solution. The As current confinement layer 9 was etched. At this time, the etching automatically stopped at the p-In x9 Ga 1-x9 P second etching stop layer 8 automatically. After removing the resist, the p-In x9 Ga 1-x9 P second etching blocking layer 8 was removed with a hydrochloric acid-based etching solution. At this time, the etching automatically stopped at the GaAs upper optical waveguide layer 5, and a current injection region was formed in the stripe region.
[0039]
Next, as shown in FIG. 6D, the temperature is raised in an As atmosphere with the regrowth surface becoming GaAs and AlGaAs, and the p-Al z1 Ga 1 -z1 As upper cladding layer 10 and the p-GaAs contact are formed. Layer 11 was formed. Subsequently, after forming the p-side electrode 12, the substrate is polished, the n-side electrode 13 is formed, and the sample is formed by cleaving the sample with a high-reflectance coating on one side and a low-reflection coating on the other. Then, a semiconductor laser device is formed by forming a chip.
[0040]
The n-Al z1 Ga 1 -z1 As current confinement layer 9 may be stacked and then the first conductivity type or second conductivity type GaAs cap layer may be stacked. The patterning of the GaAs cap layer can be performed when the n- Alz1Ga1 -z1As current confinement layer 9 is etched.
[0041]
Since the semiconductor laser device of the present invention has high reliability up to high output, it can be applied as a light source in the fields of high-speed information / image processing and communication, measurement, medical care, and printing.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a semiconductor laser device according to a first embodiment of the present invention. FIG. 2 shows an equivalent refractive index distribution in a horizontal direction in an active layer of a semiconductor laser device having a single-core ARROW structure. FIG. 3 is a cross-sectional view showing a semiconductor laser device according to a second embodiment of the present invention. FIG. 4 shows a horizontal equivalent refractive index distribution in an active layer of a semiconductor laser device having an ARROW structure having a multi-core. FIG. 5 is a sectional view showing a semiconductor laser device according to a third embodiment of the present invention. FIG. 6 is a sectional view showing a semiconductor laser device according to an embodiment of the present invention.
1 n-GaAs substrate 2 n-Al z1 Ga 1 -z1 As lower cladding layer 3 n-or i-GaAs lower optical waveguide layer 4 In x3 Ga 1-x3 As 1-y3 P y3 compressive strain quantum well active layer 5 p - or i-GaAs upper optical waveguide layer 6 p-In x8 Ga 1 -x8 P first etching stop layer 7 n-GaAs current confinement layer 8 p-In x9 Ga 1- x9 P second etching stop layer 9 n-Al z1 Ga 1 -z1 As current confinement layer
10 p-Al z1 Ga 1 -z1 As upper cladding layer
11 p-GaAs contact layer
12 p-side electrode
13 n-side electrode
20 Current injection region

Claims (5)

