[go: up one dir, main page]

JP3854682B2 - Fuel cell separator - Google Patents

Fuel cell separator Download PDF

Info

Publication number
JP3854682B2
JP3854682B2 JP06888897A JP6888897A JP3854682B2 JP 3854682 B2 JP3854682 B2 JP 3854682B2 JP 06888897 A JP06888897 A JP 06888897A JP 6888897 A JP6888897 A JP 6888897A JP 3854682 B2 JP3854682 B2 JP 3854682B2
Authority
JP
Japan
Prior art keywords
separator
fuel cell
unit cells
electrode
cell separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06888897A
Other languages
Japanese (ja)
Other versions
JPH10228914A (en
Inventor
政憲 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Takaoka Co Ltd
Original Assignee
Aisin Takaoka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Takaoka Co Ltd filed Critical Aisin Takaoka Co Ltd
Priority to JP06888897A priority Critical patent/JP3854682B2/en
Publication of JPH10228914A publication Critical patent/JPH10228914A/en
Application granted granted Critical
Publication of JP3854682B2 publication Critical patent/JP3854682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池用セパレータに関するものであり、特にセパレータと単位電池の電極との接触抵抗の小さいものに関する。
【0002】
【従来の技術】
燃料電池には、固体高分子型燃料電池、燐酸型燃料電池及び溶融炭酸塩型燃料電池等がある。これらの燃料電池には、酸素含有ガスと水素含有ガスとの電気化学反応により起電力を生ずる単位電池と、積層された該単位電池の隣り合う単位電池間に介在し、隣り合う単位電池双方の電極と接触して該両単位電池を電気的に接続するとともに反応ガスを分離する作用をなすセパレータとが備えられ、該セパレータとして、固体高分子型燃料電池及び燐酸型燃料電池には緻密質カーボン材が使用され、溶融炭酸塩型燃料電池にはNi/SUSクラッド材が使用されている。
【0003】
【発明が解決しようとする課題】
しかし、これら緻密質カーボン材を使用したセパレータ及びNi/SUSクラッド材を使用したセパレータは単位電池の電極との接触抵抗が大きいという問題点がある。
そこで、本発明はかかる問題点を解消するためになされたものであり、単位電池の電極との接触抵抗の小さい燃料電池用セパレータを提供することを課題とする。
【0004】
【課題を解決するための手段】
第1の発明の燃料電池用セパレータは、積層された単位電池の隣り合う単位電池間に介在し、隣り合う単位電池双方の電極と接触して該両単位電池を電気的に接続するとともに反応ガスを分離する作用をなすセパレータであって、金属製部材からなり、下地メッキを施すことなく、隣り合う単位電池双方の電極との接触面にのみ直接金メッキを施して、金メッキの厚さを0.01〜0.06μmとした部分メッキ層を両面に複数形成したことを特徴とする。
第2の発明の燃料電池用セパレータは、請求項1記載の燃料電池用セパレータにおいて、該金属製部材をステンレス鋼としたことを特徴とする。
第3の発明の燃料電池用セパレータは、請求項1又は2記載の燃料電池用セパレータにおいて、該電極と対向して反応ガス通路を画成することを特徴とする。
【0005】
下地メッキを施すことなく、該セパレータの該電極との接触面にのみ直接金メッキを施すことにより、該セパレータと該電極との接触抵抗が小さくなり、該セパレータと該電極との間での電子の導通が良好に行われる。また、燃料電池用セパレータの両面に部分メッキ層を複数形成する金メッキの厚さを0.01〜0.06μmとしたので、金メッキには 腐食の起点となるピンホールの発生がなく、燃料電池用セパレータと単位電池の電極との接触抵抗がいっそう小さく一定となり燃料電池の出力電圧が向上すると共に、該セパレータ1枚当たりの金使用量が少なくてすむためコストダウンが達成される。
【0006】
【発明の実施の形態】
金属製部材には、アルミニウム、チタン、Ni−鉄合金、ステンレス鋼等を使用できるが、耐腐食性の観点からステンレス鋼を使用することが望ましい。
セパレータと電極との間に形成する反応ガス通路は、電極に溝を形成して画成してもよく、セパレータに凹凸を設けて画成してもよいが、特に電極がカーボン製の場合は金属製のセパレータ凹凸を設けて反応ガス通路を画成することが望ましい。
セパレータに施す金メッキの厚さについては、実験の結果、該厚さを0.01〜0.06μmとした場合に接触抵抗が特に小さくなりかつピンホールの発生もないことが明らかとなったため、該金メッキの厚さは0.01〜0.06μmとする。
本セパレータは、固体高分子型燃料電池、燐酸型燃料電池、溶融炭酸塩型燃料電池等各種燃料電池に採用することができる。
【0007】
【実施例】
以下、本発明の実施例として、固体高分子型燃料電池に採用される燃料電池用セパレータを図1〜5に基づいて説明する。
図1に示すように、本実施例の燃料電池用セパレータ1は、ステンレス鋼(SUS304)を用いたもので、外周部2には反応ガス導入用流通孔3、反応ガス流出用流通孔4及び冷却水流通孔5が穿設され、内周部6にはプレス成形により多数個の凹凸からなる膨出成形部7が形成されている。膨出成形部7の膨出先端側端面8には、0.01〜0.02μmの厚さの金メッキ層9が形成されている。
