[go: up one dir, main page]

JP3802598B2 - Heat-shrinkable polyester film - Google Patents

Heat-shrinkable polyester film Download PDF

Info

Publication number
JP3802598B2
JP3802598B2 JP33500395A JP33500395A JP3802598B2 JP 3802598 B2 JP3802598 B2 JP 3802598B2 JP 33500395 A JP33500395 A JP 33500395A JP 33500395 A JP33500395 A JP 33500395A JP 3802598 B2 JP3802598 B2 JP 3802598B2
Authority
JP
Japan
Prior art keywords
film
heat
mol
shrinkage
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33500395A
Other languages
Japanese (ja)
Other versions
JPH09174684A (en
Inventor
勝文 熊野
多保田  規
浩二 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP33500395A priority Critical patent/JP3802598B2/en
Publication of JPH09174684A publication Critical patent/JPH09174684A/en
Priority to JP31374298A priority patent/JPH11221855A/en
Application granted granted Critical
Publication of JP3802598B2 publication Critical patent/JP3802598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Wrappers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は被覆用あるいは結束等の包装材料分野において特に好適な熱収縮特性を発揮し、収縮ムラの発生がない熱収縮性ポリエステル系フィルム(シートを含む。)に関するものである。
【0002】
【従来の技術】
熱収縮性プラスチックフィルムを素材として形成されるチューブ状体は、例えば容器、瓶(プラスチックボトルを含む)、缶棒状物(パイプ、棒、木材、各種棒状体)等(以下容器類と略す)の被覆用或は結束用として、特にこれらのキャップ、肩部、胴部等の一部又は全面を被覆し、標示、保護、結束、商品価値向上等を目的として用いられる他、箱、板、瓶、棒、ノート等のような集積包装或はスキンパックのように被覆状物密着させて包装する分野等において広く使用されており、収縮性及び収縮応力を利用した用途展開が期待される。
従来上記用途にはポリ塩化ビニル、ポリスチレン、ポリエチレン、塩酸ゴム等の熱収縮性フィルムを用い、これをチューブ状体にしてから前記容器類にかぶせたり、集積包装して熱収縮させていた。
しかしこれらのフィルムは耐熱性が乏しく、ボイル処理やレトルト処理をすると溶融又は破裂してフィルム状体を維持することができない欠点がある。
更に印刷の必要な用途ではインクの転移不良による印刷ピンホール(フィルム内の添加材やポリマーのゲル状物によるフィッシュアイに基づく微小凹凸)の発生が見られたり、仮にうまく印刷できたとしてもその後にフィルムが収縮(常温収縮)を起こして印刷ピッチに寸法変化をきたすという問題もあった。
【0003】
一方、ポリエステル系の収縮フィルムは上記した欠点を大巾に改良した特性を有しており最近大いに注目されている。
しかしながらポリエステル系の熱収縮性フィルムは上記したポリ塩化ビニル、ポリスチレン、ポリエチレン或は塩酸ゴム等の熱収縮性フィルムくらべ収縮仕上がり性において満足できるものではなかった。例えば PETボトルや、ガラス瓶等の容器にラベル等として被覆収縮する際に、収縮ムラが発生しやすく、内部からの空気の逃げがスムーズに進行せずシール部に気泡をかみこむ等の問題が発生する。このような収縮ムラが発生すると印刷の濃度ムラにつながり製品の美観を著しく低下させるので解決する必要がある。この収縮ムラを改善する方策として公開特許公報の特開平5-261816、特開平5-305664、特開平6-877 、特開平6-8322、等にあるように60℃の温水での収縮特性を改善したもの等がある。
【0004】
【発明が解決しようとする課題】
しかし、これだけでは比較的低温での収縮性は満足されるものの、最も一般的な熱風型の収縮トンネルでの収縮ムラの発生を抑制するのは不十分であり、上記したポリ塩化ビニル、ポリスチレン、ポリエチレン或は塩酸ゴム等の熱収縮性フィルムくらべ収縮仕上がり性において満足できるものではなかった。
【0005】
【課題を解決するための手段】
