JP3875922B2 - Electrolysis cell for hydrogen peroxide production - Google Patents
Electrolysis cell for hydrogen peroxide production Download PDFInfo
- Publication number
- JP3875922B2 JP3875922B2 JP2002161295A JP2002161295A JP3875922B2 JP 3875922 B2 JP3875922 B2 JP 3875922B2 JP 2002161295 A JP2002161295 A JP 2002161295A JP 2002161295 A JP2002161295 A JP 2002161295A JP 3875922 B2 JP3875922 B2 JP 3875922B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen peroxide
- cathode
- electrolytic cell
- water
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims description 110
- 238000005868 electrolysis reaction Methods 0.000 title claims description 21
- 238000004519 manufacturing process Methods 0.000 title description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 229910001868 water Inorganic materials 0.000 claims description 29
- 239000007789 gas Substances 0.000 claims description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 19
- 239000001301 oxygen Substances 0.000 claims description 19
- 229910052760 oxygen Inorganic materials 0.000 claims description 19
- 238000009792 diffusion process Methods 0.000 claims description 12
- 229910003460 diamond Inorganic materials 0.000 claims description 5
- 239000010432 diamond Substances 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims 1
- 239000007774 positive electrode material Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 13
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 11
- 229910001882 dioxygen Inorganic materials 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000003054 catalyst Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 238000009434 installation Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 235000002639 sodium chloride Nutrition 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000003014 ion exchange membrane Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- -1 pulp Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005979 thermal decomposition reaction Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 231100000315 carcinogenic Toxicity 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000003115 supporting electrolyte Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 239000002349 well water Substances 0.000 description 2
- 235000020681 well water Nutrition 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910017299 Mo—O Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- PCEXQRKSUSSDFT-UHFFFAOYSA-N [Mn].[Mo] Chemical compound [Mn].[Mo] PCEXQRKSUSSDFT-UHFFFAOYSA-N 0.000 description 1
- ARZRWOQKELGYTN-UHFFFAOYSA-N [V].[Mn] Chemical compound [V].[Mn] ARZRWOQKELGYTN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002194 amorphous carbon material Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 238000007743 anodising Methods 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 238000010349 cathodic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 231100000507 endocrine disrupting Toxicity 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000011086 high cleaning Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- BJBUTJPAZHELKY-UHFFFAOYSA-N manganese tungsten Chemical compound [Mn].[W] BJBUTJPAZHELKY-UHFFFAOYSA-N 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 150000004968 peroxymonosulfuric acids Chemical class 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000008234 soft water Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、運転時に電解セルの設置を工夫することで、食品、医薬品、パルプ、半導体産業等の用水や廃水の処理に使用される過酸化水素水の生成効率を向上させることのできる過酸化水素製造用電解セルに関する。