図2に示すように、燃料電池を形成する際、セパレータ1は、積層された単位電池10、11の間に介在し、単位電池10、11の電極12、13と膨出成形部7の膨出先端側端面8に形成された金メッキ層9とが当接するように配設され、セパレータ1と電極12、13との間に反応ガス通路14を画成する。
【0008】
セパレータ1の金メッキ層9は、プレス成形されたセパレータ素材に下地メッキを施すことなく、脱脂工程、洗浄工程、表面活性化工程、洗浄工程、部分金メッキ工程、洗浄工程及び乾燥工程をかかる順序で実施して形成した。
脱脂工程では強アルカリ系脱脂剤を用いてセパレータ素材の表面に付着した油脂を除去する。
表面活性化工程では無機混合酸と有機系インヒビタとを処理剤として用い、セパレータ素材の表面を活性化すると共に平滑化する。
部分金メッキ工程では、セパレータ素材に対して電圧を印加したノズルから被メッキ部にメッキ処理液を噴出して部分メッキ層を形成するスパージャ方式を用い、メッキ処理液としてシアン金カリウム溶液を用いてセパレータ素材の膨出成形部7の膨出先端側端面8に部分メッキする。
【0009】
セパレータ1と単位電池10、11の電極12、13との接触抵抗に及ぼす金メッキ層9の影響を調査するため、図3に示すように、セパレータ15から電極基材16を経てセパレータ17に電子が導通する際の導通抵抗を測定した。
以下、導通抵抗の測定について詳説する。図3に示すように、単位電池10、11の電極12、13と同じ構成材からなる電極基材16をセパレータ1と同じ構造及び材質からなるセパレータ15とセパレータ17との間に挟持し、さらに、セパレータ15とセパレータ17とを定電流電源18に接続した一対の集電板19、20で挟持し、セパレータ15、17間に一定電流を供給した際にセパレータ15、17間に生ずる電位差をセパレータ15、17間に直列接続された電位差計21で検出し、該電位差を抵抗値に換算して導通抵抗を取得する。この際、集電板19、20を絶縁板22、23を介して押圧板24、25により把持し、押圧装置(図示せず)により押圧板24、25を押圧してセパレータ15、17の膨出先端側端面26、27に所定の大きさの面圧を加える。
【0010】
図4に一定面圧下におけるセパレータ15、17の膨出先端側端面26、27に形成した金メッキ層28、29の厚さと、導通抵抗との関係を示す。
図4から明らかなように、金メッキ層28、29の厚さが薄くなるほど導通抵抗が小さくなり、0.06μmより小さくなるとほぼ一定の導通抵抗となることが明らかとなった。
【0011】
図5にセパレータ15、17の膨出先端側端面26、27に加える面圧を変化させた際の導通抵抗と面圧との関係(図中、「実施例」と記載)を示す。
比較のため、緻密質カーボン製のセパレータとNi/SUSクラッド材製のセパレータとを作製し、セパレータ15、17に代えて緻密質カーボン製セパレータにより電極基材16を挟持し、面圧を変化させて導通抵抗を測定した際の導通抵抗と面圧との関係(図中、「比較例1」と記載)及びセパレータ15、17に代えてNi/SUSクラッド材製セパレータにより電極基材16を挟持し、面圧を変化させて導通抵抗を測定した際の導通抵抗と面圧との関係(図中、「比較例2」と記載)をそれぞれ図5に併記する。なお、何れのセパレータにおいても電極基材16との見かけ上の接触面積は同一である。
【0012】
図5から明らかなように、面圧が大きくなるほど導通抵抗が低下する傾向は、セパレータ15、17、緻密質カーボン製セパレータ及びNi/SUSクラッド材製セパレータ共に同じであるが、一定面圧に対する導通抵抗の大きさは、セパレータ15、17が最も小さかった。
【0013】
セパレータ1の耐腐食性を調査するため、腐食の起点となるピンホールが金メッキ層9に存在するか否かを硝酸ばっ気試験(JIS H8621)を実施して確認した。その結果、金メッキ層9の厚さが0.01μm以上ではCrの溶出は観察されず、ピンホールが形成されていないことが確認できた。
【0014】
【発明の効果】
第1の発明によれば、燃料電池用セパレータを金属製部材により形成し、下地メッキを施すことなく、隣り合う単位電池双方の電極との接触面にのみ直接金メッキを施したので、該セパレータと該電極との接触抵抗が低下し、該セパレータから該電極への電子の導通が良好となるため、燃料電池の出力電圧が大きくなる。また、燃料電池用セパレータの両面に部分メッキ層を複数形成する金メッキの厚さを0.01〜0.06μmとしたので、金メッキには腐食の起点となるピンホールの発生がなく、燃料電池用セパレータと単位電池の電極との接触抵抗がいっそう小さく一定となり燃料電池の出力電圧が向上すると共に、該セパレータ1枚当たりの金使用量が少なくてすむためコストダウンが達成される。
第2の発明によれば、該金属製部材をステンレス鋼としたので、耐腐食性が良好となるため、耐久性が向上する。
第3の発明によれば、該セパレータが該電極と対面して反応ガスの通路を画成するので、成形の容易な金属製のセパレータにより反応ガス通路を画成することが可能となるため、燃料電池の生産性が向上する。
【図面の簡単な説明】
【図1】 本発明の実施例である燃料電池用セパレータの平面図である。
【図2】 上記燃料電池用セパレータと単位電池との接触状態を示す断面図である。
【図3】 導通抵抗を測定する手段を示す図である。
【図4】 金メッキ層の厚さと導通抵抗との関係を示すグラフである。
【図5】 面圧と導通抵抗との関係を示すグラフである。
【符号の説明】
1 燃料電池用セパレータ
8 膨出先端側端面
9 金メッキ層
10 単位電池
11 単位電池
12 電極
13 電極
14 反応ガス通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator for a fuel cell, and particularly relates to a separator having a small contact resistance between a separator and an electrode of a unit cell.
[0002]
[Prior art]