本発明者は、前記従来技術の実情にかんがみ、ポリエステル系の熱収縮性フィルムの熱収縮挙動について鋭意検討した結果、本発明に到達したものである。すなわち、本発明のポリエステル系の熱収縮性フィルムは1方向の80℃における収縮率が8%以上40%以下、好ましくは8%以上38%以下、最も好ましくは8%以上35%以下であることが必要である。1方向の80℃における収縮率が8%以下では、さらに昇温した時、急激な収縮が発生し、収縮ムラが発生する。もしくはさらに昇温した時、十分な収縮が得られず、仕上がり不良となる。一方、少なくとも1方向の80℃における収縮率が40%以上では急激な収縮のため収縮ムラが発生する。
【0006】
また本発明においてはさらに、最大収縮速度が 100℃で 0.5%/秒以上24%/秒以下、 140℃で10%/秒以上40%/秒以下、好ましくは 100℃で 0.5%/秒以上22%/秒以下、 140℃で15%/秒以上40%/秒以下、最も好ましくは 100℃で 0.5%/秒以上20%/秒以下、 140℃で20%/秒以上40%/秒以下である。この最大収縮速度が 100℃で24%/秒以上では速い収縮のため収縮ムラが発生し易い。
140℃での最大収縮速度が40%/秒以上でも、急な収縮のため収縮ムラが発生し易い。一方、 100℃で 0.5%/秒以下では十分な収縮が得られず、仕上がり不良となり易い。 140℃で10%/秒以下でも十分な収縮が得られず、仕上がり不良となり易い。本発明の熱収縮性ポリエステル系フィルムに使用するポリエステル樹脂は、ジカルボン酸成分として、芳香族ジカルボン酸またはそのエステル形成誘導体と、多価アルコール成分を主成分とするものである。
【0007】
芳香族ジカルボン酸として、例えば、テレフタル酸、イソフタル酸、ナフタレン- 1.4- もしくは−2,6−ジカルボン酸、等が上げられる。またこれらのエステル誘導体としてはジアルキルエステル、ジアリールエステル等の誘導体が挙げられる。また本発明の効果を損なわない範囲において脂肪族ジカルボン酸を含有させることができる。本発明で使用できる脂肪族ジカルボン酸としては、グルタル酸、アジピン酸、セバシン酸、ダイマー酸、アゼライン酸、シュウ酸、コハク酸等が挙げられる。
【0008】
本発明の熱収縮性ポリエステル系フィルムに使用するポリエステル樹脂の多価アルコール成分としては、プロピレングリコール、トリエチレングリコール、ブチレングリコール、ジエチレングリコール、ネオペンチルグリコール、シクロヘキサンジメタノール、ビスフェノール化合物またはその誘導体のエチレンオキサイド付加物、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ポリテトラメチレングリコール、ポリエチレングリコール等が挙げられる。また、多価アルコールではないが、イプシロンカプロラクトンも同様に使用可能である。
【0009】
本発明の熱収縮性ポリエステル系フィルムに使用するポリエステル樹脂組成に限定はないが、熱収縮性ポリエステル系フィルムのガラス転移温度は比較的高くなる樹脂組成が好ましい。例えば芳香族ジカルボン酸としてはナフタレン−1,4−もしくは−2,6−ジカルボン酸またはこれらのエステル誘導体を、ポリエステル樹脂の全ジカルボン酸成分中に10モル%以上90モル%以下、テレフタル酸又はイソフタル酸を10モル以上90モル%以下の範囲のものが挙げられる。
【0010】
また、本発明のポリエステル樹脂は、比較的低温での収縮性を確保するために、例えば、分子量300から3000のポリテトラメチレングリコールを1モル%以上10モル%以下の範囲で含有させることが好ましい。1モル%未満では比較的低温での収縮性を確保できず、10モル%以上では低温での収縮性が大きくなり、保存状態で自然収縮し、実用に耐えない。また本発明の効果を高め、収縮量をコントロールする目的で例えばネオペンチルグリコール等の脂肪族グリコールを5モル%以上50モル%以下の範囲で含有させることが好ましい。
【0011】
該ポリエステルは、単独でもよいし、2種以上を混合して用いてもよい。2種以上を併用する場合は、ポリエチレンテレフタレートと共重合ポリエステルの組み合わせでも、共重合ポリエステル同士の組み合わせでもかまわない。また、ポリブチレンテレフタレート、ポリシクロヘキシレンジメチルテレフタレートなどのホモポリエステルとの組み合わせであってもよい。2種以上のポリエステルを併用することは、多様な特性を有したフィルムを製造することができるのでより好ましい。
【0012】
該ポリエステルは、常法により、溶融重合させることによって製造できるが、これに限定されるものではなくその他の重合方法、または溶融混練によって得られるポリエステルであってもよい。
また、必要に応じて、2酸化チタン、シリカ、カオリン、炭酸カルシウム等の滑剤を添加してもよく、更に帯電防止剤、劣化防止剤、紫外線防止剤や着色剤として染料等を添加することも出来る。なおフィルム基材としての好ましい固有粘度は0.50以上1.30dl/g以下である。かかる重合体を用いて押出法やカレンダー法等任意の方法で得たフィルムは最終的に一方向に2.5倍から7.0倍、好ましくは3.0倍から6.0倍に延伸し、該方向と直角方向に1.0倍から2.0倍以下、好ましくは1.1倍から1.8倍延伸される。しかしながら2.0倍を超えて延伸すると、主収縮方向と直角方向の熱収縮も大きくなりすぎ、仕上がりが波打ち状となる。この波打ちを抑えるには、熱収縮率を15%以下、好ましくは9%以下、更に好ましくは7%以下とすることが推奨される。延伸方法については特定の制限はなく、ロール延伸、長間隙延伸、テンター延伸等の延伸方法が適用され、又形状面においてもフラット状、チューブ状の何れかは問わない。又、延伸は逐次2軸延伸が有効であり、その順序どちらが先でもよい。延伸におけるヒートセットは目的に応じ実施されるが、夏期高温下の寸法変化を防止する為には30から150℃の加熱ゾーンを約1秒から30秒間通すことが推奨される。また、かかる処理の前後どちらか一方または両方で最高70%までの伸張をかけてもよい。特に主方向に伸張し、非収縮方向(主収縮方向に対し直角方向)には緩和させるのが良く、該直角方向への伸張は行わないほうがよい。
【0013】
本発明の好適特性を発揮させるためには、上記延伸倍率だけではなく、重合体組成物が有する平均ガラス転移温度(Tg)付近の温度でかつ、数段階(好ましくは3段階以上)に温度を分けて延伸することが有効な手段として挙げられる。特に主方向延伸(主収縮方向)における上記処理温度は、予熱はTg+0℃から +50℃以下、延伸はTg-20℃から+30℃の範囲内の温度でで徐々に温度が上がるよう、温度差を設けて延伸することが重要である。また、延伸の途中で、一端、延伸を止め、緩和工程を設け、しかる後に、2段目の延伸工程を行い、総合の延伸倍率が所定倍率となるよう延伸することも合わせて重要である。
【0014】
更に延伸後、伸張あるいは緊張状態に保ってフィルムにストレスをかけながら冷却するかあるいは更に引き続いて冷却することにより、前後処理特性はより良好かつ安定したものとなる。又、このように多段階の温度に分けて延伸することにより、収縮速度が適切な範囲になるため熱収縮トンネルの温度ムラに対しても収縮速度差が少ない状態が実現され、収縮ムラの発生しにくいフィルムが得られる。
【0015】
以下本発明フィルムを用途面から説明する。包装用途、特に食品、飲料の包装においては、ボイル処理やレトルト処理が行われている。現存する熱収縮性フィルムではこれらの処理に十分耐えうるものはない。本発明のフィルムはボイル処理やレトルト処理による加熱殺菌に耐えうることができ、しかも元々のフィルムの外観、更には熱収縮性による仕上がり性も良好であり、またポリ塩化ビニル系やポリスチレン系熱収縮フィルムよりも高い熱収縮応力を有し、結束性も優れている。
以下更に具体的に述べる。
(a)耐衝撃性
収縮フィルムの役割の一つは被包装物の破壊や荷くずれ等を防止する点にあるが、そのためには高い耐衝撃性を有し且つ主方向に大きい収縮率を得ることが必要である。その点本発明のフィルムは高い収縮率と高い耐衝撃性を有するので美しい包装が得られ、しかも被包装物の保護という面で優れた耐久性を示す。この傾向は落体テストによって証明される。
(b)耐熱性
従来の汎用フィルムはいずれも高温ボイル処理やレトルト処理には耐えうることが出来ず殺菌処理は不適当なフィルムであり、処理中に破壊し、機能が失われるが、本発明のフィルムはボイル処理やレトルト処理が出来る熱収縮フィルムとして優れた有用性を示す。
【0016】
(c)印刷性
ハーフトーン印刷によりピンホールの発生やインクとの接着性等に関し従来フィルムは固有の欠点を有するが該ポリエステルフィルムは耐薬品性を有する点と共重合体にすることにより接着性が向上することから印刷性は改善された。
(d)産業廃棄物の問題
近年プラスッチックボトルの利用が急速に広まっている。このようなボトルの回収を考えた場合は同物質で形成されることが好ましく、本発明フィルムをポリエステル系ボトルの包装に適用することはこの点有利である。
(e)収縮ムラ
本発明フィルムは高い収縮率と高い収縮応力を有し、また最大収縮加速度が適切なことから収縮ムラの発生はしない。
【0017】
(実施例)
以下本発明を実施例で示すことにより詳細に説明するが、本発明はその要旨を越えない限りこれからの例に何ら制約されない。本発明で用いた測定法を以下に示す。
(1)最大収縮速度
先ずヤマト科学(株)社製DF-42 型ドライオーブンを、風量目盛り0(ファン回転数約460rpm)、エアダンパー閉の状態に設定し、測定温度に設定し、昇温する。次に、試料サイズを主たる収縮方向5cm、その直交方向4cmに切り出し、4.7gの微小荷重をかけた状態でつり下げる。さらに、所定の温度に昇温したドライオーブン中に時間0秒で投入し、外部から観察可能なように改造した窓越しにビデオカメラで収縮の時間変化を記録し、1秒毎の定量を行った。これによって得られた時間に対する収縮率の変化のうち最大のものを最大収縮速度とした。
【0018】
(2)収縮率
(株)鵬製作所社製熱風循環式恒温器FX-1型ドライオーブンを、測定温度に設定し、昇温する。次に、試料サイズを主たる収縮方向10cm、その直交方向10cmの正方形に切り出し、治具につり下げる。さらに、所定の温度に昇温したオーブン中に時間0秒で投入し、10秒後に取りだし、室温で冷却固定する。冷却固定後に収縮率を測定する方法で定量化を行った。
【0019】
(3)収縮仕上がり性
ガラス瓶(300ml)に印刷を施した熱収縮フィルムを装着し150℃の熱風(風速10m/秒)の熱収縮トンネルを通し、仕上がり性を目視にて判定した。なお、仕上がり性のランクについては5段階評価をし、
5:仕上がり性最良
4:仕上がり性良
3:収縮ムラ少し有り(2ヶ所以内)
2:収縮ムラ有り(3〜6ケ所)
1:収縮ムラ多い(6ケ所以上)
として、4以上を合格レベルとした。
【0020】
実施例1
ステンレス製オートクレーブを使用し、二塩基酸成分としてジメチルテレフタレート30モル%と、ジメチルナフタレート70モル%、グリコール成分としてエチレングリコール80モル%と、ネオペンチルグリコール20モル%の組成で、グリコールがメチルエステルの2倍モルになるように仕込み、エステル交換触媒として酢酸亜鉛を0.05モル%(酸成分に対して)用いて、エステル交換反応を行なった。
その後、ポリテトラメチレングリコール(分子量650)5モル%(酸成分に対して)、触媒として三酸化アンチモン0.025モル%(酸成分に対して)、及び添加剤として0.05モル(酸成分に対して)を、重縮合した。
これにより、テレフタル酸成分30モル%と、2,6−ナフタレンジカルボン酸成分70モル%、エチレングリコール成分74モル%と、ネオペンチルグリコール成分21モル%と、ポリテトラメチレングリコール(分子量650)成分5モル%からなるポリエステルを得た。この共重合体は固有粘度0.70dl/gであった。
このポリエステルを280℃で溶融押出し、厚さ180μmの未延伸フィルムを得た。該フィルムを縦方向に10500%/分の延伸速度、115℃で1.1倍延伸し、次いで予熱120℃、3秒、次いで横方向に第1段延伸を6300%/分の延伸速度、100℃で1.5倍、続いて、100℃で3秒間定長把持し、引き続き105℃、110℃の2ゾーンに分けて合計4.1倍まで延伸した。次いで110℃で熱処理を5.5秒行い厚さ40μmの熱収縮フィルムを得た。得られたフィルムの物性値を表1に示す。
【0021】
実施例2
実施例1の重合方法により、テレフタル酸成分70モル%と、2,6ナフタレンジカルボン酸成分30モル%、エチレングリコール成分29モル%、と、ネオペンチルグリコール成分67モル%と、ポリテトラメチレングリコール(分子量650)成分4モル% から成るポリエステルを得た。この共重合体は固有粘度0.71dl/gであった。
このポリエステルを290℃で溶融押出し、厚さ180μmの未延伸フィルムを得た。該フィルムを縦方向に 11000%/分の延伸速度、95℃、で1.1倍延伸し、次いで予熱95℃、3秒、次いで横方向に第1段延伸を7100%/分の延伸速度、80℃で 1.5倍、続いて、80℃で3秒間定長把持し、引き続き85℃、95℃の2ゾーンに分けて合計4.1倍まで延伸した。次いで80℃で熱処理を 5.5秒行い厚さ40μmの熱収縮フィルムを得た。得られたフィルムの物性値を表1に示す。
【0022】
比較例1
実施例1の重合方法により、テレフタル酸成分80モル%と、2,6ナフタレンジカルボン酸成分20モル%、エチレングリコール成分94モル%、と、ネオペンチルグリコール成分4モル%と、ポリテトラメチレングリコール(分子量650)成分2モル% から成るポリエステルを得た。この共重合体は固有粘度0.70dl/gであった。
このポリエステルを 280℃で溶融押出し、厚さ180μmの未延伸フィルムを得た。該フィルムを縦方向に 10500%/分の延伸速度、85℃、で1.1倍延伸し、次いで予熱95℃、3秒、次いで横方向に第1段延伸を7100%/分の延伸速度、85℃で 1.5倍、続いて、85℃で3秒間定長把持し、引き続き95℃、 100℃の2ゾーンに分けて合計4.1倍まで延伸した。次いで 100℃で熱処理を 5.5秒行い厚さ40μmの熱収縮フィルムを得た。得られたフィルムの物性値を表1に示す。
【0023】
比較例2
実施例1の重合方法により、テレフタル酸成分90モル%と、2,6ナフタレンジカルボン酸成分10モル%、エチレングリコール成分80モル%、と、ネオペンチルグリコール成分19モル%と、ポリテトラメチレングリコール(分子量650)成分1モル%から成るポリエステルを得た。この共重合体は固有粘度0.69dl/gであった。
このポリエステルを 295℃で溶融押出し、厚さ180μmの未延伸フィルムを得た。該フィルムを縦方向に 11000%/分の延伸速度、 130℃、で1.1倍延伸し、次いで予熱 125℃、3秒、次いで横方向に7200%/分の延伸速度、 120℃で4.1倍まで延伸した。次いで 140℃で熱処理を 5.5秒行い厚さ40μmの熱収縮フィルムを得た。得られたフィルムの物性値を表1に示す。
【0024】
比較例3
実施例1の重合方法により、テレフタル酸成分95モル%と、2,6ナフタレンジカルボン酸成分5モル%、エチレングリコール成分64モル%と、ネオペンチルグリコール成分35モル%と、ポリテトラメチレングリコール(分子量650)成分1モル%から成るポリエステルを得た。この共重合体は固有粘度0.71dl/gであった。
このポリエステルを 275℃で溶融押出し、厚さ180μmの未延伸フィルムを得た。該フィルムを縦方向に 11000%/分の延伸速度、90℃、で1.1倍延伸し、次いで予熱 120℃、3秒、次いで横方向に6800%/分の延伸速度、90℃で4.0倍まで延伸した。次いで75℃で熱処理を 5.5秒行い厚さ40μmの熱収縮フィルムを得た。得られたフィルムの物性値を表1に示す。
【0025】
比較例4
実施例1の重合方法により、テレフタル酸成分 100モル%と、エチレングリコール成分98モル%と、ポリテトラメチレングリコール(分子量650)成分2モル%から成るポリエステルを得た。この共重合体は固有粘度0.70dl/gであった。
このポリエステルを 285℃で溶融押出し、厚さ180μmの未延伸フィルムを得た。該フィルムを縦方向に9000%/分の延伸速度、90℃、で1.05倍延伸し、次いで予熱 110℃、3秒、次いで横方向に6300%/分の延伸速度、85℃で4.0倍まで延伸した。次いで75℃で熱処理を 5.5秒行い厚さ40μmの熱収縮フィルムを得た。得られたフィルムの物性値を表1に示す。
【0026】
比較例5
実施例1の重合方法により、テレフタル酸成分5モル%と、2,6ナフタレンジカルボン酸成分95モル%、エチレングリコール成分75モル%、と、ネオペンチルグリコール成分25モル%から成るポリエステルを得た。この共重合体は固有粘度0.71dl/gであった。
このポリエステルを 290℃で溶融押出し、厚さ180μmの未延伸フィルムを得た。該フィルムを縦方向に 11000%/分の延伸速度、 120℃、で1.1倍延伸し、次いで予熱 140℃、3秒、次いで横方向に第1段延伸を6800%/分の延伸速度、 120℃で 1.5倍、続いて、 120℃で3秒間定長把持し、引き続き 125℃、130 ℃の2ゾーンに分けて合計4.1倍まで延伸した。次いで 100℃で熱処理を5.5 秒行い厚さ40μmの熱収縮フィルムを得た。得られたフィルムの物性値を表1に示す。
【0028】
比較例6
実施例1の重合方法により、テレフタル酸成分82モル%と、イソフタル酸成分18モル%、エチレングリコール成分95モル%、と、ポリテトラメチレングリコール(分子量1000)成分5モル%から成るポリエステルを得た。この共重合体は固有粘度0.70dl/gであった。
このポリエステルを 270℃で溶融押出し、厚さ180μmの未延伸フィルムを得た。該フィルムを予熱85℃、3秒、次いで横方向延伸を7100%/分の延伸速度、65℃で4.0倍まで延伸した。次いで60℃で熱処理を 5.5秒行い厚さ40μmの熱収縮フィルムを得た。得られたフィルムの物性値を表1に示す。
表1より明らかになるように本発明のフィルムは目的とする仕上がり性が良好なことが分かった。
【0029】
【発明の効果】
被覆用あるいは結束等の包装材料分野において特に好適な熱収縮特性を発揮し、仕上がり性が良好な熱収縮性ポリエステル系フィルムが提供される。
【0030】
【表1】

Figure 0003802598
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-shrinkable polyester film (including a sheet) that exhibits particularly preferable heat-shrinkage characteristics in the field of packaging materials such as coating or binding and does not cause shrinkage unevenness.
[0002]
[Prior art]
Tube-shaped bodies formed from heat-shrinkable plastic films are, for example, containers, bottles (including plastic bottles), can-bar-shaped objects (pipes, bars, wood, various rod-shaped bodies), etc. (hereinafter abbreviated as containers). For covering or bundling, in particular, covering these caps, shoulders, trunks, etc., in part or on the whole, and used for the purpose of marking, protection, bundling, improving commercial value, etc., boxes, plates, bottles It is widely used in the field of packing, such as stick packaging, stick packs, skin packs, and the like, and is expected to develop applications utilizing shrinkage and shrinkage stress.
Conventionally, heat-shrinkable films such as polyvinyl chloride, polystyrene, polyethylene, and hydrochloric acid rubber have been used for the above-mentioned applications, which have been formed into a tube and then covered with the above containers or packaged and heat-shrinked.
However, these films have poor heat resistance, and have a drawback that they cannot be melted or ruptured to maintain a film-like body when boiled or retorted.
Furthermore, in applications that require printing, printing pinholes (fine irregularities based on fish eyes due to additives in the film and polymer gels) due to poor ink transfer are observed, and even if printing can be performed successfully, In addition, there is a problem that the film shrinks (normal temperature shrinkage) and causes a dimensional change in the printing pitch.
[0003]
On the other hand, polyester-based shrink films have the characteristics of greatly improving the above-mentioned drawbacks, and have recently attracted much attention.
However, polyester-based heat-shrinkable films are not satisfactory in shrinkage finish compared with the above-mentioned heat-shrinkable films such as polyvinyl chloride, polystyrene, polyethylene or hydrochloric acid rubber. For example, when a container such as a PET bottle or glass bottle is covered and shrunk as a label etc., shrinkage unevenness is likely to occur, and air escape from the inside does not proceed smoothly, causing problems such as entrapment of bubbles in the seal part. To do. If such shrinkage unevenness occurs, it leads to uneven density of printing, and the aesthetics of the product is remarkably lowered, so it is necessary to solve it. As a measure for improving this shrinkage unevenness, the shrinkage characteristics in hot water at 60 ° C. are disclosed in Japanese Patent Laid-Open Nos. 5-26816, 5-305664, 6-877, 6-8322, etc. There are improvements.
[0004]
[Problems to be solved by the invention]
However, this alone is sufficient for shrinkage at a relatively low temperature, but it is insufficient to suppress the occurrence of shrinkage unevenness in the most common hot-air type shrink tunnels, such as polyvinyl chloride, polystyrene, The shrinkage finish was not satisfactory compared to heat-shrinkable films such as polyethylene or hydrochloric acid rubber.
[0005]
[Means for Solving the Problems]
The present inventor has arrived at the present invention as a result of intensive studies on the heat-shrinking behavior of the polyester-based heat-shrinkable film in view of the actual state of the prior art. That is, the polyester-based heat-shrinkable film of the present invention has a shrinkage rate at 80 ° C. in one direction of 8% to 40%, preferably 8% to 38%, and most preferably 8% to 35%. is required. When the shrinkage rate at 80 ° C. in one direction is 8% or less, when the temperature is further increased, rapid shrinkage occurs and shrinkage unevenness occurs. Or, when the temperature is further raised, sufficient shrinkage cannot be obtained, resulting in poor finishing. On the other hand, if the shrinkage rate at 80 ° C. in at least one direction is 40% or more, shrinkage unevenness occurs due to rapid shrinkage.
[0006]
Further, in the present invention, the maximum shrinkage rate is 0.5% / second or more and 24% / second or less at 100 ° C., 10% / second or more and 40% / second or less at 140 ° C., preferably 0.5% / second or more at 100 ° C. 22 % / Second or less, 15% / second to 40% / second at 140 ° C, most preferably 0.5% / second to 20% / second at 100 ° C, 20% to 40% / second at 140 ° C is there. If this maximum shrinkage rate is 24% / second or more at 100 ° C., shrinkage unevenness is likely to occur due to fast shrinkage.
Even when the maximum shrinkage rate at 140 ° C is 40% / second or more, shrinkage unevenness is likely to occur due to sudden shrinkage. On the other hand, at 100 ° C., 0.5% / second or less, sufficient shrinkage cannot be obtained, and the finish tends to be poor. Sufficient shrinkage is not obtained even at 10 ° C / second or less at 140 ° C, resulting in poor finish. The polyester resin used for the heat-shrinkable polyester film of the present invention is mainly composed of an aromatic dicarboxylic acid or an ester-forming derivative thereof and a polyhydric alcohol component as a dicarboxylic acid component.
[0007]
Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, naphthalene-1.4- or -2,6-dicarboxylic acid. Examples of these ester derivatives include derivatives such as dialkyl esters and diaryl esters. Moreover, aliphatic dicarboxylic acid can be contained in the range which does not impair the effect of this invention. Examples of the aliphatic dicarboxylic acid that can be used in the present invention include glutaric acid, adipic acid, sebacic acid, dimer acid, azelaic acid, oxalic acid, and succinic acid.
[0008]
Examples of the polyhydric alcohol component of the polyester resin used in the heat-shrinkable polyester film of the present invention include propylene glycol, triethylene glycol, butylene glycol, diethylene glycol, neopentyl glycol, cyclohexane dimethanol, bisphenol compound or its derivative ethylene oxide. Examples include adducts, trimethylolpropane, glycerin, pentaerythritol, polytetramethylene glycol, polyethylene glycol and the like. Moreover, although it is not a polyhydric alcohol, epsilon caprolactone can be used similarly.
[0009]
Although there is no limitation in the polyester resin composition used for the heat-shrinkable polyester film of the present invention, a resin composition in which the glass transition temperature of the heat-shrinkable polyester film is relatively high is preferable. For example, as the aromatic dicarboxylic acid, naphthalene-1,4- or -2,6-dicarboxylic acid or an ester derivative thereof is used in an amount of 10 mol% or more and 90 mol% or less, terephthalic acid or isophthalic acid in the total dicarboxylic acid component of the polyester resin. The thing of the range of 10 mol or more and 90 mol% or less of an acid is mentioned.
[0010]
The polyester resin of the present invention preferably contains, for example, polytetramethylene glycol having a molecular weight of 300 to 3000 in a range of 1 mol% to 10 mol% in order to ensure shrinkage at a relatively low temperature. . If it is less than 1 mol%, the shrinkage at a relatively low temperature cannot be ensured, and if it is 10 mol% or more, the shrinkage at a low temperature becomes large, and the film shrinks spontaneously in a stored state and cannot be practically used. For the purpose of enhancing the effects of the present invention and controlling the amount of shrinkage, for example, an aliphatic glycol such as neopentyl glycol is preferably contained in the range of 5 mol% to 50 mol%.
[0011]
The polyester may be used alone or in combination of two or more. When using 2 or more types together, a combination of polyethylene terephthalate and copolymerized polyester or a combination of copolymerized polyesters may be used. Further, it may be a combination with a homopolyester such as polybutylene terephthalate or polycyclohexylene dimethyl terephthalate. It is more preferable to use two or more kinds of polyesters in combination because a film having various characteristics can be produced.
[0012]
The polyester can be produced by melt polymerization in a conventional manner, but is not limited thereto, and may be other polymerization methods or polyester obtained by melt kneading.
Further, if necessary, a lubricant such as titanium dioxide, silica, kaolin, calcium carbonate, etc. may be added, and further, a dye or the like may be added as an antistatic agent, a deterioration preventing agent, an ultraviolet ray preventing agent or a coloring agent. I can do it. In addition, the preferable intrinsic viscosity as a film base material is 0.50 or more and 1.30 dl / g or less. A film obtained by using such a polymer by any method such as an extrusion method or a calendering method is finally stretched in one direction from 2.5 times to 7.0 times, preferably from 3.0 times to 6.0 times. The film is stretched 1.0 to 2.0 times, preferably 1.1 to 1.8 times in a direction perpendicular to the direction. However, when the stretching exceeds 2.0 times, thermal shrinkage in the direction perpendicular to the main shrinkage direction becomes too large, and the finish becomes wavy. In order to suppress this undulation, it is recommended that the heat shrinkage rate is 15% or less, preferably 9% or less, more preferably 7% or less. There is no particular restriction on the stretching method, and stretching methods such as roll stretching, long gap stretching, and tenter stretching are applied, and the shape surface may be either flat or tubular. Further, sequential biaxial stretching is effective for stretching, and either order may be first. Although heat setting in stretching is performed according to the purpose, it is recommended to pass a heating zone of 30 to 150 ° C. for about 1 to 30 seconds in order to prevent dimensional changes under high summer temperatures. In addition, it may be possible to extend up to 70% before or after such processing. In particular, it should be stretched in the main direction and relaxed in the non-shrinking direction (perpendicular to the main shrinking direction), and it is better not to stretch in the perpendicular direction.
[0013]
In order to exhibit the preferable characteristics of the present invention, not only the above draw ratio but also the temperature near the average glass transition temperature (Tg) of the polymer composition and several steps (preferably 3 steps or more). Dividing and stretching is an effective means. In particular, the treatment temperature in the main direction stretching (main shrinkage direction) is such that the preheating is Tg + 0 ° C. to + 50 ° C. or less and the stretching is a temperature in the range of Tg−20 ° C. to + 30 ° C. It is important to provide a temperature difference for stretching. It is also important to stop stretching at one end in the middle of stretching, provide a relaxation process, and then perform a second stretching process to stretch the total stretching ratio to a predetermined ratio.
[0014]
Further, after stretching, the film is cooled while applying a stress to the film while being stretched or tensioned, or further cooled, whereby the pre- and post-treatment characteristics become better and more stable. In addition, by stretching in such a multi-stage temperature, the shrinkage speed becomes an appropriate range, so that a state in which the shrinkage speed difference is small is realized even with respect to the temperature shrinkage of the heat shrink tunnel, and the occurrence of shrinkage unevenness occurs. It is difficult to obtain a film.