第一導電型GaAs基板上に、第一導電型のIn0.49Ga0.51PまたはAlz1Ga1-z1As(ただし、0.2≦z1≦0.8)からなる下部クラッド層、第一導電型またはアンドープのGaAs下部光導波層、Inx3Ga1-x3As1-y3y3圧縮歪量子井戸活性層(ただし、0.49y3<x3≦0.4,0≦y3≦0.1)、第二導電型またはアンドープのGaAs上部光導波層をこの順に積層してなる積層体上に、
共振器の共振方向にストライプ状に、電流注入領域および該電流注入領域の両側にそれぞれ所定距離離れた領域に開口を有する第二導電型Inx8Ga1-x8P第一エッチング阻止層(ただし、0≦x8≦1)および第一導電型GaAs電流狭窄層をこの順に備え、
前記第一導電型GaAs電流狭窄層上および電流注入領域以外の領域の前記開口に露出する前記上部光導波層上に、第一導電型あるいは第二導電型のInx9Ga1-x9P第二エッチング阻止層(ただし、0≦x9≦1)および第一導電型Alz1Ga1-z1As電流狭窄層をこの順に備え、
前記第一導電型Alz1Ga1-z1As電流狭窄層上および前記電流注入領域の開口に露出する前記上部光導波層上に、第二導電型Alz1Ga1-z1As上部クラッド層および第二導電型GaAsコンタクト層を備えてなることを特徴とする半導体レーザ素子。
On the first conductivity type GaAs substrate, a lower clad layer made of first conductivity type In 0.49 Ga 0.51 P or Al z1 Ga 1 -z1 As (where 0.2 ≦ z1 ≦ 0.8), first conductivity type or undoped GaAs lower optical waveguide layer, in x3 Ga 1-x3 As 1-y3 P y3 compressive strain quantum well active layer (where, 0.49y3 <x3 ≦ 0.4,0 ≦ y3 ≦ 0.1), the second conductivity type or undoped GaAs upper optical guide On the laminate formed by laminating wave layers in this order,
A second conductivity type In x8 Ga 1-x8 P first etching blocking layer having an opening in a stripe shape in the resonance direction of the resonator and an opening at a predetermined distance on both sides of the current injection region and the current injection region (however, 0 ≦ x8 ≦ 1) and a first conductivity type GaAs current confinement layer in this order,
On the first conductivity type GaAs current confinement layer and on the upper optical waveguide layer exposed to the opening in a region other than the current injection region, a second conductivity type In x9 Ga 1-x9 P second An etching stop layer (where 0 ≦ x9 ≦ 1) and a first conductivity type Al z1 Ga 1 -z1 As current confinement layer are provided in this order;
A second conductivity type Al z1 Ga 1 -z1 As upper cladding layer and a first conductivity type Al z1 Ga 1 -z1 As current confinement layer and the upper optical waveguide layer exposed at the opening of the current injection region A semiconductor laser device comprising a two-conductivity type GaAs contact layer.
前記第一導電型Alz1Ga1-z1As電流狭窄層上に、第一導電型あるいは第二導電型のGaAsキャップ層が設けられていることを特徴とする請求項1記載の半導体レーザ素子。2. The semiconductor laser device according to claim 1, wherein a GaAs cap layer of a first conductivity type or a second conductivity type is provided on the first conductivity type Al z1 Ga 1 -z1 As current confinement layer. 前記Inx8Ga1-x8P第一エッチング阻止層と前記第一導電型GaAs電流狭窄層との間に第二導電型GaAs層が設けられていることを特徴とする請求項1または2記載の半導体レーザ素子。3. The second conductivity type GaAs layer is provided between the In x8 Ga 1-x8 P first etching stop layer and the first conductivity type GaAs current confinement layer. Semiconductor laser element. 前記第一導電型GaAs電流狭窄層の積層方向の途中に、前記活性層よりバンドギャップが小さいInGaAs量子井戸層を備えたことを特徴とする請求項1、2または3記載の半導体レーザ素子。4. The semiconductor laser device according to claim 1, further comprising an InGaAs quantum well layer having a band gap smaller than that of the active layer in the middle of the stacking direction of the first conductivity type GaAs current confinement layer. 第一導電型GaAs基板上に、第一導電型のIn0.49Ga0.51PまたはAlz1Ga1-z1As(ただし、0.2≦z1≦0.8)からなる下部クラッド層、第一導電型またはアンドープのGaAs下部光導波層、Inx3Ga1-x3As1-y3y3圧縮歪量子井戸活性層(ただし、0.49y3<x3≦0.4,0≦y3≦0.1)、第二導電型またはアンドープのGaAs上部光導波層、第二導電型Inx8Ga1-x8P第一エッチング阻止層(ただし、0≦x8≦1)、第一導電型GaAs電流狭窄層をこの順に積層し、
前記第一導電型GaAs電流狭窄層と前記第二導電型Inx8Ga1-x8P第一エッチング阻止層とを、電流注入領域および該電流注入領域の両側から所定距離離れた領域を共振器方向にストライプ状に除去して前記上部光導波層を露出させ、As雰囲気で昇温した後、前記第一導電型GaAs電流狭窄層上および前記露出された上部光導波層上に、再成長により第一導電型あるいは第二導電型のInx9Ga1-x9P第二エッチング阻止層(ただし、0≦x9≦1)および第一導電型Alz1Ga1-z1As電流狭窄層をこの順に積層し、
前記電流注入領域の、前記第一導電型Alz1Ga1-z1As電流狭窄層および前記Inx9Ga1-x9P第二エッチング阻止層を除去して、前記上部光導波層を露出させ、
As雰囲気で昇温した後、前記第一導電型Alz1Ga1-z1As電流狭窄層上および前記露出された上部光導波層上に、再成長により第二導電型Alz1Ga1-z1As上部クラッド層および第二導電型GaAsコンタクト層をこの順に積層することを特徴とする半導体レーザ素子の製造方法。
On the first conductivity type GaAs substrate, a lower clad layer made of first conductivity type In 0.49 Ga 0.51 P or Al z1 Ga 1 -z1 As (where 0.2 ≦ z1 ≦ 0.8), first conductivity type or undoped GaAs lower optical waveguide layer, in x3 Ga 1-x3 As 1-y3 P y3 compressive strain quantum well active layer (where, 0.49y3 <x3 ≦ 0.4,0 ≦ y3 ≦ 0.1), the second conductivity type or undoped GaAs upper optical guide A wave layer, a second conductivity type In x8 Ga 1-x8 P first etching blocking layer (where 0 ≦ x8 ≦ 1), and a first conductivity type GaAs current confinement layer are laminated in this order,
The first conductivity type GaAs current confinement layer and the second conductivity type In x8 Ga 1-x8 P first etching stop layer are separated from each other by a current injection region and a region separated by a predetermined distance from both sides of the current injection region. The upper optical waveguide layer is exposed in a striped manner and heated in an As atmosphere, and then regrown on the first conductive type GaAs current confinement layer and the exposed upper optical waveguide layer by regrowth. The In x9 Ga 1-x9 P second etching blocking layer (where 0 ≦ x9 ≦ 1) and the first conductive type Al z1 Ga 1-z1 As current confinement layer are stacked in this order. ,
Removing the first conductivity type Al z1 Ga 1 -z1 As current confinement layer and the In x9 Ga 1 -x9 P second etching blocking layer in the current injection region to expose the upper optical waveguide layer;
After raising the temperature in the As atmosphere, the second conductivity type Al z1 Ga 1 -z1 As is formed by regrowth on the first conductivity type Al z1 Ga 1 -z1 As current confinement layer and the exposed upper optical waveguide layer. An upper clad layer and a second conductivity type GaAs contact layer are laminated in this order.
JP2001390925A 2001-12-25 2001-12-25 Semiconductor laser device and manufacturing method thereof Expired - Fee Related JP3850288B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001390925A JP3850288B2 (en) 2001-12-25 2001-12-25 Semiconductor laser device and manufacturing method thereof
US10/328,011 US6690698B2 (en) 2001-12-25 2002-12-26 Semiconductor laser device including arrow structure precisely formed to suppress P-As interdiffusion and Al oxidation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001390925A JP3850288B2 (en) 2001-12-25 2001-12-25 Semiconductor laser device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003198063A JP2003198063A (en) 2003-07-11
JP3850288B2 true JP3850288B2 (en) 2006-11-29