【0002】
【従来の技術】
産業及び生活廃棄物に起因する大気汚染や、河川及び湖沼の水質悪化などによる環境や人体への悪影響が憂慮され、その問題解決のための技術対策が急務となっている。例えば飲料水、下水及び廃水の処理において、その脱色やCOD低減及び殺菌のために塩素などの薬剤が投入されてきたが、多量の塩素注入により危険物質つまり環境ホルモン(外因性内分泌攪乱物質)、発ガン性物質などが生成するため、塩素注入は禁止される傾向にある。
又廃棄物の焼却処理では、燃焼条件に依っては廃ガス中に発ガン性物質(ダイオキシン類)が発生し生態系に影響するため、その安全性が問題視されている。この水処理関連の問題点を解決するために新規な水処理方法が検討されている。
【0003】
電解法はクリーンな電気エネルギーを利用して所望の電気化学反応を起こすことができ、陰極表面で化学反応を制御することにより、つまり酸素含有ガスと水を陰極に供給することにより過酸化水素を製造でき、これを利用して被処理物質を分解することによる水処理が従来から広く行われている。電解法によるとオンサイトでの過酸化水素製造が可能になり、安定化剤なしに長期間の保存が不可能であるという過酸化水素の欠点を解消し、かつ輸送に伴う危険性や汚染対策も不要になる。
この陰極還元による過酸化水素の製造で、陰極液として処理対象の廃水等を使用すると、生成する過酸化水素水による酸化処理に加えて前記廃水が直接電極に接触して陽極酸化又は陰極還元処理されることが期待され、更に例えば活性の高い1電子還元生成物であるスーパーオキシドアニオン(O2 -)の作用も期待できる。
【0004】
【発明が解決しようとする課題】
Journal of Applied Electrochemistry Vol.25,613−(1995)では、過酸化水素の各種電解生成方法の比較が示されている。これらの発生方法はいずれもアルカリ水溶液の雰囲気で効率良く得られるため、原料としてアルカリ成分を供給する必要があり、KOHやNaOH等のアルカリ水溶液が必須になる。
Journal of Electrochemical Society Vol.141,1174−(1994)では、純水を原料としイオン交換膜を用いてオゾンと過酸化水素をそれぞれ陽極と陰極で電解製造する手法が提案されているが、電流効率が小さく実用的でない。類似の方法として高圧下で電解することにより効率が上昇することも報告されているが、安全性の面からやはり実用的でない。更にパラジウム箔を用いた過酸化水素の電解製造方法も提案されているが、生成する過酸化水素の濃度が低く価格的にも限界がある。
【0005】
過酸化水素製造用の電解セルでは、軟水又はイオン交換水に電解質として塩化物、硫酸塩、硝酸塩、酢酸塩等の塩を添加した電解系が使用されることがあるが、この系では特に無隔膜電解セルでの電流効率が低く、ランニングコストが高くなるという問題点があった。
このように従来から、電解法による過酸化水素水製造において、電極物質やイオン交換膜等を検討して実用レベルで使用可能な過酸化水素製造用電解セルが提案されているが、生成する過酸化水素の濃度や安全性の面あるいは装置の複雑さ等の理由でいずれも満足できる結果は得られていない。
このような従来技術の問題点に鑑み、本発明は装置に簡単な修正を施すのみで生成効率を向上させることのできる過酸化水素製造用電解セルを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、陽極と陰極を有し、陰極に酸素含有ガスと水を供給して過酸化水素を製造するための無隔膜型の電解セルにおいて、前記陽極及び陰極を、該陰極が下に位置するように、垂直方向に対して傾斜させたことを特徴とする過酸化水素製造用電解セルである。
【0007】
以下本発明を詳細に説明する。
本発明者らは、過酸化水素製造用電解セルの設置に関し種々検討し、該過酸化水素製造用電解セルを所定角度傾斜させるのみで、過酸化水素の製造効率が上昇することを見出し、本発明に到達したものである。
本発明における電解セルの傾斜角(θ)は垂直方向に対して0°<θ≦90°であり、好ましくは10°≦θ≦90°、より好ましくは30°≦θ≦90°である。この場合の傾斜角とは電極面と垂直方向とが形成する角度(電極面と傾斜方向が直角になる)を意味し、電極の両端部と垂直方向が形成する角度(電極面の方向と傾斜方向が一致する)を意味しない。但し、常に電極面が傾斜方向に対して直角になる必要はなく、直角からずれていても良い。また傾斜の態様として陽極側が下になる態様と陰極側が下になる態様があるが、
本発明では陰極側が下になる態様とし、0°<θ≦90°の範囲の傾斜角で傾斜させる。
傾斜させた電解セルは、一般的な手法で固定すれば良く、例えば設置面に比較的大きなV字溝を形成してそのV字溝に固定したり、固定台に電解セルを凭せ掛けて固定しても良い。
【0008】
本発明により、過酸化水素製造用電解セルを所定角度傾斜させるのみで過酸化水素の生成効率が上昇する理由は明確ではないが、次のように推測できる。
陰極で生成した過酸化水素は、陽極で発生したガス上昇による攪拌効果で陽極に移動し、そこで分解するため、生成効率が低下する。又過酸化水素の発生効率はpH依存性があり、酸性では効率が小さくなる傾向があるため、陽極で生成するプロトンの陰極表面への移動を促進すると過酸化水素の生成効率が低下する。陰極を下側にして電解セルを傾斜させると、陽極で発生したガスは陽極板に沿って移動するため上昇スピードが低下し、攪拌効果が弱まると考えられる。よって陰極で生成した過酸化水素は陽極へ移動、分解されることなく速やかに排出され、過酸化水素の生成効率が低下しないと考えられる。又陽極で発生したプロトンの移動も抑制されるため、結果として効率が増大する。
【0009】
電解セルを傾斜させることで陰極全体にかかる平均の水圧が減少するため、ガス陰極内に浸入している余分な溶液成分が減少し、代わって空気室からの原料ガスの供給ルートが十分に確保されるためとも推定される。
【0010】
過酸化水素は次の電解反応により生成する。
陽極反応: 2H2O → O2 + 4H+ + 4e
3H2O → O3 + 6H+ + 6e
2H2O → H2O2 + 2H+ + 2e
陰極反応: O2 + 2H+ + 2e → H2O2
【0011】
塩化物を溶解した場合には、次式の通り次亜塩素酸が生成する。
2Cl- → Cl2 + 2e
Cl2 + H2O → HCl + HClO
特に塩化物を溶解した場合、ガスの処理が不可欠になり、またこの酸化性物質が陰極に到達すると陰極材料を劣化させるので、次亜塩素酸が発生しにくい電極材料を使用することが望ましい。
硫酸塩を添加すると、電極材料によっては次の式に従って過硫酸が生成する。
2SO4 2- → S2O8 2- + 2e
又酢酸塩を添加すると、電極材料によっては酸素以外に次の式に従って二酸化炭素が生成する。
CH3COOH + 2H2O → 2CO2 + 8H+ +8e
【0013】
一般的に水溶液の電解の際の陽極酸化反応は、水を原料とする電解生成反応になるが、水の放電に対して反応性の高い電極触媒を使用すると、水以外の共存物質の酸化反応が容易には進行しなくなることが多い。不純物の分解生成物は最終的には二酸化炭素、水、水素、酸素、窒素、アンモニア、塩化物イオン等の低分子の安全な物質に変換されることが好ましいが、分解過程にある中間体がかえって危険である可能性があるため、電解条件の設定には注意が必要である。