Examples of fuel cells include solid polymer fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells. These fuel cells include a unit cell that generates an electromotive force due to an electrochemical reaction between an oxygen-containing gas and a hydrogen-containing gas, and a unit cell that is interposed between adjacent unit cells of the stacked unit cells. A separator that contacts the electrodes to electrically connect the unit cells and separates the reaction gas. As the separator, solid polymer fuel cells and phosphoric acid fuel cells include dense carbon. The material is used, and Ni / SUS clad material is used for molten carbonate fuel cells.
[0003]
[Problems to be solved by the invention]
However, the separator using the dense carbon material and the separator using the Ni / SUS clad material have a problem that the contact resistance with the electrode of the unit battery is large.
Therefore, the present invention has been made to solve such problems, and an object of the present invention is to provide a fuel cell separator having a low contact resistance with an electrode of a unit cell.
[0004]
[Means for Solving the Problems]
The fuel cell separator of the first invention is interposed between adjacent unit cells of the stacked unit cells, contacts both electrodes of the adjacent unit cells to electrically connect the unit cells, and reacts with the reaction gas. Is a separator made of a metal member and directly plated with gold only on the contact surfaces of the electrodes of both adjacent unit cells without applying base plating, so that the thickness of the gold plating is 0. A plurality of partial plating layers having a thickness of 01 to 0.06 μm are formed on both sides .
A fuel cell separator according to a second aspect of the present invention is the fuel cell separator according to claim 1, wherein the metal member is stainless steel.
The fuel cell separator of the third aspect of the present invention, in the fuel cell separator according to claim 1 or 2, wherein, you characterized by defining a reaction gas passage so as to face the said electrode.
[0005]
By applying gold plating directly only to the contact surface of the separator with the electrode without applying base plating, the contact resistance between the separator and the electrode is reduced, and electrons between the separator and the electrode are reduced. Conduction is performed well. Further, since the thickness of the gold plating for forming a plurality of partial plating layers on both sides of the fuel cell separator is set to 0.01 to 0.06 μm , there is no occurrence of pinholes as a starting point of corrosion in the gold plating . The contact resistance between the separator and the electrode of the unit cell becomes smaller and constant, the output voltage of the fuel cell is improved, and the amount of gold used per separator can be reduced, thereby reducing the cost.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Aluminum, titanium, Ni-iron alloy, stainless steel, etc. can be used for the metal member, but it is desirable to use stainless steel from the viewpoint of corrosion resistance.