Family

ID=27598662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001390925A Expired - Fee Related JP3850288B2 (en) 2001-12-25 2001-12-25 Semiconductor laser device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3850288B2 (en)

Also Published As

Publication number Publication date
JP2003198063A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
JP3753216B2 (en) Semiconductor laser device
JP5182363B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3576560B2 (en) Semiconductor laser device
US20070153856A1 (en) Semiconductor laser device
EP0939471B1 (en) Vertical-cavity surface-emitting semiconductor laser
JP3317335B2 (en) Semiconductor laser device
US20070217465A1 (en) Semiconductor optical device
JP2001223433A (en) Vertical cavity semiconductor surface emitting laser device and optical system using the laser device
JP4316172B2 (en) Semiconductor laser element
JP3850288B2 (en) Semiconductor laser device and manufacturing method thereof
JP2004281969A (en) Surface-emitting semiconductor laser element
JP3850303B2 (en) Semiconductor laser device and manufacturing method thereof
JP4316171B2 (en) Semiconductor laser device and manufacturing method thereof
JPH09199791A (en) Optical semiconductor device and its manufacture
JP4033930B2 (en) Semiconductor laser
JP2003069148A (en) Semiconductor laser device
JP4046466B2 (en) Semiconductor distributed Bragg reflector, surface emitting semiconductor laser, optical transmission module, optical transmission / reception module, and optical communication system using the same
JP3991409B2 (en) Semiconductor laser
US6690698B2 (en) Semiconductor laser device including arrow structure precisely formed to suppress P-As interdiffusion and Al oxidation
JP2004179640A (en) Semiconductor laser, optical transmission module, and optical communication system
WO2004027950A1 (en) Semiconductor laser
JP2004103679A (en) Semiconductor light emitting device and semiconductor light emitting device module
JP5184804B2 (en) Semiconductor laser, laser module including the same, and method for manufacturing semiconductor laser
JP2001308466A (en) Semiconductor laser
JPH0870162A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees