JP3895662B2 - 操舵装置 - Google Patents
操舵装置 Download PDFInfo
- Publication number
- JP3895662B2 JP3895662B2 JP2002310325A JP2002310325A JP3895662B2 JP 3895662 B2 JP3895662 B2 JP 3895662B2 JP 2002310325 A JP2002310325 A JP 2002310325A JP 2002310325 A JP2002310325 A JP 2002310325A JP 3895662 B2 JP3895662 B2 JP 3895662B2
- Authority
- JP
- Japan
- Prior art keywords
- motor
- timer
- drive circuit
- switching
- steering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/10—Structural association with clutches, brakes, gears, pulleys or mechanical starters
- H02K7/116—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
- H02K7/1163—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion
- H02K7/1166—Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion comprising worm and worm-wheel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/04—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
- B62D5/0457—Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
- B62D5/046—Controlling the motor
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Power Steering Mechanism (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Description
【発明の属する技術分野】
本発明は操舵装置に関し、特に、ステアリング系に少なくとも1つのモータを設け、モータを駆動する駆動回路を2つ備えた操舵装置に関する。
【0002】
【従来の技術】
操舵装置として電動パワーステアリング装置やステアバイワイヤシステムなどがある。例えば電動パワーステアリング装置は、自動車を運転中、運転者がステアリングホイール(操舵ハンドル)を操作するとき、モータを連動させて操舵力を補助する支援装置である。電動パワーステアリング装置では、運転者のハンドル操作によりステアリング軸に生じる操舵トルクを検出する操舵トルク検出部からの操舵トルク信号、および、車速を検出する車速検出部からの車速信号を利用し、モータ制御部(ECU)の制御動作に基づいて補助操舵力を出力する支援用モータを駆動制御し、運転者の手動による操舵力を軽減している。モータ制御部の制御動作では、上記の操舵トルク信号と車速信号に基づきモータに通電するモータ電流の目標電流値を設定し、この目標電流値に係る信号(目標電流信号)と、モータに実際に流れるモータ電流を検出するモータ電流検出部からフィードバックされるモータ電流信号との差を求め、この偏差信号に対して比例・積分の補償処理(PI制御)を行い、モータを駆動制御する信号を発生させている。
【0003】
従来では電動パワーステアリング装置は主に小型車用に開発されてきたが、特に近年、省燃費や車両制御範囲の拡大等の観点から大型車(2000ccクラス以上の乗用車等)にも装備する必要性が生じてきた。大型車に電動パワーステアリング装置を適用する場合には、車両重量が大きいため、1つのモータを用いる構成では、大きな補助力を出力する大型のモータが要求される。このため、モータのサイズが大きくなり、実車への取付けレイアウト性(搭載性)が悪化し、さらに規格品以外の専用の大型モータとそのモータ制御駆動部が必要となり、製作コストが上昇することになる。そこで、従来、上記のような大型車の電動パワーステアリング装置に適した構成として、2つの支援用モータを用いた構成が提案されている(例えば特許文献1〜3参照)。
【0004】
【特許文献1】
特表2001−525292号公報
【特許文献2】
特開2001ー260908号公報
【特許文献3】
特開2001−151125号公報
【0005】
また、以上のごとく電動パワーステアリング装置では、操舵トルク検出部等のセンサ系、CPUや駆動回路系等を含むECU、このECUから支援用モータへモータ電流を供給する電流通電系から成る電子的駆動制御系統を備えている。
【0006】
さらに、従来の電動パワーステアリング装置では、ECUおよびこれに関連する部分に設けられたモータ駆動のための電子的駆動制御系統で故障が生じた場合、フェールセーフ制御に基づき、運転席表示パネル等で警告灯を点灯させると共に、操舵力アシスト制御が完全に行えないときには通常の手動操作によるステアリング系の構成に戻すようにしていた。
【0007】
近年では、上記のような故障が生じた場合であっても、電動パワーステアリング装置の作動状態が継続して維持され、運転者の手動操舵力のアシストを行えることが望まれている。そこで、モータ制御装置の電子的駆動制御系統等で故障が発生したとしても、手動操舵力のアシストを中断せず、継続できるように2つの駆動回路を備えた冗長系を有する操舵装置も考えられる。
【0008】
【発明が解決しようとする課題】
2つのモータを用いた操舵装置や冗長系を有する操舵装置のような2つの駆動回路を備えた電動パワーステアリング装置では次のような問題が提起される。
【0009】
モータ駆動は駆動回路のFETによるPWM(pulse width modulation)制御が今では一般的であるが、このPWM制御において、大電流・高速スイッチング程スイッチングによりスイッチングノイズおよび磁歪音が発生する。このため、当該電動パワーステアリング装置を装備した車両の商品性が低減することになる。
【0010】
従って、モータを駆動する駆動回路を2つ備えて成る電動パワーステアリング装置の場合には、2つの駆動回路のそれぞれがPWM制御におけるスイッチングノイズおよび磁歪音を与えるので、上記のスイッチングノイズおよび磁歪音はいっそう顕著になる。
【0011】
上記の問題は2つの駆動回路を備える操舵装置に一般的に生じる問題である。また上記の問題は、ブラシレスモータおよびブラシ付きモータのいずれでも生じる問題である。
【0012】
本発明の目的は、上記課題に鑑み、2つの駆動回路を備えて成る電動パワーステアリング装置等のごとき操舵装置において、大電流・高速スイッチング化するモータの駆動に対して生じるスイッチングノイズおよび磁歪音を低減する操舵装置を提供することにある。
【0013】
【課題を解決するための手段および作用】
本発明に係る操舵装置は上記目的を達成するために次の通り構成される。
【0014】
本発明に係る操舵装置(請求項1に対応)は、操舵輪を操舵する方向に力を発生させる2つのモータを有する操舵装置において、操舵装置は、第1のモータをPWM制御する第1の駆動回路および第1の駆動回路を制御する第1のマイクロコンピュータと、第2のモータをPWM制御する第2の駆動回路および第2の駆動回路を制御する第2のマイクロコンピュータを有しており、第1、第2のマイクロコンピュータは、第1の駆動回路をPWM制御するパルスを形成するための基準三角波の周期を決める第1のタイマーと、第2の駆動回路をPWM制御するパルスを形成するための基準三角波の周期を決める第2のタイマーとをそれぞれ備え、第1のタイマーと第2のタイマーは、同一の周波数にし、第1のタイマーあるいは第2のタイマーにオフセットを与えて位相を変えることで、第1の駆動回路のスイッチングタイミングと第2の駆動回路のスイッチングタイミングとを異ならせたことで特徴づけられる。
【0017】
本発明の操舵装置よれば、操舵輪を操舵する方向に力を発生させる2つのモータを有する操舵装置において、操舵装置は、第1のモータをPWM制御する第1の駆動回路および第1の駆動回路を制御する第1のマイクロコンピュータと、第2のモータをPWM制御する第2の駆動回路および第2の駆動回路を制御する第2のマイクロコンピュータを有しており、第1、第2のマイクロコンピュータは、第1の駆動回路をPWM制御するパルスを形成するための基準三角波の周期を決める第1のタイマーと、第2の駆動回路をPWM制御するパルスを形成するための基準三角波の周期を決める第2のタイマーとをそれぞれ備え、第1のタイマーと第2のタイマーは、同一の周波数にし、第1のタイマーあるいは第2のタイマーにオフセットを与えて位相を変えることで、第1の駆動回路のスイッチングタイミングと第2の駆動回路のスイッチングタイミングとを異ならせたため、2つの駆動回路におけるスイッチング素子のPWMスイッチングタイミングが同一タイミングでスイッチしないように工夫してあるので、これにより、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。
【0018】
【発明の実施の形態】
以下に、本発明の好適な実施形態を添付図面に基づいて説明する。
【0019】
なお以下の実施形態で説明される構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値および各構成要素の組成(材質)については例示にすぎない。従って本発明は、以下に説明される実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。
【0020】
図1〜図5を参照して本発明に係る操舵装置の一例として電動パワーステアリング装置の代表的構成を説明する。図1は2モータ形式の電動パワーステアリング装置の基本的な構成部分(2モータのうち1つのモータのみを示している)を概念的に示す図であり、図2と図3はギヤボックスの内部構造の一例を示す断面図であり、図4と図5は2つのモータおよびギヤボックスを備えたラック軸の実際の装置の外観レイアウトを示す図である。
【0021】
電動パワーステアリング装置10は例えば乗用車両に装備される。電動パワーステアリング装置10は、ステアリングホイール11に連結されるステアリング軸12等に対して補助用の操舵トルクを与えるように構成されている。ステアリング軸12の上端はステアリングホイール11に連結され、下端にはピニオンギヤ(またはピニオン)13が取り付けられている。ここで、ステアリング軸12の下端のピニオンギヤ13を取りつけた部分をピニオン軸12aと呼ぶこととする。実際には、上側のステアリング軸12と下側のピニオン軸12aとは図示しない自在継手で連結されている。ピニオンギヤ13に対して、これに噛み合うラックギヤ14aを設けたラック軸14が配置されている。ピニオンギヤ13とラックギヤ14aによってラック・ピニオン機構15が形成される。
【0022】
ピニオン軸12とラック軸14の間で形成されるラック・ピニオン機構15は第1のギアボックス24A内に収容されている。ギヤボックス24Aの外観は図4に示される。
【0023】
ラック軸14の両端にはタイロッド16が設けられ、各タイロッド16の外側端には前輪17が取り付けられる。前輪17は車両の転舵輪として機能する。
【0024】
上記ピニオン軸12に対しては、さらに、動力伝達機構18を介して例えばブラシレスモータのモータ19Aが付設されている。動力伝達機構18は、モータ19の出力軸(ウォーム軸)19A−1に設けられたウォームギヤと、ピニオン軸12aに固定されたウォームホイールとによって構成される。動力伝達機構18の具体的構成は後述される。動力伝達機構18はギヤボックス24Aの中に組み込まれている。
【0025】
また図1に示すように、ステアリング軸12には操舵トルク検出部20が設けられている。操舵トルク検出部20は、運転者がステアリングホイール11を操作することによって生じる操舵トルクをステアリング軸12に加えたとき、ステアリング軸12に加わる操舵トルクを検出する。操舵トルク検出部20もギヤボックス24A内に組み込まれている。また21は車両の車速を検出する車速検出部であり、22はマイクロコンピュータ等を利用したコンピュータシステムで構成される制御装置(ECU)である。制御装置22は、操舵トルク検出部20から出力される操舵トルク信号Tと車速検出部21から出力される車速信号V等を取り入れ、操舵トルクや車速等に係る情報に基づいて、モータ19A等の回転動作を制御する駆動制御信号SG1を出力する。またモータ19A等にはモータ回転角検出部23が付設されている。モータ回転角検出部23の回転角(電気角)に係る信号SG2は制御装置22に入力されている。
【0026】
本実施形態に係る電動パワーステアリング装置では、モータ19Aと同一性能を有する他のモータ(図4等の19B)が付設され、2モータ形式で構成されている。他のモータ19Bは図4と図5に示されている。モータ19Bは、モータ19Aと同じ構成を有し、制御装置22によって制御される。
【0027】
図2と図3を参照してギヤボックス24Aと動力伝達機構18等の内部構造を具体的装置の一例として詳述する。図2は、モータ19Aを図1中左側から見てピニオン軸12aの軸線に沿って一部を断面とした側面図である。図3は図2中のA−A線断面図である。
【0028】
図2において、上記ギヤボックス24Aを形成するハウジング24aにおいてピニオン軸12aは2つの軸受け部41,42によって回転自在に支持されている。ハウジング24aの内部にはラック・ピニオン機構15と動力伝達機構(減速機)18が収納され、さらに上部には操舵トルク検出部20が付設されている。ハウジング24aの上部開口はリッド43で塞がれ、リッド43はボルト44で固定されている。ピニオン軸12aの下端部に設けられたピニオンギヤ13は軸受け部41,42の間に位置している。ラック軸14は、ラックガイド45で案内され、かつ圧縮されたスプリング46で付勢された当て部材47でピニオンギヤ13側へ押え付けられている。動力伝達機構18は、モータ19Aの出力軸19A−1に結合される伝動軸(ウォーム軸)48に固定されたウォームギヤ49とピニオン軸12aに固定されたウォームホイール50とによって形成される。上記の操舵トルク検出部20は、ピニオン軸12aの周りに配置される操舵トルク検出センサ20aと、操舵トルク検出センサ20aから出力される検出信号を電気的に処理する電子回路部20bとから構成されている。操舵トルク検出センサ20aはリッド43に取り付けられている。
【0029】
図3ではモータ19Aおよび制御装置22の内部の具体的構成が明示される。モータ19Aは、回転軸51に固定された永久磁石により成る回転子52と、回転子52の周囲に配置された固定子54とを備える。固定子54は固定子巻線53を備える。回転軸51は、2つの軸受け部55,56によって回転自在に支持される。回転軸51の先部はモータ19Aの出力軸19a(図1中の出力軸19A−1に対応)となっている。モータ19Aの出力軸19aは、トルクリミッタ57を介して、回転動力が伝達されるように伝動軸48に結合されている。伝動軸48には前述の通りウォームギヤ49が固定され、これに噛み合うウォームホイール50が配置されている。回転軸51の後端部には、モータ19Aの回転子52の回転角(回転位置)を検出する前述のモータ回転角検出部(位置検出部)23が設けられる。モータ回転角検出部23は、回転軸51に固定された回転子23aと、この回転子23aの回転角を磁気的な作用を利用して検出する検出素子23bとから構成される。モータ回転角検出部23には例えばレゾルバが用いられる。固定子54の固定子巻線53には3相交流であるモータ電流が供給される。以上のモータ19Aの構成要素は、モータケース58の内部に配置されている。
【0030】
制御装置22は、モータ19Aのモータケース58の外側に取り付けられた制御ボックス61の内部の回路基板62上に電子回路要素を取り付けて成る電子回路と制御ボックス61の外部に設けられた1チップのマイクロコンピュータおよびその周辺回路から成るECUで構成される。電子回路要素としてはプリドライブ回路、FETブリッジ回路、インバータ回路等である。制御装置22からモータ19Aの固定子巻線53に対してモータ電流(駆動制御信号SG1)が供給される。またモータ回転角検出部23で検出された回転角信号SG2は制御装置22に入力される。
【0031】
上記の機械的な構成に基づいて、モータ19Aは、操舵トルクを補助する回転力(トルク)を出力し、この回転力を、動力伝達機構18を経由して、ピニオン軸12aすなわちステアリング軸12に与える。
【0032】
上記のラック軸14には、図4と図5に示すごとく、前述の第1のギヤボックス24Aに加えて、さらに第2のギヤボックス24Bが設けられている。ギヤボックス24Bには、第1のギヤボックス24Aと同様に、ラック軸14に形成されたラックギヤと、このラックギヤに噛み合うピニオンギヤと、このピニオンギヤが固定されかつ回転自在に支持されたピニオン軸とが内蔵されている。上記の第2のギヤボックス24Bには動力伝達機構18を介して他のモータ19Bが付設されている。モータ19Bは、上記のモータ19Aと全く同一の構造および性能を有するモータである。モータ19Bの出力軸は前述したように伝動軸(ウォーム軸)を有し、この伝動軸にはウォームギヤが設けられ、他方、上記ピニオン軸には、ウォームギヤに噛み合うウォームホイールが固定されている。以上の動力伝達機構18の構成は前述した通りである。ギヤボックス24Bの構成は基本的にギヤボックス24Aと同じ構成である。モータ19Bが駆動されると、出力軸、ウォームギヤ、ウォームホイール、ピニオン軸、ピニオンギヤ、ラックギヤを介して駆動力がラック軸14に伝達される。
【0033】
以上のごとく本実施形態に係る電動パワーステアリング装置10は、同一性能を有する2つのモータ19A,19Bを支援用モータとして備え、手動操舵力のアシストを行うように構成されている。
【0034】
上記において電動パワーステアリング装置10は、図4では通常のステアリング系の装置構成に対し、操舵トルク検出部20、車速検出部21、1つのECUを備えた制御装置22、第1と第2の2つのギヤボックス24A,24B、2つのモータ19A,19B、2つの動力伝達機構18を付設することによって構成されている。図5では通常のステアリング系の装置構成に対し、操舵トルク検出部20、車速検出部21、モータ19A,19Bにそれぞれ1つずつのECUを備えた制御装置22A,22B、第1と第2の2つのギヤボックス24A,24B、2つのモータ19A,19B、2つの動力伝達機構18を付設することによって構成されている。
【0035】
上記構成において、運転者がステアリングホイール11を操作して自動車の走行運転中に走行方向の操舵を行うとき、ステアリング軸12に加えられた操舵トルクに基づく回転力は下部のピニオン軸12aとラック・ピニオン機構15を介してラック軸14の軸方向の直線運動に変換され、さらにタイロッド16を介して前輪17の走行方向を変化(転舵)させようとする。このときにおいて、同時に、ピニオン軸12aに付設された操舵トルク検出部20は、ステアリングホイール11での運転者による操舵に応じた操舵トルクを検出して電気的な操舵トルク信号Tに変換し、この操舵トルク信号Tを制御装置22あるいは制御装置22A,22Bへ出力する。また車速検出部21は、車両の車速を検出して車速信号Vに変換し、この車速信号Vを制御装置22あるいは制御装置22A,22Bへ出力する。制御装置22あるいは制御装置22A,22Bは、操舵トルク信号Tおよび車速信号Vに基づいて2つのモータ19A,19Bを駆動するためのモータ電流を発生する。このモータ電流によって駆動されるモータ19A,19Bは、それぞれ、各動力伝達機構18およびギヤボックス24A,24Bを介して補助の操舵トルクをラック軸14に作用させる。以上のごとく、2つのモータ19A,19Bを駆動することにより、ステアリングホイール11に加えられる運転者の操舵力を軽減する。
【0036】
次に、前述の図4および図5と、図6および図7を参照して第1の実施形態の特徴的構成を説明する。図6は、ECUが1つで駆動回路が2つの場合での制御装置のマイクロコンピュータ70の構成を示し、図7は、ECUが2つで駆動回路が2つの場合の制御装置のマイクロコンピュータ80,90の構成を示す。
【0037】
図4および図5に示すごとくラック軸14には軸方向の左右の2箇所にギヤボックス24A,24Bが設けられている。ギヤボックス24Aはステアリング軸12の下部のピニオン軸12aにつながる第1のギヤボックスである。ギヤボックス24Bは2モータ式の電動パワーステアリング装置10において第2のモータ19Bを付設するための第2のギヤボックスである。ギヤボックス24A,24Bのそれぞれには、動力伝達機構18を介してモータ19A,19Bが付設されている。両端部に転舵輪(前輪17)を備えたラック軸14には、2つのモータ19A,19Bの回転駆動力によって補助操舵トルクが与えられるようになっている。モータ19Aは図6で示す駆動回路71により駆動され、モータ19Bは図6で示す駆動回路72により駆動される。
【0038】
図6において、マイクロコンピュータ70はCPU73、ROM74、RAM75、入力部76、出力部77、タイマーT1,T2,T3,T4より構成される。ROM74は制御プログラムを記憶するメモリであり、RAM75はプログラム実行時に一時的に使用するメモリである。また、ROM74には、正弦波を作るためのプログラムを記憶している。入力部76は操舵トルク信号Tと車速信号Vを入力し、出力部77は駆動回路71,72を介してモータを駆動するためのPWM制御のためのパルスを出力する。タイマーT1は駆動回路71のPWM制御をするためのパルスを形成するための基準三角波の周期を決めるためのタイム計測用のカウンタである。タイマーT3は駆動回路72のPWM制御するためのパルスを形成するための基準三角波の周期を決めるためのタイム計測用のカウンタである。
【0039】
図6に示すPWM制御のパルスを形成するための基準三角波の周期を決めるタイマーT1とタイマーT3の設定は同一の値ではなく、互いに異なるように設定する。例えば、タイマーT1は基準三角波の周波数が18KHzになるように設定し、タイマーT3は基準三角波の周波数が20kHzになるように設定する。
【0040】
具体的には、基準三角波の周波数を同一にしないことで、スイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0041】
タイマーT1とタイマーT3を予め上記のように設定しておくと、設定されたデータによって決められた周期の三角波を発生させることができ、図8の(1a),(2a)に示す基準三角波76a,77aが生じる。図8の(1a),(2a)において、横軸は時間を示し、縦軸は電圧を示す。それらの基準三角波76aと77aと電圧指令である目標正弦波データとコンパレータで比較することにより、スイッチング信号が作り出される。それらのスイッチング信号により2つの駆動回路のスイッチング素子が作動するとき、駆動回路71でのスイッチングノイズとモータでの磁歪音、駆動回路72でのスイッチングノイズとモータでの磁歪音が生じる。基準三角波の周波数、すなわち、タイマーT1とタイマーT3に関して前述した関係を与えたため、基準三角波76aの波形と基準三角波77aの波形が同一ではないので、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0042】
図7においては、モータ19Aは駆動回路81により駆動され、モータ19Bは駆動回路82により駆動される。この構成ではマイクロコンピュータ80とマイクロコンピュータ90を備え、マイクロコンピュータ80はCPU83、ROM84、RAM85、入力部86、出力部88、タイマーT11,T12より構成される。ROM84は制御プログラムを記憶するメモリであり、RAM85はプログラム実行時に一時的に使用するメモリである。また、ROM84には、正弦波を作るためのプログラムを記憶している。入力部86は操舵トルク信号Tと車速信号Vを入力し、出力部88は駆動回路81を介してモータ19Aを駆動するためのPWM制御のためのパルスを出力する。タイマーT11は駆動回路81のPWM制御をするためのパルスを形成するための基準三角波の周期を決めるためのタイム計測用のカウンタである。
【0043】
マイクロコンピュータ90はCPU93、ROM94、RAM95、入力部96、出力部98、タイマーT13,T14より構成される。ROM94は制御プログラムを記憶するメモリであり、RAM95はプログラム実行時に一時的に使用するメモリである。また、ROM94には、正弦波を作るためのプログラムを記憶している。入力部96は操舵トルク信号Tと車速信号Vを入力し、出力部98は駆動回路82を介してモータ19Bを駆動するためのPWM制御のためのパルスを出力する。タイマーT13は駆動回路82のPWM制御をするためのパルスを形成するための基準三角波の周期を決めるためのタイム計測用のカウンタである。
【0044】
図7に示すPWM制御のパルスを形成するための基準三角波の周期を決めるタイマーT11とタイマーT13の設定は同一の値ではなく、互いに異なるように設定する。例えば、タイマーT11は基準三角波の周波数が18KHzになるように設定し、タイマーT13は基準三角波の周波数が20kHzになるように設定する。
【0045】
具体的には、基準三角波の周波数を同一にしないことで、スイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0046】
タイマーT11とタイマーT13を予め上記のように設定しておくと、設定されたデータによって決められた周期の三角波を発生させることができ、図8の(1a),(2a)に示す基準三角波76a,77aと同様の基準三角波が生じる。それらの基準三角波76a,77aと電圧指令である正弦波データをコンパレータで比較することにより、スイッチング信号が作り出される。それらのスイッチング信号により2つの駆動回路のスイッチング素子が作動するとき、駆動回路81でのスイッチングノイズとモータ19Aでの磁歪音、駆動回路82でのスイッチングノイズとモータ19Bでの磁歪音が生じる。基準三角波の周波数、すなわち、タイマーT11とタイマーT13に関して前述した関係を与えたため、基準三角波76aの波形と基準三角波77aの波形が同一ではないので、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0047】
次にモータ19A,19Bがブラシ付きモータであり、制御装置がブラシ付きモータ用のものである場合について説明する。この場合、制御装置内の駆動回路やマイクロコンピュータ等は、ブラシ付きモータ用であるが、その構成は類似したものであるのでブラシレスモータの場合で用いた図6と図7を用いて説明する。
【0048】
図6において、マイクロコンピュータ70はCPU73、ROM74、RAM75、入力部76、出力部77、タイマーT1,T2,T3,T4より構成される。ROM74は制御プログラムを記憶するメモリであり、RAM75はプログラム実行時に一時的に使用するメモリである。入力部76は操舵トルク信号Tと車速信号Vを入力し、出力部77は駆動回路71,72を介してモータを駆動するためのPWM制御のためのパルスを出力する。タイマーT1は駆動回路71のPWM制御をするための周期を決めるためのタイム計測用のカウンタであり、タイマーT2は駆動回路71のPWM制御をするためのパルス幅を決めるためのタイム計測用のカウンタである。タイマーT3は駆動回路72のPWM制御するための周期を決めるためのタイム計測用のカウンタであり、タイマーT4は駆動回路72のPWM制御をするためのパルス幅を決めるためのタイム計測用のカウンタである。
【0049】
図6に示すPWM制御のパルスの周期を決めるタイマーT1とタイマーT3の設定は同一の値ではなく、互いに異なるように設定する。例えば、タイマーT1はPWM周波数が18KHzになるように設定し、タイマーT3はPWM周波数が20kHzになるように設定する。
【0050】
具体的には、PWM制御信号の制御周波数を同一にしないことで、PWMスイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0051】
タイマーT1とタイマーT3を予め上記のように設定しておくと、図8の(1b),(2b)に示す信号76b,77bが生じる。図8の(1b),(2b)において、横軸は時間を示し、縦軸は電圧を示す。従って、タイマーT2とタイマーT4の設定がなされパルス幅が決定し、2つの駆動回路のスイッチング素子が作動するとき、駆動回路71でのスイッチングノイズとモータでの磁歪音、駆動回路72でのスイッチングノイズとモータでの磁歪音が生じる。PWM制御の周波数、すなわち、タイマーT1とタイマーT3に関して前述した関係を与えたため、信号76bの波形と信号77bの波形のように、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0052】
図7においては、モータ19Aは駆動回路81により駆動され、モータ19Bは駆動回路82により駆動される。この構成ではマイクロコンピュータ80とマイクロコンピュータ90を備え、マイクロコンピュータ80はCPU83、ROM84、RAM85、入力部86、出力部88、タイマーT11,T12より構成される。ROM84は制御プログラムを記憶するメモリであり、RAM85はプログラム実行時に一時的に使用するメモリである。入力部86は操舵トルク信号Tと車速信号Vを入力し、出力部88は駆動回路81を介してモータ19Aを駆動するためのPWM制御のためのパルスを出力する。タイマーT11は駆動回路81のPWM制御をするための周期を決めるためのタイム計測用のカウンタであり、タイマーT12は駆動回路81のPWM制御をするためのパルス幅を決めるためのタイム計測用のカウンタである。
【0053】
マイクロコンピュータ90はCPU93、ROM94、RAM95、入力部96、出力部98、タイマーT13,T14より構成される。ROM94は制御プログラムを記憶するメモリであり、RAM95はプログラム実行時に一時的に使用するメモリである。入力部96は操舵トルク信号Tと車速信号Vを入力し、出力部98は駆動回路82を介してモータ19Bを駆動するためのPWM制御のためのパルスを出力する。タイマーT13は駆動回路82のPWM制御をするための周期を決めるためのタイム計測用のカウンタであり、タイマーT14は駆動回路82のPWM制御をするためのパルス幅を決めるためのタイム計測用のカウンタである。
【0054】
図7に示すPWM制御のパルスの周期を決めるタイマーT11とタイマーT13の設定は同一の値ではなく、互いに異なるように設定する。例えば、タイマーT11はPWM周波数が18KHzになるように設定し、タイマーT13はPWM周波数が20kHzになるように設定する。
【0055】
具体的には、PWM制御信号の制御周波数を同一にしないことで、PWMスイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0056】
タイマーT11とタイマーT13を予め上記のように設定しておくと、図8の(1b),(2b)に示す信号76b,77bと同様の信号が生じる。従って、タイマーT12とタイマーT14の設定がなされパルス幅が決定し、2つの駆動回路のスイッチング素子が作動するとき、駆動回路81でのスイッチングノイズとモータ19Aでの磁歪音、駆動回路82でのスイッチングノイズとモータ19Bでの磁歪音が生じる。PWM制御の周波数、すなわち、タイマーT11とタイマーT13に関して前述した関係を与えたため、信号76の波形と信号77の波形のように、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0057】
次に、前述の図4および図5と、図6および図7を参照して第2の実施形態の特徴的構成を説明する。まず、ブラシレスモータの場合を説明する。図6は、ECUが1つで駆動回路が2つの場合での制御装置のマイクロコンピュータの構成を示し、図7は、ECUが2つで駆動回路が2つの場合の制御装置のマイクロコンピュータの構成を示す。第2の実施形態では、マイクロコンピュータの構成は第1の実施形態と同様である。
【0058】
図6に示すPWM制御のパルスの周期を決めるタイマーT1とタイマーT3の設定は同一の値にし、タイマーT1あるいはタイマーT3にオフセットを与えて設定する。例えば、タイマーT1は基準三角波の周波数が20KHzになるように設定し、タイマーT3は基準三角波の周波数が20kHzになるように設定し、タイマーT3にオフセットを与える。
【0059】
具体的には、基準三角波の周波数を同一にし位相を変えることで、スイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0060】
タイマーT1とタイマーT3を予め上記のように設定しておくと、図9の(1a),(2a)に示す基準三角波100a,101aが生じる。図9の(1a),(2a)において、横軸は時間を示し、縦軸は電圧を示す。それらの基準三角波100a,101aと電圧指令である正弦波データをコンパレータで比較することにより、スイッチング信号が作り出される。それらのスイッチング信号により2つの駆動回路のスイッチング素子が作動するとき、駆動回路71でのスイッチングノイズとモータ19Aでの磁歪音、駆動回路72でのスイッチングノイズとモータ19Bでの磁歪音が生じる。基準三角波の周波数、すなわち、タイマーT1とタイマーT3に関して前述した関係を与えたため、基準三角波100aの波形と基準三角波101aの波形がずれているので、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0061】
図7において、マイクロコンピュータ80とマイクロコンピュータ90で同期をとり、PWM制御のパルスを形成するための基準三角波の周期を決めるタイマーT11とタイマーT13の設定は同一の値にし、タイマーT11あるいはタイマーT13にオフセットを与えて設定する。例えば、タイマーT11は基準三角波の周波数が20KHzになるように設定し、タイマーT13は基準三角波の周波数が20kHzになるように設定し、タイマーT13にオフセットを与える。
【0062】
具体的には、基準三角波の周波数を同一にし位相を変えることで、スイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0063】
タイマーT11とタイマーT13を予め上記のように設定しておくと、図9の(1a),(2a)に示す基準三角波100a,101aと同様の基準三角波が生じる。それらの基準三角波100a,101aと電圧指令である正弦波データをコンパレータで比較することにより、スイッチング信号が作り出される。それらのスイッチング信号により2つの駆動回路のスイッチング素子が作動するとき、駆動回路81でのスイッチングノイズとモータ19Aでの磁歪音、駆動回路82でのスイッチングノイズとモータ19Bでの磁歪音が生じる。基準三角波の周波数、すなわち、タイマーT11とタイマーT13に関して前述した関係を与えたため、基準三角波100aの波形と基準三角波101aの波形がずれているので、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0064】
次にモータ19A,19Bがブラシ付きモータであり、制御装置がブラシ付きモータ用のものである場合について説明する。この場合、制御装置内の駆動回路やマイクロコンピュータ等は、ブラシ付きモータ用であるが、その構成は類似したものであるのでブラシレスモータの場合で用いた図6と図7を用いて説明する。
【0065】
図6に示すPWM制御のパルスの周期を決めるタイマーT1とタイマーT3の設定は同一の値にし、タイマーT1あるいはタイマーT3にオフセットを与えて設定する。例えば、タイマーT1はPWM周波数が20KHzになるように設定し、タイマーT2はPWM周波数が20kHzになるように設定し、タイマーT2にオフセットを与える。
【0066】
具体的には、PWM制御信号の周波数を同一にし位相を変えることで、PWMスイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0067】
タイマーT1とタイマーT3を予め上記のように設定しておくと、図9の(1b),(2b)に示す信号100b,101bが生じる。図9の(1b),(2b)において、横軸は時間を示し、縦軸は電圧を示す。従って、タイマーT2とタイマーT4の設定がなされパルス幅が決定し、2つの駆動回路のスイッチング素子が作動するとき、駆動回路71でのスイッチングノイズとモータ19Aでの磁歪音、駆動回路72でのスイッチングノイズとモータ19Bでの磁歪音が生じる。PWM制御の周波数、すなわち、タイマーT1とタイマーT3に関して前述した関係を与えたため、信号100bの波形と信号101bの波形のように、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0068】
図7において、マイクロコンピュータ80とマイクロコンピュータ90で同期をとり、PWM制御のパルスの周期を決めるタイマーT11とタイマーT13の設定は同一の値にし、タイマーT11あるいはタイマーT13にオフセットを与えて設定する。例えば、タイマーT11はPWM周波数が20KHzになるように設定し、タイマーT13はPWM周波数が20kHzになるように設定し、タイマーT13にオフセットを与える。
【0069】
具体的には、PWM制御信号の制御周波数を同一にし位相を変えることで、PWMスイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0070】
タイマーT11とタイマーT13を予め上記のように設定しておくと、図9の(1b),(2b)に示す信号100b,101bと同様の信号が生じる。従って、タイマーT12とタイマーT14の設定がなされパルス幅が決定し、2つの駆動回路のスイッチング素子が作動するとき、駆動回路81でのスイッチングノイズとモータ19Aでの磁歪音、駆動回路82でのスイッチングノイズとモータ19Bでの磁歪音が生じる。PWM制御の周波数、すなわち、タイマーT11とタイマーT13に関して前述した関係を与えたため、信号100bの波形と信号101bの波形のように、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0071】
次に、冗長系を有する操舵装置での制御装置(ECU)22の具体的構成について、図10を参照して本発明の第3実施形態を説明する。
【0072】
操舵トルク検出部20の検出信号出力端子は両側端子20a,20bと中央端子20cを有する。両側端子20a,20bと中央端子20cの各端子は2つずつ設けられている。操舵トルク検出部20の両側端子20a,20bと中央端子20cと制御装置22との間には2経路の電気接続部141a,141bが設けられる。この電機接続部はハーネスやコイル接続部を含む部分である。制御装置22の入力側には、電気接続部141a,141bに対応してトルク信号入力部142a,142bが設けられている。
【0073】
制御装置22の内部には3つのCPU(1〜3)143a,143b,143cが備えられる。これらのCPUには、それぞれ2つのタイマーT100a,T101aとT100b,T101bとT100c,T101cが設けられている。上記の2つのトルク信号入力部142a,142bのそれぞれは3つの出力端子を有し、2つのトルク信号入力部142a,142bの間で対応する出力端子は同じ信号(SG11,SG12,SG13)を出力する。3つのCPU143a〜143cのそれぞれには、2つのトルク信号入力部142a,142bのそれぞれから同じ信号が2経路で入力される。また3つのCPU143a〜143cは任意の組合せで2つずつ結線されており、3つのCPUで多数決が行えるように構成されている。従って、例えば操舵トルク検出部20からの電機接続部141a,141b等で故障が生じた場合には多数決の判断手法で当該故障に対する判定を行うように構成されている。また上記のCPU143a〜143cによって前述した各種の機能要素がソフト的に実現されている。目標電流決定部は好ましくは2つ形成され、2つの目標電流決定部で上記の2経路からの操舵トルク信号のそれぞれが入力され、各目標電流決定部が目標電流を決定するようになっている。
【0074】
制御装置22の後段側には、2つのモータドライブ(駆動)回路(1,2)144a,144bと、2つの昇圧回路(1,2)145a,145bと、2つのF/Sリレー(1,2)146a,146bと、2つのパワーリレー(1,2)147a,147bが設けられている。これらの2つの要素は同一の構成および作用を有している。モータドライブ回路144aはCPU143aに対応して両者の間には禁止回路(1)148aが接続され、モータドライブ回路144bはCPU143cに対応して両者の間には禁止回路(3)148cが接続される。これにより、モータ19の駆動制御について、制御装置22内で、CPU143aと禁止回路148aとモータドライブ回路144aによって第1のモータ駆動回路部(第1経路)が作られ、CPU143cと禁止回路148bとモータドライブ回路144bによって第2のモータ駆動回路部(第2経路)が作られる。
【0075】
CPU143bから出力される信号は禁止回路(2)148cに与えられ、さらに禁止回路148cの出力信号は上記禁止回路148cに与えられる。またCPU143aから出力される信号によって禁止回路148bに与えられる。
【0076】
モータ(M)19はブラシ付きモータである。このモータ19では、一対のブラシが2組(149a,149b)設けられている。上記の第1のモータ駆動回路部(第1経路)のモータドライブ回路144aから出力されるモータ電流IM 1はブラシ149aを通してモータ19に供給される。上記の第2のモータ駆動回路部(第2経路)のモータドライブ回路144bから出力されるモータ電流IM2はブラシ149bを通してモータ19に供給される。従って、第1と第2のモータ駆動回路に応じて、ブラシ付きモータ10においても2組のブラシ対が設けられる。また上記モータ電流IM1,IM2のそれぞれを供給するできるように、モータハーネス等の電気接続部は2経路で形成されている。
【0077】
バッテリ150は制御装置22に電力を供給するものである。バッテリ150からの給電経路は2つの経路151a,151bが形成される。第1の給電経路151aでは、第1の通電路としてはパワーリレー147aおよび昇圧回路145aを経由して、第2の通電路としては直接に、第3の通電路としてはパワーリレー147aを経由して、それぞれ、モータドライブ回路144aに電力が供給される。また第2の給電経路151bでも同様に、第1の通電路としてはパワーリレー147bおよび昇圧回路145bを経由して、第2の通電路としては直接に、第3の通電路としてはパワーリレー147bを経由して、それぞれ、モータドライブ回路144bに電力が供給される。
【0078】
モータドライブ回路144aから出力されたモータ電流IM1は電流センサ152aで検出され、CPU143a〜143cのそれぞれにフィードバックされる。またモータドライブ回路144bから出力されたモータ電流IM2は電流センサ152bで検出され、CPU143a〜143cのそれぞれにフィードバックされる。
【0079】
上記の第3実施形態に係る制御装置22の構成では、操舵トルク検出部20から制御装置22への電気接続部、モータドライブ回路144a,144bを含むモータ駆動回路部、バッテリ150からモータドライブ回路144a,144bへの電力供給路、モータ19のブラシ対(149a,149b)のそれぞれを並列的な接続関係に基づいて2経路(二重)にしたため、いずれかの箇所で故障が起きたとしても残りの経路で電動パワーステアリング装置を作動させることができ、冗長系を備えることにより電動パワーステアリング装置のシステムダウンを防ぐことができる。
【0080】
通常、並列に接続関係で設けられた2経路のモータドライブ回路144a,144bはいずれか一方を動作状態にモータ駆動制御を行い、故障が生じたときに他方のモータドライブ回路を動作させるようにする。また2経路のモータドライブ回路144a,144bを同時に動作させて両方でモータ駆動制御を行い、一方で故障が生じたときには、残りのモータドライブ回路でモータ駆動制御を行うように構成することもできる。前述した禁止回路148a,148b,148cは、制御装置22の内部において、モータ駆動制御に使用する回路系統を選択するための手段である。
【0081】
図10において、タイマーT100a,T100b,T100cは駆動回路のPWM制御をするための周期を決めるためのタイム計測用のカウンタであり、タイマーT101a,T101b,T101cは駆動回路のPWM制御をするためのパルス幅を決めるためのタイム計測用のカウンタである。
【0082】
図10に示すPWM制御のパルスの周期を決めるタイマーT100a,T100b,T100cの設定はそれぞれ同一の値ではなく、互いに異なるように設定する。例えば、タイマーT100aはPWM周波数が18KHzになるように設定し、タイマーT100bはPWM周波数が20kHzになるように設定し、タイマーT100cはPWM周波数が22kHzになるように設定する。
【0083】
具体的には、PWM制御信号の制御周波数を同一にしないことで、PWMスイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0084】
タイマーT100a,T100b,T100cを予め上記のように設定しておくと、図11の(1),(2),(3)に示す信号200a,200b,200cが生じる。図11の(1),(2),(3)において、横軸は時間を示し、縦軸は電圧を示す。従って、タイマーT101a,T101b,T101cの設定がなされパルス幅が決定し、2つの駆動回路のスイッチング素子が作動するとき、駆動回路144aでのスイッチングノイズとモータでの磁歪音、駆動回路144bでのスイッチングノイズとモータでの磁歪音が生じる。PWM制御の周波数、すなわち、タイマーT100a,T100b,T100cに関して前述した関係を与えたため、信号200aの波形と信号200bの波形と信号200cのように、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0085】
また、図10に示すPWM制御のパルスの周期を決めるタイマーT100a,T100b,T100cの設定は同一の値にし、タイマーT100bとタイマーT100cに異なる値のオフセットを与えて設定する。例えば、タイマーT100aはPWM周波数が20KHzになるように設定し、タイマーT100bはPWM周波数が20kHzになるように設定し、タイマーT00bにオフセットを与える。また、タイマーT100cはPWM周波数が20kHzになるように設定し、タイマーT100cにタイマーT100bとは異なるオフセットを与える。
【0086】
具体的には、PWM制御信号の周波数を同一にし位相を変えることで、PWMスイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0087】
タイマーT100a,T100b,T100cを予め上記のように設定しておくと、図12の(1),(2),(3)に示す信号300a,300b,300cが生じる。図12の(1),(2),(3)において、横軸は時間を示し、縦軸は電圧を示す。従って、タイマーT101a,101b,101cの設定がなされパルス幅が決定し、2つの駆動回路のスイッチング素子が作動するとき、駆動回路でのスイッチングノイズとモータでの磁歪音、駆動回路でのスイッチングノイズとモータでの磁歪音が生じる。PWM制御の周波数、すなわち、タイマーT100a,T100b,T100cに関して前述した関係を与えたため、信号300aの波形と信号300bの波形と信号300cの波形のように、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0088】
次に図13を参照して、本発明の第4実施形態に係る制御装置22の具体的構成を説明する。図13において、図10で説明した要素と実質的に同一の要素には同一の符号を付し、その説明を省略する。そこで図示されたブラシレスモータ19はステータコイルとして2つの三相用の巻線(19x−1,19y−1,19z−1),(19x−2,19y−2,19z−2)を備えている。第1経路のモータドライブ回路144aから出力される三相のモータ電流は巻線19x−1,19y−1,19z−1に供給され、他方、第2経路のモータドライブ回路144bから出力される三相のモータ電流は巻線19x−2,19y−2,19z−2に供給される。2つのモータドライブ回路144a,144bのそれぞれからブラシレスモータ19へのモータ電流の供給は同時に行われる。
【0089】
上記のブラシレスモータ19に対して、制御装置22におけるモータドライブ回路144a,144bは三相交流発生用の回路として構成されている。従ってモータドライブ回路144a,144bは三相交流出力用の3つの出力端子を有する。第1のモータ駆動回路部(第1経路)であるモータドライブ回路144aの3つの出力端子の任意の2つの組合せに基づき、ブラシレスモータ19における巻線(19x−1,19y−1),(19y−1,19z−1),(19z−1,19x−1)と巻線(19x−2,19y−2),(19y−2,19z−2),(19z−2,19x−2)の通電ルートにモータ電流が供給される。同様にして第2のモータ駆動回路部(第2経路)であるモータドライブ回路44bの3つの出力端子の任意の2つの組合せに基づき、ブラシレスモータ19における巻線(19x−1,19y−1),(19y−1,19z−1),(19z−1,19x−1)と巻線(19x−2,19y−2),(19y−2,19z−2),(19z−2,19x−2)の通電ルートにモータ電流が供給される。モータドライブ回路144aとモータドライブ回路144bの各動作の選択については、第3実施形態で説明した通り、適宜に設定される。
【0090】
上記のブラシレスモータ19および三相交流出力用のモータドライブ回路144a,144bの変更に応じて、モータ電流を検出する電流センサ(52a−1〜52a−3,52b−1〜52b−3)およびF/Sリレー(46a−1〜46a−3,46b−1〜46b−3)も3つずつ設けられることになる。
【0091】
上記の第4実施形態に係る制御装置22の構成では、アシストモータがブラシレスモータ19である場合において、操舵トルク検出部20から制御装置22への電気接続部、三相のモータ電流出力用のモータドライブ回路144a,144bを含むモータ駆動回路部、バッテリ150からモータドライブ回路144a,144bへの電力供給路のそれぞれを並列的な接続関係に基づいて2経路(二重)にしたため、いずれかの箇所で故障が起きたとしても残りの経路で電動パワーステアリング装置を作動させることができ、冗長系を備えることにより電動パワーステアリング装置のシステムダウンを防ぐことができる。
【0092】
図13に示すPWM制御のパルスを形成するための基準三角波の周期を決めるタイマーT100a,T100b,T100cの設定はそれぞれ同一の値ではなく、互いに異なるように設定する。例えば、タイマーT100aは基準三角波の周波数が18KHzになるように設定し、タイマーT100bは基準三角波の周波数が20kHzになるように設定し、タイマーT100cは基準三角波の周波数が22kHzになるように設定する。
【0093】
具体的には、基準三角波の周波数を同一にしないことで、スイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0094】
タイマーT100a,T100b,T100cを予め上記のように設定しておくと、図14の(1),(2),(3)に示す基準三角波400a,400b,400cが生じる。それらの基準三角波400a,400b,400cと電圧指令である正弦波データをコンパレータで比較することによりスイッチング信号が作り出される。それらのスイッチング信号により2つの駆動回路のスイッチング素子が作動するとき、駆動回路144aでのスイッチングノイズとモータでの磁歪音、駆動回路144bでのスイッチングノイズとモータでの磁歪音が生じる。基準三角波の周波数、すなわち、タイマーT100a,T100b,T100cに関して前述した関係を与えたため、基準三角波400aの波形と基準三角波400bの波形と基準三角波400cのように、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0095】
また、図13に示すPWM制御のパルスを形成するための基準三角波の周期を決めるタイマーT100a,T100b,T100cの設定は同一の値にし、タイマーT100bとタイマーT100cに異なる値のオフセットを与えて設定する。例えば、タイマーT100aは基準三角波の周波数が20KHzになるように設定し、タイマーT100bは基準三角波の周波数が20kHzになるように設定し、タイマーT100bにオフセットを与える。また、タイマーT100cは基準三角波の周波数が20kHzになるように設定し、タイマーT100cにタイマーT100bとは異なるオフセットを与える。
【0096】
具体的には、基準三角波の周波数を同一にし位相を変えることで、スイッチングタイミングが同一タイミングでスイッチしないように設定されればよい。
【0097】
タイマーT100a,T100b,T100cを予め上記のように設定しておくと、設定されたデータによって決められた周期の三角波を発生させることができ、図15の(1),(2),(3)に示す基準三角波500a,500b,500cと同様の信号が生じる。それらの基準三角波500a,500b,500cと電圧指令である正弦波データをコンパレータで比較することによりスイッチング信号が作り出される。それらのスイッチング信号により2つの駆動回路のスイッチング素子が作動するとき、駆動回路でのスイッチングノイズとモータでの磁歪音、駆動回路でのスイッチングノイズとモータでの磁歪音が生じる。基準三角波の周波数、すなわち、タイマーT100a,T100b,T100cに関して前述した関係を与えたため、基準三角波500aの波形と基準三角波500bの波形と基準三角波500cの波形がずれているので、スイッチングのタイミングが同一タイミングとなっていない。このため、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。この結果、スイッチングノイズと磁歪音を低減することができる。
【0098】
【発明の効果】
以上の説明で明らかなように本発明によれば、操舵輪を操舵する方向に力を発生させる少なくとも1つのモータを有する操舵装置において、操舵装置はモータをPWM制御する2つの駆動回路を有しており、駆動回路中のスイッチング素子をスイッチングする制御周波数を2つの駆動回路で互いに異ならせるため、2つの駆動回路におけるスイッチング素子のスイッチングタイミングが同一タイミングでスイッチしないように工夫してあるので、これにより、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。
【0099】
また、操舵装置はモータをPWM制御する2つの駆動回路を有しており、駆動回路中のスイッチング素子をスイッチングするパルス信号の位相を前記2つの駆動回路で互いに異ならせるため、2つの駆動回路におけるスイッチング素子のスイッチングタイミングが同一タイミングでスイッチしないように工夫してあるので、これにより、スイッチングにより発生するノイズレベルのピークを抑え分散させることができる。
【図面の簡単な説明】
【図1】本発明に係る2モータ形式の電動パワーステアリング装置の基本的構成(2モータのうち1つだけを示す)を模式的に示した構成図である。
【図2】図1中に示したギヤボックスの内部構造を示す縦断面図である。
【図3】図2におけるA−A線断面図である。
【図4】2つのモータおよびギヤボックスを備えたラック軸の実際の装置の外観レイアウトを示す外観斜視図である。
【図5】2つのモータおよびギヤボックスを備えたラック軸の実際の装置の外観レイアウトを示す外観斜視図である。
【図6】マイクロコンピュータのブロック構成図である。
【図7】マイクロコンピュータのブロック構成図である。
【図8】基準三角波とPWM信号を示す図である。
【図9】基準三角波とPWM信号を示す図である。
【図10】操舵装置の制御装置を示す構成図である。
【図11】基準三角波とPWM信号を示す図である。
【図12】基準三角波とPWM信号を示す図である。
【図13】操舵装置の制御装置を示す構成図である。
【図14】基準三角波を示す図である。
【図15】基準三角波を示す図である。
【符号の説明】
10 電動パワーステアリング装置
11 ステアリングホイール
12 ステアリング軸
12a ピニオン軸
13 ピニオンギヤ
14 ラック軸
14a,14b ラックギヤ
15 ラック・ピニオン機構
19A,19B モータ
22 制御装置
24A,24B ギヤボックス
113 ピニオンギヤ
Claims (1)
- 操舵輪を操舵する方向に力を発生させる2つのモータを有する操舵装置において、
前記操舵装置は、第1のモータをPWM制御する第1の駆動回路および第1の駆動回路を制御する第1のマイクロコンピュータと、第2のモータをPWM制御する第2の駆動回路および第2の駆動回路を制御する第2のマイクロコンピュータを有しており、
前記第1、第2のマイクロコンピュータは、前記第1の駆動回路をPWM制御するパルスを形成するための基準三角波の周期を決める第1のタイマーと、前記第2の駆動回路をPWM制御するパルスを形成するための基準三角波の周期を決める第2のタイマーとをそれぞれ備え、
前記第1のタイマーと前記第2のタイマーは、同一の周波数にし、前記第1のタイマーあるいは前記第2のタイマーにオフセットを与えて位相を変えることで、前記第1の駆動回路のスイッチングタイミングと前記第2の駆動回路のスイッチングタイミングとを異ならせたことを特徴とする操舵装置。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002310325A JP3895662B2 (ja) | 2002-10-24 | 2002-10-24 | 操舵装置 |
| US10/691,725 US7154244B2 (en) | 2002-10-24 | 2003-10-22 | Steering apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002310325A JP3895662B2 (ja) | 2002-10-24 | 2002-10-24 | 操舵装置 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2004142622A JP2004142622A (ja) | 2004-05-20 |
| JP3895662B2 true JP3895662B2 (ja) | 2007-03-22 |
Family
ID=32105291
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002310325A Expired - Fee Related JP3895662B2 (ja) | 2002-10-24 | 2002-10-24 | 操舵装置 |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US7154244B2 (ja) |
| JP (1) | JP3895662B2 (ja) |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100583354B1 (ko) | 2005-06-14 | 2006-05-26 | 현대모비스 주식회사 | 자동차의 스티어 바이 와이어 시스템 |
| JP5194528B2 (ja) * | 2007-04-06 | 2013-05-08 | 日本精工株式会社 | 動力伝達装置 |
| KR100861871B1 (ko) * | 2007-09-17 | 2008-10-06 | 현대모비스 주식회사 | 기어 박스 타입 능동 전륜 조향 장치 |
| JP5309535B2 (ja) * | 2007-11-16 | 2013-10-09 | 株式会社ジェイテクト | 電動パワーステアリング装置 |
| US8084972B2 (en) * | 2007-11-16 | 2011-12-27 | Honeywell International Inc. | Dual lane control of a permanent magnet brushless motor using non-trapezoidal commutation control |
| DE102010050818B4 (de) * | 2010-11-09 | 2021-07-01 | Volkswagen Ag | Kraftfahrzeug mit elektrischer Hilfskraftlenkung |
| US8963453B2 (en) * | 2010-12-16 | 2015-02-24 | Rockwell Automation Technologies, Inc. | Method and apparatus for synchronization of pulse width modulation |
| US9154060B2 (en) * | 2011-07-04 | 2015-10-06 | Honda Motor Co., Ltd. | Vehicle driving device |
| KR101452559B1 (ko) * | 2011-12-06 | 2014-10-21 | 주식회사 만도 | 피니언 센서 어셈블리와 피니언 센서 커버 어셈블리 및 이를 구비한 전동식 동력 보조 조향장치 |
| JP5915369B2 (ja) * | 2012-05-16 | 2016-05-11 | 日産自動車株式会社 | 車両の操舵制御装置及び操舵制御方法 |
| DE102013202253A1 (de) * | 2013-02-12 | 2014-08-14 | Paravan Gmbh | Schaltung zur Steuerung eines Beschleunigungs-, Brems- und Lenksystems eines Fahrzeugs |
| WO2014148304A1 (ja) * | 2013-03-18 | 2014-09-25 | 本田技研工業株式会社 | 車両用操舵装置 |
| WO2017068636A1 (ja) * | 2015-10-20 | 2017-04-27 | 三菱電機株式会社 | 一体型電動パワーステアリング装置、及びその製造方法 |
| US10093348B2 (en) * | 2016-06-17 | 2018-10-09 | Steering Solutions Ip Holding Corporation | Electrical power steering with two controllers and closed-loop integral action |
| JP6275211B2 (ja) | 2016-07-29 | 2018-02-07 | 三菱電機株式会社 | 電動パワーステアリング装置 |
| US10800447B2 (en) * | 2018-08-24 | 2020-10-13 | Ford Global Technologies, Llc | Steering system with multiple controllers |
| US10848093B2 (en) | 2018-08-30 | 2020-11-24 | Steering Solutions Ip Holding Corporation | Electrical power steering with two controllers using uniform steering angle control |
| JP2022082473A (ja) * | 2019-03-27 | 2022-06-02 | オムロン株式会社 | サーボdc給電システム |
| DE102019107901A1 (de) * | 2019-03-27 | 2020-10-01 | Lock Antriebstechnik Gmbh | Getriebemotor |
Family Cites Families (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4471273A (en) * | 1983-01-05 | 1984-09-11 | Towmotor Corporation | Dual-motor control apparatus |
| JPH0288498U (ja) * | 1988-12-19 | 1990-07-12 | ||
| JPH0490970A (ja) * | 1990-08-02 | 1992-03-24 | Rhythm Corp | 車両の操舵倍力装置 |
| DE4192435C1 (de) * | 1990-10-03 | 2002-08-29 | Hitachi Ltd | Steuerung für Elektrofahrzeug |
| US5162707A (en) * | 1990-10-24 | 1992-11-10 | Fmc Corporation | Induction motor propulsion system for powering and steering vehicles |
| US5453930A (en) * | 1991-02-08 | 1995-09-26 | Nissan Motor Co., Ltd. | Drive system for electric automobiles |
| US5142468A (en) * | 1991-05-16 | 1992-08-25 | General Atomics | Power conditioning system for use with two PWM inverters and at least one other load |
| CA2044825C (en) * | 1991-06-18 | 2004-05-18 | Marc A. Paradis | Full-range, high efficiency liquid chiller |
| EP0564661B1 (en) * | 1991-11-05 | 1997-09-03 | Seiko Epson Corporation | Micro-robot |
| US5859510A (en) * | 1993-02-17 | 1999-01-12 | Pitney Bowes Inc. | Commutation board for brushless motor |
| US5451852A (en) * | 1993-08-02 | 1995-09-19 | Gusakov; Ignaty | Control system having signal tracking window filters |
| US5506484A (en) * | 1994-06-10 | 1996-04-09 | Westinghouse Electric Corp. | Digital pulse width modulator with integrated test and control |
| DE69523408T2 (de) * | 1994-11-04 | 2002-06-20 | Trw Inc., Lyndhurst | Verfahren und Vorrichtung zur Steuerung eines Elektromotors |
| JP3099699B2 (ja) * | 1995-05-19 | 2000-10-16 | トヨタ自動車株式会社 | 動力伝達装置及びその制御方法 |
| JP3063592B2 (ja) * | 1995-05-19 | 2000-07-12 | トヨタ自動車株式会社 | 動力伝達装置およびその制御方法 |
| US5691898A (en) * | 1995-09-27 | 1997-11-25 | Immersion Human Interface Corp. | Safe and low cost computer peripherals with force feedback for consumer applications |
| US5818193A (en) * | 1995-10-17 | 1998-10-06 | Unisia Jecs Corporation | Step motor driving method and apparatus for performing PWM control to change a step drive signal on-duty ratio |
| JP3390332B2 (ja) * | 1997-08-01 | 2003-03-24 | 本田技研工業株式会社 | 車両の電動機駆動装置 |
| JP3688437B2 (ja) * | 1997-03-21 | 2005-08-31 | 本田技研工業株式会社 | 車両の電動機駆動装置 |
| DE19754258A1 (de) | 1997-12-06 | 1999-06-10 | Bosch Gmbh Robert | Verfahren zur Betätigung eines Steer-by-Wire-Lenkantriebs |
| WO1999065138A1 (fr) * | 1998-06-09 | 1999-12-16 | Nsk Ltd. | Dispositif de commande d'un moteur |
| US6762745B1 (en) * | 1999-05-10 | 2004-07-13 | Immersion Corporation | Actuator control providing linear and continuous force output |
| JP4029522B2 (ja) * | 1999-07-02 | 2008-01-09 | 日本精工株式会社 | 電動パワーステアリング装置の制御装置 |
| DE29915559U1 (de) * | 1999-09-03 | 2000-01-13 | TRW Fahrwerksysteme GmbH & Co KG, 40547 Düsseldorf | Lenksystem für ein Fahrzeug |
| JP2001151125A (ja) | 1999-11-22 | 2001-06-05 | Showa Corp | 電動パワーステアリング装置 |
| FR2803958B1 (fr) * | 2000-01-18 | 2002-03-29 | Sagem | Moteur a commutation electronique |
| JP3729015B2 (ja) | 2000-03-21 | 2005-12-21 | 日産自動車株式会社 | 車両の操舵装置 |
| JP2001354154A (ja) * | 2000-04-13 | 2001-12-25 | Honda Motor Co Ltd | 後輪転舵装置 |
| JP3700547B2 (ja) * | 2000-06-29 | 2005-09-28 | 三菱電機株式会社 | 電動式パワーステアリング装置 |
| JP2002037098A (ja) * | 2000-07-21 | 2002-02-06 | Honda Motor Co Ltd | 電動パワーステアリング装置 |
| US6794836B2 (en) * | 2001-02-06 | 2004-09-21 | Invacare Corporation | Electric motor drive controller with voltage control circuit operative in different modes |
| JP2002354871A (ja) * | 2001-05-25 | 2002-12-06 | Mitsubishi Electric Corp | 電動パワーステアリング装置 |
| US6776252B1 (en) * | 2003-01-24 | 2004-08-17 | Visteon Global Technologies, Inc. | Steer-by-wire system and method for actuating road wheels of a vehicle |
-
2002
- 2002-10-24 JP JP2002310325A patent/JP3895662B2/ja not_active Expired - Fee Related
-
2003
- 2003-10-22 US US10/691,725 patent/US7154244B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| US7154244B2 (en) | 2006-12-26 |
| JP2004142622A (ja) | 2004-05-20 |
| US20040080295A1 (en) | 2004-04-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3895662B2 (ja) | 操舵装置 | |
| CN103001554B (zh) | 旋转电机控制装置和转向控制系统 | |
| EP1375300B1 (en) | Steering system for vehicle | |
| EP1293413B1 (en) | Motor-driven power steering apparatus | |
| EP1512609B1 (en) | Steering control device and steering control method of motor vehicle | |
| JP4061980B2 (ja) | 電動パワーステアリング装置 | |
| US11081981B2 (en) | Rotating machine controller | |
| JP7063323B2 (ja) | モータおよび電動パワーステアリング装置 | |
| JP7120216B2 (ja) | モータおよび電動パワーステアリング装置 | |
| JP2009035155A (ja) | 電動パワーステアリング装置 | |
| JP2020040437A (ja) | パワーステアリング装置 | |
| WO2007043283A1 (ja) | 電動パワーステアリング装置 | |
| CN102015416B (zh) | 操作包括电动机的技术装备的装置和方法 | |
| JP2014221600A (ja) | 電動パワーステアリング装置 | |
| JP7235032B2 (ja) | 電力変換装置、駆動装置およびパワーステアリング装置 | |
| JP2004080939A (ja) | 冗長系を有する操舵装置 | |
| JP7064700B2 (ja) | モータ制御装置 | |
| WO2019159836A1 (ja) | 電力変換装置、駆動装置およびパワーステアリング装置 | |
| JP2006230193A (ja) | 電動パワーステアリング装置 | |
| JP6380268B2 (ja) | 電動モータ制御装置 | |
| JP4390176B2 (ja) | 冗長系を有する操舵装置 | |
| JP2004058800A (ja) | 電動パワーステアリング装置 | |
| JPWO2019150911A1 (ja) | 電力変換装置、駆動装置およびパワーステアリング装置 | |
| JP2020108317A (ja) | 電力変換装置、駆動装置およびパワーステアリング装置 | |
| JP2017034882A (ja) | 車両用電動モータ制御装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041130 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060926 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061124 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061212 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061214 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| LAPS | Cancellation because of no payment of annual fees |