The reaction gas passage formed between the separator and the electrode may be defined by forming a groove in the electrode, or may be defined by providing unevenness in the separator, particularly when the electrode is made of carbon. it is desirable to define a reaction gas passage irregularities provided on a metal separator.
Since the thickness of the gold plating applied to the separator, the results of experiments, it became clear that no particularly small becomes and the pinhole contact resistance when the 0.01~0.06μm the said thickness, the the thickness of the gold plating shall be the 0.01~0.06μm.
This separator can be employed in various fuel cells such as solid polymer fuel cells, phosphoric acid fuel cells, and molten carbonate fuel cells.
[0007]
【Example】
Hereinafter, as an example of the present invention, a fuel cell separator employed in a polymer electrolyte fuel cell will be described with reference to FIGS.
As shown in FIG. 1, the fuel cell separator 1 of this embodiment is made of stainless steel (SUS304), and the outer peripheral portion 2 has a reaction gas introduction flow hole 3, a reaction gas outflow flow hole 4, and A cooling water circulation hole 5 is formed, and a bulge forming portion 7 having a large number of irregularities is formed in the inner peripheral portion 6 by press molding. A gold plating layer 9 having a thickness of 0.01 to 0.02 μm is formed on the bulging tip side end face 8 of the bulging molded part 7.
As shown in FIG. 2, when forming a fuel cell, the separator 1 is interposed between the stacked unit cells 10, 11, and the electrodes 12, 13 of the unit cells 10, 11 and the bulging formed portion 7 are expanded. A gold plating layer 9 formed on the leading end side end face 8 is disposed so as to abut , and a reaction gas passage 14 is defined between the separator 1 and the electrodes 12 and 13 .
[0008]
The gold plating layer 9 of the separator 1 is subjected to a degreasing process, a cleaning process, a surface activation process, a cleaning process, a partial gold plating process, a cleaning process, and a drying process in this order without performing base plating on the press-molded separator material. Formed.
In the degreasing step, the fat and oil adhering to the surface of the separator material is removed using a strong alkaline degreasing agent.
In the surface activation step, an inorganic mixed acid and an organic inhibitor are used as treatment agents to activate and smooth the surface of the separator material.
In the partial gold plating process, a sparger method is used in which a plating treatment liquid is ejected from a nozzle to which a voltage is applied to the separator material to a portion to be plated to form a partial plating layer, and a cyan gold potassium solution is used as the plating treatment liquid. Partial plating is performed on the end surface 8 of the bulging tip side of the bulge forming portion 7 of the material.
[0009]
In order to investigate the influence of the gold plating layer 9 on the contact resistance between the separator 1 and the electrodes 12 and 13 of the unit cells 10 and 11, electrons are transferred from the separator 15 to the separator 17 through the electrode base 16 as shown in FIG. The conduction resistance when conducting was measured.
Hereinafter, the measurement of the conduction resistance will be described in detail. As shown in FIG. 3, an electrode base material 16 made of the same constituent material as the electrodes 12 and 13 of the unit cells 10 and 11 is sandwiched between a separator 15 and a separator 17 made of the same structure and material as the separator 1, The separator 15 and the separator 17 are sandwiched between a pair of current collector plates 19 and 20 connected to a constant current power source 18, and a potential difference generated between the separators 15 and 17 when a constant current is supplied between the separators 15 and 17 It detects with the potentiometer 21 connected in series between 15 and 17, converts this potential difference into resistance value, and acquires conduction | electrical_connection resistance. At this time, the current collecting plates 19 and 20 are held by the pressing plates 24 and 25 via the insulating plates 22 and 23, and the pressing plates 24 and 25 are pressed by a pressing device (not shown) to expand the separators 15 and 17. A predetermined surface pressure is applied to the leading end side end faces 26 and 27.
[0010]
FIG. 4 shows the relationship between the conduction resistance and the thicknesses of the gold plating layers 28 and 29 formed on the bulging tip side end surfaces 26 and 27 of the separators 15 and 17 under a constant surface pressure.
As can be seen from FIG. 4, the conduction resistance decreases as the thickness of the gold plating layers 28 and 29 decreases, and it becomes clear that the conduction resistance becomes substantially constant when the thickness is smaller than 0.06 μm.