【0014】
本発明方法で使用する電解セルは過酸化水素製造用であれば特に限定されず、例えば次のような電解セルを使用できる。
使用できる陽極触媒は、水の酸化反応である酸素発生反応が、ハロゲン化物イオンの酸化によるハロゲンガスや次亜ハロゲン酸の生成より優先するように選択することが望ましく、例えば酸化鉛、酸化錫、白金、イリジウム、ルテニウムなどの貴金属又はそれらの酸化物から成るDSA(不溶性陽極)、カーボン等の材料があり、これらと、チタン、タンタルなどの弁金属の酸化物を含む複合酸化物も使用できる。更に二酸化マンガンあるいはマンガン−バナジウム、マンガン−モリブデン、マンガン−タングステン等の複合酸化物も使用でき、ハロゲン化物イオンの放電(ハロゲンガス発生)が抑制されることが知られている。
しかしながらこれらの高価な材料を用いても電流密度や通電時間に応じて消耗する。特に黒鉛や非晶質カーボン材料は著しい消耗がある。
【0015】
これらに替わる陽極材料として導電性ダイヤモンドがあり、この導電性ダイヤモンドは耐久性に優れ、更に水の分解反応に対しては不活性で、酸素からオゾン(陽極酸化反応)と過酸化水素(陰極還元反応)を生成する。従って陽極として導電性ダイヤモンドを使用すると、長寿命化が達成できるとともに、酸化力のあるOHラジカルが生成して、洗浄力の高い電解液が得られる。
これらの電極物質をそのまま板状にして用いるか、チタン、ニオブ、タンタル等の耐食性を有する板、金網、粉末焼結体、金属繊維焼結体上に、熱分解法、樹脂による固着法、複合メッキなどにより1〜500g/m2 となるように形成させる。
陽極給電体としては、チタン等の弁金属又はそれらの合金を使用することが望ましい。
【0016】
過酸化水素発生用電極である陰極は、ニッケルやカーボン等の従来使用されている陰極を使用しても良いが、酸素ガス拡散陰極を使用することが望ましく、これにより酸素ガスの還元により効率的に過酸化水素を製造できる。
該酸素ガス電極は、触媒として金等の金属あるいは金属酸化物、又は黒鉛や導電性ダイヤモンド等のカーボンを使用することが好ましく、ポリアニリンやチオール(−SH含有有機化合物)などの有機材料をその表面に塗布したものでも良い。これらの触媒はそのまま板状又は多孔状として用いるか、ステンレス、ジルコニウム、銀、カーボンなどの耐食性を有する板、金網、粉末焼結体、金属繊維焼結体上に、熱分解法、樹脂による固着法、複合メッキなどにより1〜1000g/m2 となるように担持する。
【0017】
陰極給電体としてはカーボン、ニッケル、チタン等の金属、それらの合金や酸化物を好ましくは多孔体又はシートとして使用し、反応生成ガス及び電解水の供給及び取り出しを円滑に行うために、疎水性又は親水性の材料を給電体表面に分散担持することが望ましい。
陰極液の電導度が低いと槽電圧の増加となり又電極寿命を短くするため、この場合にはガス電極の材料による汚染を防止する目的も含めて、酸素ガス拡散陰極をイオン交換膜に可能な限り近接させる(溶液室の幅を狭くする)構造を採用することが望ましい。
陰極への酸素供給量は理論量の1〜2倍程度が良く、酸素源として空気や市販のボンベを使用しても、別に設置した電解セルでの水電解で生成する酸素を使用しても、又PSA(Pressure Swing Adsorption)装置により空気から濃縮した酸素を使用しても良い。一般に酸素濃度が大きいほど、大きい電流密度で過酸化水素を製造できる。
【0018】
使用する電解液としては、純水、水道水、井戸水及び工業用水等を使用することができ、これらは伝導度が小さく、セル電圧に占める抵抗損失が無視できない。又伝導度が小さいと電極有効面積が限定される。これらを防止するため前記電解液に電気伝導度を付与することが望ましく、硫酸ナトリウム、硫酸カリウム、硝酸ナトリウム、塩化ナトリウム及び塩化カリウムのような中性塩あるいは水酸化ナトリウムや硫酸といったアルカリ性や酸性の支持電解質を添加できる。
【0019】
但し塩化物を使用すると前述の通り次亜塩素酸の発生があり、これは陰極で生成する過酸化水素と別のラインで処理水として利用することも可能である。しかしながら一部の有効塩素成分は陰極側に流出し、陰極触媒や基体を酸化させ、結果として電極の短寿命化を引き起こすことがある。
これを防止するためには、塩化物イオンが存在しても水の電解(酸素発生)が優先して進行する触媒を陽極として利用することが好ましい。二酸化マンガン系(MnO2、Mn−W−Ox、Mn−V−Ox、Mn−Mo−Ox)電極はその選択性に優れた電極触媒として利用できる。
【0020】
一方硫酸塩、硝酸塩及び酢酸塩等の塩化物でない塩を溶解させることで、活性な酸化剤の発生を抑制することができる。水道水、井戸水などの用水を軟水化すると微量溶解している塩化ナトリウムや塩化カリウム等の成分から次亜塩素酸が生成して前述の問題の発生が懸念されるが、前記硫酸塩等を数倍以上の濃度で溶解させると、次亜塩素酸の生成効率は著しく減少する。
純水は塩化物を溶解していないため、この問題は発生しない。
前述した電気伝導度を付与する物質として炭酸塩は望ましくなく、これはアルカリ雰囲気に置かれる陰極上に炭酸ナトリウムや炭酸カリウムとして沈殿するからである。原料水に多量の二酸化炭素が溶解している場合には、前もって除去しておくことが好ましい。
【0021】
カルシウムやマグネシウム等の多価の金属イオンを多く含む処理対象では、陰極表面に水酸化物が沈殿し反応が阻害される恐れがあるため、前段階として多価金属カチオンを除去しておくことが望ましい。
電解条件は、液温5〜60℃、電流密度0.1 〜100 A/dm2 が好ましく、特に安定して高性能を得るために液温20〜40℃、電流密度1〜20 A/dm2 が好ましい。電極間距離は抵抗損失を低下させるために小さくすべきであるが、電解水供給のためのポンプの圧力損失を小さくし圧力分布を均一に保つために1〜20mmとすることが好ましい。
電解セル材料は、耐久性、及び過酸化水素の安定性の観点から、ガラスライニング材料、カーボン、耐食性が優れたチタンやステンレス、PTFE樹脂等を使用することが好ましい。生成する過酸化水素の濃度は水量と電流密度を調節することにより、10〜10000 ppm (1重量%)までの制御が可能である。
【0022】
【発明の実施の形態】
本発明による過酸化水素水製造に使用できる好ましい電解セルの実施形態例を図1に基づいて説明する。
図1は、本発明による過酸化水素製造用電解セルの一実施形態例を示す縦断正面図である。
【0023】
電解セル1には、多孔板状の陽極2と、酸素ガス拡散陰極3が収容され、この酸素ガス拡散陰極3により、前記電解セル1が溶液室4とガス室5に区画され、前記酸素ガス拡散陰極3のガス室側には多孔性の陰極給電体6が密着して設置されている。
溶液室4側の底板及び天板にはそれぞれ電解液導入口7と電解液取出口8が形成され、ガス室5側の背板上部と下部にはそれぞれ酸素含有ガス導入口9と酸素含有ガス取出口10が形成されている。
【0024】
このような構成からなる電解セル1は基台11上に固定され、更に基台11ごと水平な設置面12上に傾斜角(θ)で酸素ガス拡散陰極3が陽極2より下側に位置するよう傾斜して設置され、前記設置面12上に設置した固定台13にガス室5の背板を凭れさせて前記傾斜位置に保持している。
このように傾斜角(θ)で設置された電解セル1の電解液導入口7から、支持電解質を溶解した水道水等の電解液を、酸素含有ガス導入口9から空気や酸素富化空気を導入しながら両極間に通電すると、酸素ガス拡散陰極3で酸素が還元されて過酸化水素が生じ、過酸化水素含有溶液として取出口8から取り出される。
【0025】
〔実施例〕
次に本発明による過酸化水素水の製造の実施例を記載するが、該実施例は本発明を限定するものではない。
【0026】
実施例1
チタン多孔板に酸化イリジウム触媒を熱分解法により10g/m2 となるように担持させ陽極とした。
カーボン粉末(CABOT、Vulcan XC-72)を触媒とし、これとPTFE樹脂とを混練し、0.5mm厚のカーボンシートに塗工し、更に330 ℃で焼成して酸素ガス拡散陰極とし、この酸素ガス拡散陰極を、陰極給電体である多孔性SUS板(厚さ3mm)と一体化した。電極間距離を5mmとし、高さ20cm、電解有効面積が125cm2である無隔膜型電解セルを構成し、陰極は大気開放とした。
この電解セルを陰極が陽極より下側に位置するように、傾斜角(θ)=82°で傾斜させた。水道水をイオン交換樹脂で軟水化し、0.056Mの硫酸ナトリウムを溶解して伝導度を10mS/cmとした水溶液を電極室入口から毎分10mlで供給した。液温を20℃とし、1.25Aの電流を流したところ、セル電圧は約2.4Vであり、出口から約1000ppmの過酸化水素が電流効率約74%で得られた。
【0029】
実施例2
電解セルを陰極が陽極より下側に位置するように、傾斜角(θ)=10°で傾斜させたこと以外は実施例1と同様にして過酸化水素製造用電解セルを構成し、過酸化水素を製造したところ、セル電圧は約2.4Vであり、出口から約610ppmの過酸化水素が電流効率約45%で得られた。
【0030】
比較例1
電解セルを直立させた〔傾斜角(θ)=0°〕こと以外は実施例1と同様にして過酸化水素製造用電解セルを構成し、過酸化水素を製造したところ、セル電圧は約2.4Vであり、出口から約560ppmの過酸化水素が電流効率約43%で得られた。
【0031】
【発明の効果】
本発明は、陽極と陰極を有し、陰極に酸素含有ガスと水を供給して過酸化水素を製造するための無隔膜型の電解セルにおいて、前記陽極及び陰極を、該陰極が下に位置するように、垂直方向に対して傾斜させたことを特徴とする過酸化水素製造用電解セルあり、傾斜角(θ)は10°≦θ≦90°であることが好ましく、30°≦θ≦90°であることがより好ましい。
電解セルを傾斜させるという簡単な操作で過酸化水素の生成効率が向上するため、コスト上昇を殆ど伴うことなく、高い電流効率で高濃度過酸化水素が製造できるようになる。
【0032】
傾斜角は大きくなるほど効果は大きくなる傾向があり、30°≦θ≦90°の範囲の傾斜角で顕著な効果が得られる。
陰極がガス拡散陰極であると、水素発生を抑制して電力量削減が達成できる。
又導電性ダイヤモンドを陽極として使用すると、長寿命化が達成できるとともに、酸化力のあるOHラジカルが生成して、洗浄力の高い電解液が得られる。
【図面の簡単な説明】
【図1】本発明による過酸化水素製造用電解セルの一実施形態例を示す縦断正面図。
【符号の説明】
1 電解セル
2 陽極
3 酸素ガス拡散陰極
4 溶液室
5 ガス室
6 陰極給電体
12 設置面
13 固定台
θ 傾斜角[0001]
BACKGROUND OF THE INVENTION
The present invention is a peroxidation that can improve the generation efficiency of hydrogen peroxide used in the treatment of water and wastewater for food, pharmaceuticals, pulp, semiconductor industry, etc. by devising the installation of electrolytic cells during operation The present invention relates to an electrolytic cell for hydrogen production.
[0002]
[Prior art]
There are concerns about the adverse effects on the environment and human bodies caused by air pollution caused by industrial and domestic waste and the deterioration of water quality in rivers and lakes, and technical measures for solving these problems are urgently needed. For example, in the treatment of drinking water, sewage and wastewater, chemicals such as chlorine have been introduced for decolorization, COD reduction and sterilization, but dangerous substances, that is, environmental hormones (exogenous endocrine disrupting substances), Chlorine injection tends to be prohibited due to the formation of carcinogenic substances.
In the incineration of waste, depending on the combustion conditions, carcinogenic substances (dioxins) are generated in the waste gas and affect the ecosystem, so safety is regarded as a problem. In order to solve this water treatment-related problem, a new water treatment method has been studied.
[0003]
The electrolysis method uses clean electrical energy to cause a desired electrochemical reaction. By controlling the chemical reaction on the cathode surface, that is, by supplying oxygen-containing gas and water to the cathode, hydrogen peroxide is generated. Conventionally, water treatment has been widely performed by decomposing a material to be treated using this. The electrolytic method makes it possible to produce hydrogen peroxide on-site, eliminates the shortcomings of hydrogen peroxide that it cannot be stored for a long time without a stabilizer, and is designed to prevent transportation risks and pollution. Is also unnecessary.
In the production of hydrogen peroxide by cathodic reduction, if waste water to be treated is used as the catholyte, the waste water directly contacts the electrode in addition to the oxidation treatment with the generated hydrogen peroxide solution, and anodizing or cathodic reduction treatment. Further, for example, the action of a superoxide anion (O 2 − ), which is a highly active one-electron reduction product, can be expected.
[0004]
[Problems to be solved by the invention]
The Journal of Applied Electrochemistry Vol. 25, 613- (1995) shows a comparison of various electrolytic generation methods for hydrogen peroxide. Since these generation methods can be efficiently obtained in an atmosphere of an alkaline aqueous solution, it is necessary to supply an alkaline component as a raw material, and an alkaline aqueous solution such as KOH or NaOH is essential.
Journal of Electrochemical Society Vol.141, 1174- (1994) proposes a method of electrolytically producing ozone and hydrogen peroxide at the anode and cathode, respectively, using pure water as the raw material and ion exchange membrane. Is not practical. As a similar method, it has been reported that the efficiency is increased by electrolysis under high pressure, but it is still impractical from the viewpoint of safety. In addition, a method for electrolytic production of hydrogen peroxide using palladium foil has been proposed, but the concentration of the generated hydrogen peroxide is low, and there is a limit in price.
[0005]
In an electrolytic cell for producing hydrogen peroxide, an electrolytic system in which a salt such as chloride, sulfate, nitrate, acetate or the like is added to soft water or ion-exchanged water as an electrolyte may be used. There was a problem that current efficiency in the diaphragm electrolysis cell was low and running cost was high.
As described above, in the production of hydrogen peroxide water by electrolysis, an electrolytic cell for producing hydrogen peroxide that can be used at a practical level by examining electrode materials and ion exchange membranes has been proposed. Satisfactory results have not been obtained for reasons such as the concentration of hydrogen oxide, safety, or the complexity of the apparatus.
In view of the problems of the prior art, an object of the present invention is to provide an electrolytic cell for producing hydrogen peroxide that can improve the production efficiency by simply modifying the apparatus.
[0006]
[Means for Solving the Problems]
The present invention relates to a diaphragm-type electrolytic cell having an anode and a cathode and supplying hydrogen-containing gas by supplying an oxygen-containing gas and water to the cathode, and the anode and the cathode are positioned below. Thus, an electrolytic cell for producing hydrogen peroxide, which is inclined with respect to the vertical direction.
[0007]
The present invention will be described in detail below.
The present inventors have made various studies on the installation of an electrolytic cell for producing hydrogen peroxide, and found that the production efficiency of hydrogen peroxide is increased only by tilting the electrolytic cell for producing hydrogen peroxide by a predetermined angle. The invention has been reached.
The inclination angle (θ) of the electrolytic cell in the present invention is 0 ° <θ ≦ 90 ° with respect to the vertical direction, preferably 10 ° ≦ θ ≦ 90 °, more preferably 30 ° ≦ θ ≦ 90 °. In this case, the inclination angle means the angle formed by the electrode surface and the vertical direction (the electrode surface and the inclination direction are perpendicular), and the angle formed by the both ends of the electrode and the vertical direction (the direction and inclination of the electrode surface). Does not mean that the directions match. However, the electrode surface does not always have to be perpendicular to the tilt direction, and may be deviated from the right angle. Although embodiments the cathode side of the anode was the bottom as an embodiment of the tilt Ru embodiment there to the bottom,
In the present invention, the cathode side is the lower side, and it is inclined at an inclination angle in the range of 0 ° <θ ≦ 90 °.
The inclined electrolytic cell may be fixed by a general method. For example, a relatively large V-shaped groove is formed on the installation surface and fixed to the V-shaped groove, or the electrolytic cell is placed on a fixed base. It may be fixed.
[0008]
The reason why the production efficiency of hydrogen peroxide is increased only by tilting the electrolytic cell for producing hydrogen peroxide by a predetermined angle according to the present invention is not clear, but can be estimated as follows.
The hydrogen peroxide generated at the cathode moves to the anode due to the stirring effect due to the gas rise generated at the anode and decomposes there, so that the generation efficiency decreases. In addition, since the generation efficiency of hydrogen peroxide is pH-dependent and tends to decrease when acidic, the generation efficiency of hydrogen peroxide decreases when the movement of protons generated at the anode to the cathode surface is promoted. If the electrolytic cell is tilted with the cathode facing downward, the gas generated at the anode moves along the anode plate, so that the ascending speed is reduced and the stirring effect is thought to be weakened. Accordingly, it is considered that the hydrogen peroxide generated at the cathode is quickly discharged without moving to the anode and being decomposed, and the generation efficiency of hydrogen peroxide is not lowered. Moreover, since the movement of protons generated at the anode is suppressed, the efficiency increases as a result.
[0009]
The average water pressure according to the total cathode by tilting the electrolytic cell decreases, excess solution component which penetrates into the gas cathode is reduced, the supply route of the source gas from the air chamber in place sufficiently It is estimated that it is secured.
[0010]
Hydrogen peroxide is produced by the following electrolytic reaction.
Anodic reaction: 2H 2 O → O 2 + 4H + + 4e
3H 2 O → O 3 + 6H + + 6e
2H 2 O → H 2 O 2 + 2H + + 2e
Cathodic reaction: O 2 + 2H + + 2e → H 2 O 2
[0011]
When chloride is dissolved, hypochlorous acid is generated as shown in the following formula.
2Cl − → Cl 2 + 2e
Cl 2 + H 2 O → HCl + HClO
In particular, when chloride is dissolved, gas treatment becomes indispensable, and when this oxidizing substance reaches the cathode, the cathode material is deteriorated. Therefore, it is desirable to use an electrode material that hardly generates hypochlorous acid.
When sulfate is added, persulfuric acid is generated according to the following formula depending on the electrode material.
2SO 4 2- → S 2 O 8 2- + 2e
When acetate is added, carbon dioxide is generated according to the following formula in addition to oxygen depending on the electrode material.
CH 3 COOH + 2H 2 O → 2CO 2 + 8H + + 8e
[0013]
In general, the anodic oxidation reaction during electrolysis of an aqueous solution is an electrolysis reaction that uses water as a raw material. However, if an electrode catalyst that is highly reactive to water discharge is used, the oxidation reaction of coexisting substances other than water Often does not progress easily. It is preferable that the decomposition product of impurities is finally converted into a low molecular weight safe substance such as carbon dioxide, water, hydrogen, oxygen, nitrogen, ammonia, and chloride ions. Care must be taken in setting the electrolysis conditions because it may be dangerous.
[0014]
The electrolytic cell used in the method of the present invention is not particularly limited as long as it is for hydrogen peroxide production. For example, the following electrolytic cell can be used.
The anode catalyst that can be used is preferably selected so that the oxygen generation reaction, which is an oxidation reaction of water, takes precedence over the generation of halogen gas or hypohalous acid by oxidation of halide ions, such as lead oxide, tin oxide, There are materials such as DSA (insoluble anode) made of noble metals such as platinum, iridium and ruthenium or oxides thereof, carbon, etc., and composite oxides including these and valve metal oxides such as titanium and tantalum can also be used. Furthermore, it is known that complex oxides such as manganese dioxide or manganese-vanadium, manganese-molybdenum, manganese-tungsten can be used, and halide ion discharge (halogen gas generation) is suppressed.
However, even if these expensive materials are used, they are consumed depending on the current density and energization time. In particular, graphite and amorphous carbon materials are significantly consumed.
[0015]
As an alternative anode material, there is conductive diamond, which is excellent in durability and is inactive against the decomposition reaction of water, from oxygen to ozone (anodic oxidation reaction) and hydrogen peroxide (cathodic reduction). Reaction). Therefore, when conductive diamond is used as the anode, a long life can be achieved, and OH radicals with oxidizing power are generated, and an electrolytic solution with high detergency can be obtained.
These electrode materials can be used as they are in the form of a plate, or on a plate having corrosion resistance such as titanium, niobium or tantalum, a wire mesh, a powder sintered body, a metal fiber sintered body, a thermal decomposition method, a resin fixing method, a composite It is formed to be 1 to 500 g / m 2 by plating or the like.
As the anode power supply body, it is desirable to use a valve metal such as titanium or an alloy thereof.
[0016]
As the cathode for generating hydrogen peroxide, a conventionally used cathode such as nickel or carbon may be used. However, it is desirable to use an oxygen gas diffusion cathode, which is more efficient for reducing oxygen gas. Hydrogen peroxide can be produced.
The oxygen gas electrode preferably uses a metal such as gold or a metal oxide, or carbon such as graphite or conductive diamond as a catalyst, and an organic material such as polyaniline or thiol (—SH-containing organic compound) is used on the surface thereof. It may be coated on the surface. These catalysts can be used as they are in the form of a plate or a porous material, or they can be adhered to a plate having corrosion resistance such as stainless steel, zirconium, silver, carbon, a wire mesh, a powder sintered body, and a metal fiber sintered body by a thermal decomposition method or a resin. It is supported at 1 to 1000 g / m 2 by a method, composite plating, or the like.
[0017]
As the cathode power supply, metals such as carbon, nickel, and titanium, and alloys and oxides thereof are preferably used as a porous body or a sheet, and hydrophobic so as to smoothly supply and take out the reaction product gas and electrolytic water. Alternatively, it is desirable to disperse and carry a hydrophilic material on the surface of the power feeding body.
If the conductivity of the catholyte is low, the cell voltage increases and the electrode life is shortened. In this case, an oxygen gas diffusion cathode can be used as an ion exchange membrane, including the purpose of preventing contamination by the gas electrode material. It is desirable to adopt a structure that is as close as possible (to narrow the width of the solution chamber).
The amount of oxygen supplied to the cathode should be about 1 to 2 times the theoretical amount, even if air or a commercially available cylinder is used as the oxygen source, or oxygen generated by water electrolysis in a separate electrolytic cell is used. Further, oxygen concentrated from air by a PSA (Pressure Swing Adsorption) apparatus may be used. In general, as the oxygen concentration increases, hydrogen peroxide can be produced at a higher current density.
[0018]
As an electrolytic solution to use, pure water, tap water, it can be used well water and industrial water, etc., they have small conductance, resistance loss occupying the cell voltage is not negligible. Also, if the conductivity is small, the effective electrode area is limited. In order to prevent these problems, it is desirable to impart electric conductivity to the electrolyte solution. Neutral salts such as sodium sulfate, potassium sulfate, sodium nitrate, sodium chloride and potassium chloride, or alkaline or acidic such as sodium hydroxide or sulfuric acid. A supporting electrolyte can be added.
[0019]
However, when chloride is used, hypochlorous acid is generated as described above, and this can be used as treated water in a separate line from hydrogen peroxide produced at the cathode. However effective chlorine component of the part flows to the cathode side, to oxidize the cathode catalyst and the substrate, Ru Kotogaa causing short service life of the resulting electrode.
In order to prevent this, it is preferable to use as the anode a catalyst in which electrolysis of water (oxygen generation) proceeds with priority even when chloride ions are present. Manganese dioxide (MnO 2 , Mn—W—O x , Mn—V—O x , Mn—Mo—O x ) electrodes can be used as electrode catalysts having excellent selectivity.
[0020]
On the other hand, the generation of an active oxidant can be suppressed by dissolving non-chloride salts such as sulfate, nitrate and acetate. When water such as tap water and well water is softened, hypochlorite may be generated from components such as sodium chloride and potassium chloride that are dissolved in trace amounts. When dissolved at a concentration more than twice, the production efficiency of hypochlorous acid is significantly reduced.
Since pure water does not dissolve chloride, this problem does not occur.
Carbonate is not desirable as a substance that imparts electrical conductivity as described above, because it precipitates as sodium carbonate or potassium carbonate on a cathode placed in an alkaline atmosphere. When a large amount of carbon dioxide is dissolved in the raw water, it is preferably removed in advance.
[0021]
For processing targets that contain a large amount of polyvalent metal ions such as calcium and magnesium, hydroxide may precipitate on the cathode surface and the reaction may be hindered. desirable.
The electrolysis conditions are preferably a liquid temperature of 5 to 60 ° C. and a current density of 0.1 to 100 A / dm 2. In order to obtain particularly stable and high performance, a liquid temperature of 20 to 40 ° C. and a current density of 1 to 20 A / dm 2 are preferable. preferable. The distance between the electrodes should be small in order to reduce the resistance loss, but is preferably 1 to 20 mm in order to reduce the pressure loss of the pump for supplying the electrolyzed water and keep the pressure distribution uniform.
As the electrolytic cell material, it is preferable to use glass lining material, carbon, titanium, stainless steel, PTFE resin, etc. having excellent corrosion resistance from the viewpoints of durability and stability of hydrogen peroxide. The concentration of the generated hydrogen peroxide can be controlled to 10 to 10,000 ppm (1% by weight) by adjusting the amount of water and the current density.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a preferred electrolytic cell that can be used for the production of hydrogen peroxide solution according to the present invention will be described with reference to FIG.
FIG. 1 is a longitudinal front view showing an embodiment of an electrolytic cell for producing hydrogen peroxide according to the present invention.
[0023]
The electrolysis cell 1 contains a porous plate-like anode 2 and an oxygen gas diffusion cathode 3, and the oxygen gas diffusion cathode 3 divides the electrolysis cell 1 into a solution chamber 4 and a gas chamber 5, and the oxygen gas A porous cathode power supply 6 is installed in close contact with the gas chamber side of the diffusion cathode 3.
An electrolyte inlet 7 and an electrolyte outlet 8 are respectively formed on the bottom plate and the top plate on the solution chamber 4 side, and an oxygen-containing gas inlet 9 and an oxygen-containing gas are respectively provided on the upper and lower portions of the back plate on the gas chamber 5 side. An outlet 10 is formed.
[0024]
The electrolysis cell 1 having such a configuration is fixed on the base 11, and the oxygen gas diffusion cathode 3 is positioned below the anode 2 at an inclination angle (θ) on the
Thus, an electrolytic solution such as tap water in which the supporting electrolyte is dissolved is supplied from the electrolytic solution inlet 7 of the electrolytic cell 1 installed at an inclination angle (θ), and air or oxygen-enriched air is supplied from the oxygen-containing gas inlet 9. When energized between the two electrodes while being introduced, oxygen is reduced at the oxygen gas diffusion cathode 3 to generate hydrogen peroxide, which is taken out from the outlet 8 as a hydrogen peroxide-containing solution.
[0025]
〔Example〕
Next, although the Example of manufacture of the hydrogen peroxide solution by this invention is described, this Example does not limit this invention.
[0026]
Example 1
An iridium oxide catalyst was supported on a titanium porous plate by a thermal decomposition method so as to be 10 g / m 2 to form an anode.
Carbon powder (CABOT, Vulcan XC-72) is used as a catalyst, and this is mixed with PTFE resin, coated on a 0.5mm thick carbon sheet, and then fired at 330 ° C to form an oxygen gas diffusion cathode. The diffusion cathode was integrated with a porous SUS plate (thickness 3 mm) as a cathode power supply. A non-diaphragm electrolysis cell having a distance between the electrodes of 5 mm, a height of 20 cm, and an effective electrolysis area of 125 cm 2 was constructed, and the cathode was open to the atmosphere.
The electrolytic cell was inclined at an inclination angle (θ) = 82 ° so that the cathode was positioned below the anode. Tap water was softened with an ion exchange resin, and an aqueous solution having a conductivity of 10 mS / cm dissolved in 0.056 M sodium sulfate was supplied at 10 ml / min from the electrode chamber inlet. When the liquid temperature was 20 ° C. and a current of 1.25 A was passed, the cell voltage was about 2.4 V, and about 1000 ppm of hydrogen peroxide from the outlet was obtained with a current efficiency of about 74%.
[0029]
Example 2
An electrolytic cell for producing hydrogen peroxide was constructed in the same manner as in Example 1 except that the electrolytic cell was inclined at an inclination angle (θ) = 10 ° so that the cathode was positioned below the anode, and the peroxide was oxidized. When hydrogen was produced, the cell voltage was about 2.4 V, and about 610 ppm of hydrogen peroxide was obtained from the outlet with a current efficiency of about 45%.
[0030]
Comparative Example 1
An electrolytic cell for producing hydrogen peroxide was constructed in the same manner as in Example 1 except that the electrolytic cell was made upright [inclination angle (θ) = 0 °]. Hydrogen peroxide was produced, and the cell voltage was about 2.4. V and about 560 ppm hydrogen peroxide from the outlet was obtained with a current efficiency of about 43%.
[0031]
【The invention's effect】
The present invention relates to a diaphragm-type electrolysis cell having an anode and a cathode and supplying hydrogen-containing gas by supplying an oxygen-containing gas and water to the cathode, and the anode and the cathode are positioned below. Thus, there is an electrolytic cell for producing hydrogen peroxide characterized by being inclined with respect to the vertical direction, and the inclination angle (θ) is preferably 10 ° ≦ θ ≦ 90 °, and 30 ° ≦ θ ≦. More preferably, it is 90 °.
Since the production efficiency of hydrogen peroxide is improved by a simple operation of tilting the electrolysis cell, high concentration hydrogen peroxide can be produced with high current efficiency with almost no increase in cost.
[0032]
The inclination angle is effective tends to increase as the increase, Ru remarkable effect is obtained at an inclination angle in a range of 30 ° ≦ θ ≦ 90 °.
If the cathode is a gas diffusion cathode, hydrogen generation can be suppressed and a reduction in power consumption can be achieved.
Further, when conductive diamond is used as an anode, a long life can be achieved, and OH radicals with oxidizing power are generated, and an electrolytic solution with high cleaning power can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal front view showing an embodiment of an electrolytic cell for producing hydrogen peroxide according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolysis cell 2 Anode 3 Oxygen gas diffusion cathode 4 Solution chamber 5 Gas chamber 6 Cathode feeder
12 Installation surface
13 Fixed base θ Inclination angle
Claims (6)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002161295A JP3875922B2 (en) | 2002-06-03 | 2002-06-03 | Electrolysis cell for hydrogen peroxide production |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002161295A JP3875922B2 (en) | 2002-06-03 | 2002-06-03 | Electrolysis cell for hydrogen peroxide production |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2004010904A JP2004010904A (en) | 2004-01-15 |
| JP3875922B2 true JP3875922B2 (en) | 2007-01-31 |
Family
ID=30430409
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002161295A Expired - Fee Related JP3875922B2 (en) | 2002-06-03 | 2002-06-03 | Electrolysis cell for hydrogen peroxide production |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3875922B2 (en) |
Families Citing this family (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2005014887A1 (en) * | 2003-08-08 | 2005-02-17 | Ebara Corporation | Submerged electrode and material thereof |
| JP5254531B2 (en) * | 2006-03-09 | 2013-08-07 | 東海旅客鉄道株式会社 | Ozone mist generator |
| US7604719B2 (en) * | 2006-05-25 | 2009-10-20 | Uop Llc | In situ generation of hydrogen peroxide |
| JP5444186B2 (en) * | 2010-10-20 | 2014-03-19 | 株式会社東芝 | Hydrogen peroxide water generator and sterilization system |
| JP5980373B1 (en) * | 2015-04-28 | 2016-08-31 | シャープ株式会社 | Electrolyzer |
| JP2017018897A (en) * | 2015-07-10 | 2017-01-26 | シャープ株式会社 | Electrolytic water generator and washing machine |
| JP6037419B1 (en) * | 2016-06-15 | 2016-12-07 | イノベーティブ・デザイン&テクノロジー株式会社 | Electrolyzed water generating device and electrolyzed water generating and storing device |
| CN109498825B (en) * | 2019-01-04 | 2023-07-25 | 厦门理工学院 | A household disinfection device |
| JP7232158B2 (en) * | 2019-09-05 | 2023-03-02 | デノラ・ペルメレック株式会社 | Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution |
| CN113774409B (en) * | 2021-09-24 | 2023-12-19 | 浙江清越科技有限公司 | Standing type flat hydrogen peroxide electrochemical generator |
-
2002
- 2002-06-03 JP JP2002161295A patent/JP3875922B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2004010904A (en) | 2004-01-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6767447B2 (en) | Electrolytic cell for hydrogen peroxide production and process for producing hydrogen peroxide | |
| JP3913923B2 (en) | Water treatment method and water treatment apparatus | |
| JP4116726B2 (en) | Electrochemical treatment method and apparatus | |
| JP3689541B2 (en) | Seawater electrolyzer | |
| EP0636051B1 (en) | Apparatus comprising a water ionizing electrode and process of use of said apparatus | |
| JP3859358B2 (en) | Electrolyzed water production equipment | |
| EP2035599B1 (en) | Electrode, method of manufacture and use thereof | |
| JP2000104189A (en) | Production of hydrogen peroxide and electrolytic cell for production | |
| JP3875922B2 (en) | Electrolysis cell for hydrogen peroxide production | |
| JP3420820B2 (en) | Method and apparatus for producing electrolytic acidic water | |
| US6761815B2 (en) | Process for the production of hydrogen peroxide solution | |
| JP3561130B2 (en) | Electrolyzer for hydrogen peroxide production | |
| JPH101794A (en) | Electrolyzer and electrolysis method | |
| JP2001020089A (en) | Protective method of alkali chloride electrolytic cell and protective device therefor | |
| JPH05255882A (en) | Oxygen cathode protection method | |
| JPH08296076A (en) | Production of aqueous solution of hydrogen peroxide and device therefor | |
| JP3844303B2 (en) | Method for electrolytic synthesis of percarbonate compound and electrolytic synthesis cell | |
| JP3875808B2 (en) | Electrode for producing hydrogen peroxide and method for producing the same | |
| JPH09195079A (en) | Electrolytic cell for producing electrolyzed water | |
| JPH09220573A (en) | Electrolytic method using two-chamber type electrolytic cell | |
| US20080296170A1 (en) | Method and Apparatus for Synthesizing Hypochlorous Acid | |
| JPH09217185A (en) | Three-chamber based electrolytic cell | |
| JPH11350178A (en) | Electrochemical cell for producing hydrogen peroxide | |
| JPH11333457A (en) | Method for producing electrolyzed water | |
| JPH04200724A (en) | Reduction of nitrogen oxide |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050315 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060417 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060420 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060616 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061019 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061027 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091102 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101102 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111102 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121102 Year of fee payment: 6 |
|
| LAPS | Cancellation because of no payment of annual fees |