[0011]
FIG. 5 shows the relationship between the conduction resistance and the surface pressure when the surface pressure applied to the bulging tip side end surfaces 26 and 27 of the separators 15 and 17 is changed (described as “Example” in the figure).
For comparison, a dense carbon separator and a Ni / SUS clad separator are prepared, and the electrode substrate 16 is sandwiched by the dense carbon separator instead of the separators 15 and 17, and the surface pressure is changed. The electrode substrate 16 is sandwiched between Ni / SUS clad separators instead of the separators 15 and 17 and the relationship between the conduction resistance and the surface pressure when the conduction resistance is measured (described as “Comparative Example 1” in the figure). Then, the relationship between the conduction resistance and the surface pressure (measured as “Comparative Example 2” in the figure) when the conduction resistance is measured while changing the surface pressure is also shown in FIG. In any separator, the apparent contact area with the electrode substrate 16 is the same.
[0012]
As is clear from FIG. 5, the tendency that the conduction resistance decreases as the surface pressure increases is the same for the separators 15 and 17, the dense carbon separator, and the Ni / SUS clad separator. As for the magnitude of the resistance, the separators 15 and 17 were the smallest.
[0013]
In order to investigate the corrosion resistance of the separator 1, a nitric acid aeration test (JIS H8621) was performed to confirm whether or not pinholes that would cause corrosion were present in the gold plating layer 9. As a result, it was confirmed that no elution of Cr was observed and no pinholes were formed when the thickness of the gold plating layer 9 was 0.01 μm or more.
[0014]
【The invention's effect】
According to the first invention, the fuel cell separator is formed of a metal member, and the gold plating is directly applied only to the contact surfaces of the electrodes of both adjacent unit cells without applying the base plating. Since the contact resistance with the electrode is reduced and the conduction of electrons from the separator to the electrode is improved, the output voltage of the fuel cell is increased. Further, since the thickness of the gold plating for forming a plurality of partial plating layers on both sides of the fuel cell separator is set to 0.01 to 0.06 μm, there is no occurrence of pinholes as a starting point of corrosion in the gold plating. The contact resistance between the separator and the electrode of the unit cell becomes smaller and constant, the output voltage of the fuel cell is improved, and the amount of gold used per separator can be reduced, thereby reducing the cost.
According to the second invention, since the metal member is made of stainless steel, the corrosion resistance is improved, and the durability is improved.
According to the third invention, since the separator faces the electrode and defines the reaction gas passage, the reaction gas passage can be defined by a metal separator that is easy to mold. it improves the productivity of the fuel cell.
[Brief description of the drawings]
FIG. 1 is a plan view of a fuel cell separator according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a contact state between the fuel cell separator and a unit cell.
FIG. 3 is a diagram showing a means for measuring conduction resistance.
FIG. 4 is a graph showing the relationship between the thickness of the gold plating layer and the conduction resistance.
FIG. 5 is a graph showing the relationship between surface pressure and conduction resistance.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel cell separator 8 Swelling front end side surface 9 Gold plating layer 10 Unit battery 11 Unit battery 12 Electrode 13 Electrode 14 Reactive gas passage

Claims (3)

積層された単位電池の隣り合う単位電池間に介在し、隣り合う単位電池双方の電極と接触して該両単位電池を電気的に接続するとともに反応ガスを分離する作用をなすセパレータであって、
金属製部材からなり、下地メッキを施すことなく、隣り合う単位電池双方の電極との接触面にのみ直接金メッキを施して、金メッキの厚さを0.01〜0.06μmとした部分メッキ層を両面に複数形成したことを特徴とする燃料電池用セパレータ。
A separator that is interposed between adjacent unit cells of the stacked unit cells, contacts both electrodes of the adjacent unit cells, electrically connects both unit cells, and separates the reaction gas;
A partial plating layer made of a metal member and directly plated with gold only on the contact surfaces of the electrodes of both adjacent unit cells without applying base plating, and having a gold plating thickness of 0.01 to 0.06 μm. A fuel cell separator , wherein a plurality of separators are formed on both sides .
該金属製部材をステンレス鋼としたことを特徴とする請求項1記載の燃料電池用セパレータ。The fuel cell separator according to claim 1, wherein the metal member is made of stainless steel. 該電極と対向して反応ガス通路を画成することを特徴とする請求項1又は2記載の燃料電池用セパレータ。The fuel cell separator according to claim 1 or 2, wherein a reaction gas passage is defined facing the electrode.
JP06888897A 1997-02-13 1997-02-13 Fuel cell separator Expired - Lifetime JP3854682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06888897A JP3854682B2 (en) 1997-02-13 1997-02-13 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06888897A JP3854682B2 (en) 1997-02-13 1997-02-13 Fuel cell separator

Publications (2)

Publication Number Publication Date
JPH10228914A JPH10228914A (en) 1998-08-25
JP3854682B2 true JP3854682B2 (en) 2006-12-06

Family

ID=13386654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06888897A Expired - Lifetime JP3854682B2 (en) 1997-02-13 1997-02-13 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP3854682B2 (en)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5047408B2 (en) * 1999-06-16 2012-10-10 新日本製鐵株式会社 Stainless steel or titanium separator for polymer electrolyte fuel cell
CN1117882C (en) 1999-04-19 2003-08-13 住友金属工业株式会社 Stainless steel material for solid polymer fuel battery
JP4719948B2 (en) * 1999-06-16 2011-07-06 住友電気工業株式会社 Separator for polymer electrolyte fuel cell
JP3468739B2 (en) 1999-12-27 2003-11-17 新東ブレーター株式会社 Method for attaching metal having high corrosion resistance and low contact resistance to carbon to fuel cell separator
CA2352443C (en) * 2000-07-07 2005-12-27 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
JP4133323B2 (en) * 2000-11-10 2008-08-13 本田技研工業株式会社 Press separator for fuel cell
US6544681B2 (en) 2000-12-26 2003-04-08 Ballard Power Systems, Inc. Corrugated flow field plate assembly for a fuel cell
JP4580113B2 (en) * 2001-02-07 2010-11-10 新日本製鐵株式会社 Method for producing low contact resistance metal separator for fuel cell
CA2373344C (en) 2001-02-28 2012-03-20 Daido Tokushuko Kabushiki Kaisha Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
JP2002260681A (en) * 2001-02-28 2002-09-13 Daido Steel Co Ltd Metal separator for polymer electrolyte fuel cell and method of manufacturing the same
US7001683B2 (en) * 2001-09-19 2006-02-21 Honda Giken Kogyo Kabushiki Kaisha Separator for fuel cell and method for producing the same
JP3891069B2 (en) 2002-08-09 2007-03-07 トヨタ自動車株式会社 Fuel cell separator
JP2004071502A (en) 2002-08-09 2004-03-04 Araco Corp Fuel cell separator and fuel cell including the same
EP1557895B1 (en) 2002-08-20 2014-04-30 Daido Tokushuko Kabushiki Kaisha Metal component for a fuel cell and method of manufacturing the same, and fuel cell comprising the same
JP4327489B2 (en) * 2003-03-28 2009-09-09 本田技研工業株式会社 Metal separator for fuel cell and manufacturing method thereof
CN100424920C (en) * 2003-09-22 2008-10-08 日产自动车株式会社 Separator for fuel cell, fuel cell stack, method for manufacturing separator for fuel cell, and fuel cell vehicle
JP2005123160A (en) * 2003-09-22 2005-05-12 Nissan Motor Co Ltd Fuel cell separator, fuel cell stack, fuel cell separator manufacturing method, and fuel cell vehicle
JP5403642B2 (en) * 2003-11-07 2014-01-29 大同特殊鋼株式会社 Corrosion resistant conductive material
EP1735865B1 (en) 2004-04-13 2012-06-20 Nissan Motor Company Limited Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
EP1738429A1 (en) * 2004-04-19 2007-01-03 LG Electronics, Inc. Fuel cell
US7687175B2 (en) * 2004-05-03 2010-03-30 Gm Global Technology Operations, Inc. Hybrid bipolar plate assembly and devices incorporating same
US7955754B2 (en) 2004-07-20 2011-06-07 GM Global Technology Operations LLC Enhanced stability bipolar plate
EP1806801A4 (en) * 2004-09-10 2009-12-30 Neomax Materials Co Ltd Fuel cell separator and method for manufacturing the same
US7700212B2 (en) 2004-10-07 2010-04-20 Gm Global Technology Operations, Inc. Bipolar plate with enhanced stability
JP4742571B2 (en) * 2004-11-25 2011-08-10 トヨタ自動車株式会社 Manufacturing method of fuel cell
JP2006172949A (en) * 2004-12-16 2006-06-29 Daido Gakuen Solid polymer fuel cell, solid polymer fuel cell system and operation method for solid polymer fuel cell
US7763393B2 (en) 2005-05-13 2010-07-27 Hitachi Cable, Ltd. Fuel cell having electrode channel member with comb-teeth shape
JP4971979B2 (en) * 2005-06-03 2012-07-11 本田技研工業株式会社 Fuel cell separator and method for producing the same
EP1906477A1 (en) 2005-06-22 2008-04-02 Nippon Steel Corporation Separator for solid polymer electrolyte fuel cell of stainless steel, titanium or titanium alloy, process for producing the same, and method for evaluating warping and twisting of separator
US8377607B2 (en) 2005-06-30 2013-02-19 GM Global Technology Operations LLC Fuel cell contact element including a TiO2 layer and a conductive layer
CA2621772C (en) 2005-09-08 2015-01-27 Nissan Motor Co., Ltd. Transition metal nitride, separator for fuel cells, fuel cell stack, fuel cell vehicle, method of manufacturing transition metal nitride, and method of manufacturing separator forfuel cells
DE112007000680B8 (en) 2006-04-14 2013-10-31 Toyota Jidosha Kabushiki Kaisha Noble metal plating of titanium components
JP4551429B2 (en) 2006-09-29 2010-09-29 株式会社神戸製鋼所 Method for manufacturing fuel cell separator, fuel cell separator and fuel cell
JP5167627B2 (en) * 2006-11-15 2013-03-21 日産自動車株式会社 Fuel cell
CN101578728B (en) 2006-12-21 2012-05-23 株式会社神户制钢所 Alloy coating film for metal separator of fuel cell, method for producing same, target material for sputtering, metal separator, and fuel cell
JP5365023B2 (en) 2007-03-07 2013-12-11 日産自動車株式会社 Transition metal nitride, fuel cell separator, fuel cell stack, fuel cell vehicle, transition metal nitride manufacturing method, and fuel cell separator manufacturing method
EP1978582A1 (en) * 2007-04-05 2008-10-08 Atotech Deutschland Gmbh Process for the preparation of electrodes for use in a fuel cell
JP2008258114A (en) 2007-04-09 2008-10-23 Kobe Steel Ltd Metal separator for fuel cell and manufacturing method thereof
KR100777123B1 (en) 2007-04-18 2007-11-19 현대하이스코 주식회사 Stainless steel separator plate for fuel cell and manufacturing method thereof
JP5292751B2 (en) * 2007-09-25 2013-09-18 凸版印刷株式会社 FUEL CELL SEPARATOR, MANUFACTURING METHOD THEREOF, AND FUEL CELL HAVING THE SAME
JP4823202B2 (en) 2007-11-15 2011-11-24 株式会社神戸製鋼所 Method for producing titanium substrate for fuel cell separator and method for producing fuel cell separator
JP2009170116A (en) 2008-01-10 2009-07-30 Kobe Steel Ltd Recycling method of separator for fuel cell, regenerated separator for the fuel cell, and the fuel cell
JP5185720B2 (en) 2008-02-27 2013-04-17 株式会社神戸製鋼所 Surface treatment method of titanium material for electrodes
CA2729091C (en) 2008-06-26 2013-08-20 Sumitomo Metal Industries, Ltd. Stainless steel material for a separator of a solid polymer fuel cell and a solid polymer fuel cell using the separator
EP2343763B1 (en) 2008-10-07 2017-09-06 Nippon Steel & Sumitomo Metal Corporation Sheet stainless steel for separators in solid polymer fuel cells, and solid polymer fuel cells using the same
JP2010236083A (en) 2009-03-11 2010-10-21 Kobe Steel Ltd Titanium electrode material and surface treatment method of titanium electrode material
JP5455204B2 (en) * 2009-08-05 2014-03-26 Jx日鉱日石金属株式会社 Fuel cell separator material and fuel cell stack using the same
DE112010004990B4 (en) 2009-12-25 2020-01-16 Toyota Jidosha Kabushiki Kaisha Bipolar plate for a fuel cell and method for producing the same
CN102713004B (en) 2010-01-20 2015-03-25 杰富意钢铁株式会社 Stainless steel for live parts with low contact resistance and manufacturing method thereof
US20130177837A1 (en) 2010-04-23 2013-07-11 Jfe Steel Corporation Metal sheet for separator of proton-exchange membrane fuel cell
JP5419816B2 (en) 2010-07-09 2014-02-19 Jx日鉱日石金属株式会社 Fuel cell separator material, fuel cell separator and fuel cell stack using the same
JP5454744B2 (en) 2011-11-30 2014-03-26 Jfeスチール株式会社 Stainless steel for fuel cell separator
JP6229994B2 (en) * 2012-04-18 2017-11-15 日産自動車株式会社 Positive electrode for air battery and method for producing the same
JP5973790B2 (en) 2012-05-28 2016-08-23 株式会社中山アモルファス Thin plate excellent in corrosion resistance, conductivity and moldability, and method for producing the same
WO2015059857A1 (en) 2013-10-22 2015-04-30 Jfeスチール株式会社 Stainless steel foil for separators of solid polymer fuel cells
US10431832B2 (en) 2014-04-15 2019-10-01 Jfe Steel Corporation Stainless-steel foil for separator of polymer electrolyte fuel cell
US10230115B2 (en) 2014-08-19 2019-03-12 Nippon Steel & Sumitomo Metal Corporation Metallic material, and conductive component including the same
US20160380275A1 (en) * 2014-12-11 2016-12-29 Hamilton Sundstrand Space Systems International, Inc. Multi-voltage fuel cell
JP6015880B1 (en) 2015-01-29 2016-10-26 Jfeスチール株式会社 Stainless steel plate for separator of polymer electrolyte fuel cell
JP6057033B1 (en) 2015-02-13 2017-01-11 新日鐵住金株式会社 Ferritic stainless steel material, separator, polymer electrolyte fuel cell, and separator manufacturing method
JP6066024B1 (en) 2015-04-14 2017-01-25 Jfeスチール株式会社 Metal plate for separator of polymer electrolyte fuel cell
KR102029648B1 (en) 2015-08-12 2019-10-08 제이에프이 스틸 가부시키가이샤 Metal sheet for separators of polymer electrolyte fuel cells, and metal sheet for manufacturing the same
CN105140544B (en) * 2015-08-28 2018-08-03 航天新长征电动汽车技术有限公司 A kind of metal double polar plates and preparation method thereof
KR102080472B1 (en) 2015-12-24 2020-02-24 제이에프이 스틸 가부시키가이샤 Stainless steel sheet for fuel cell separators and method for producing the same
EP3470539B1 (en) 2016-06-10 2020-06-17 JFE Steel Corporation Stainless steel sheet for fuel cell separators, and production method therefor
KR102165049B1 (en) 2016-06-10 2020-10-13 제이에프이 스틸 가부시키가이샤 Stainless steel sheet for separator of fuel cell and method for manufacturing same
WO2018147087A1 (en) 2017-02-09 2018-08-16 Jfeスチール株式会社 Stainless steel plate substrate of steel plate for fuel cell separator, and method for producing same
CN109346743B (en) * 2018-08-31 2022-07-12 上海交通大学 Conductive and corrosion-resistant coating for fuel cell metal bipolar plate
JP7338618B2 (en) * 2020-12-17 2023-09-05 Jfeスチール株式会社 Austenitic stainless steel sheet for fuel cell separator and method for producing same

Also Published As

Publication number Publication date
JPH10228914A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
JP3854682B2 (en) Fuel cell separator
JP5226431B2 (en) Fuel cell stack
US20050186464A1 (en) Fuel cell
US7220511B2 (en) Fuel cell
JP5334469B2 (en) Fuel cell stack
US8192886B2 (en) Fuel cell stack with power collecting terminals
JP2006114444A (en) Method of joining fuel cell stack and separator
JP6117745B2 (en) Fuel cell stack
JP4996864B2 (en) FUEL CELL SEPARATOR AND METHOD FOR PRODUCING FUEL CELL SEPARATOR
JP4690688B2 (en) Fuel cell stack
JP2005216700A (en) FUEL CELL STACK, SEPARATOR INTERMEDIATE AND SEPARATOR MANUFACTURING METHOD
JP2001345109A (en) Separator for fuel cell
JP2007273433A (en) Cell unit, cell connection method, and fuel cell
JP2015002022A (en) Fuel cell stack and manufacturing method therefor
JP2001068129A (en) Fuel cell separator, method of manufacturing the same, and fuel cell
JP4726182B2 (en) Fuel cell stack
JP2009104882A (en) Fuel cell
JP2002025586A (en) Separator for polymer electrolyte fuel cell and fuel cell
JP6590247B2 (en) Fuel cell
JP6194186B2 (en) Fuel cell
JP2012227121A (en) Fuel cell metal separator and method for coating noble metal therefor
JP4281330B2 (en) Polymer electrolyte fuel cell
JP5200346B2 (en) Fuel cell and fuel cell having the same
JP4262497B2 (en) Fuel cell
JP6144241B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150