[0015]
Hereinafter, the film of the present invention will be described from the viewpoint of application. In packaging applications, particularly food and beverage packaging, boil processing and retort processing are performed. None of the existing heat shrinkable films can withstand these treatments. The film of the present invention can withstand heat sterilization by boil treatment and retort treatment, and also has good appearance due to the original film appearance and heat shrinkability, and also has polyvinyl chloride and polystyrene heat shrinkage. It has a higher heat shrinkage stress than the film and has excellent binding properties.
More specific description will be given below.
(A) One of the roles of the impact-resistant shrink film is to prevent the destruction of the packaged goods and the load slipping. For that purpose, it has high impact resistance and a large shrinkage rate in the main direction. It is necessary. In that respect, the film of the present invention has a high shrinkage ratio and a high impact resistance, so that a beautiful packaging can be obtained, and it has excellent durability in terms of protection of an object to be packaged. This tendency is proved by the falling body test.
(B) Heat resistance None of the conventional general-purpose films can withstand high-temperature boil processing or retort processing, and sterilization processing is inappropriate. The film is destroyed during processing and its function is lost. This film exhibits excellent utility as a heat shrinkable film that can be boiled or retorted.
[0016]
(C) Printability Half-tone printing has pinpoints and ink adhesion, and conventional films have inherent defects, but the polyester film has chemical resistance and adhesion by making it a copolymer. As a result, the printability was improved.
(D) The problem of industrial waste In recent years, the use of plastic bottles has spread rapidly. In consideration of such bottle recovery, it is preferable to use the same material, and it is advantageous to apply the film of the present invention to the packaging of polyester bottles.
(E) Shrinkage unevenness The film of the present invention has a high shrinkage rate and a high shrinkage stress, and since the maximum shrinkage acceleration is appropriate, shrinkage unevenness does not occur.
[0017]
(Example)
Hereinafter, the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples unless it exceeds the gist. The measurement method used in the present invention is shown below.
(1) Maximum contraction speed First, set the DF-42 type dry oven manufactured by Yamato Scientific Co., Ltd. to an air volume scale of 0 (fan rotation speed: approx. 460 rpm), air damper closed, set to the measurement temperature, and heated up. To do. Next, the sample size is cut into a main shrinkage direction of 5 cm and an orthogonal direction of 4 cm, and suspended with a 4.7 g minute load applied. Furthermore, it is put into a dry oven heated to a predetermined temperature in 0 seconds, and the time change of contraction is recorded with a video camera through a window that has been modified so that it can be observed from outside. It was. The maximum contraction rate with respect to time obtained by this was taken as the maximum contraction speed.
[0018]
(2) Shrinkage rate A hot-air circulating thermostat FX-1 type dry oven manufactured by Sakai Seisakusho Co., Ltd. is set to the measurement temperature and heated. Next, the sample size is cut into a square having a main contraction direction of 10 cm and an orthogonal direction of 10 cm, and hung on a jig. Further, it is put into an oven heated to a predetermined temperature in 0 seconds, taken out after 10 seconds, and cooled and fixed at room temperature. Quantification was performed by measuring the shrinkage after cooling and fixing.
[0019]
(3) Shrinkage finish The heat shrink film which printed on the glass bottle (300 ml) was mounted | worn, and the finish was visually judged through the heat shrink tunnel of 150 degreeC hot air (wind speed 10m / sec). In addition, about the rank of the finish, it is evaluated in five levels,
5: Best finish 4: Excellent finish 3: Slight unevenness (within 2 locations)
2: Shrinkage unevenness (3 to 6 places)
1: Many shrinkage irregularities (over 6 locations)
As a result, 4 or more was set as an acceptable level.
[0020]
Example 1
Using a stainless steel autoclave, the composition of 30 mol% dimethyl terephthalate as the dibasic acid component, 70 mol% dimethylnaphthalate, 80 mol% ethylene glycol as the glycol component, and 20 mol% neopentyl glycol, glycol is the methyl ester The ester exchange reaction was carried out using 0.05 mol% (based on the acid component) of zinc acetate as a transesterification catalyst.
Thereafter, polytetramethylene glycol (molecular weight 650) 5 mol% (based on the acid component), antimony trioxide 0.025 mol% (based on the acid component) as a catalyst, and 0.05 mol (acid component) as an additive To the polycondensation.
Thereby, 30 mol% of terephthalic acid component, 70 mol% of 2,6-naphthalenedicarboxylic acid component, 74 mol% of ethylene glycol component, 21 mol% of neopentyl glycol component, and polytetramethylene glycol (molecular weight 650) component 5 A polyester comprising mol% was obtained. This copolymer had an intrinsic viscosity of 0.70 dl / g.
This polyester was melt-extruded at 280 ° C. to obtain an unstretched film having a thickness of 180 μm. The film was stretched in the machine direction at a stretch rate of 10500% / min, 1.1 times at 115 ° C., then preheated at 120 ° C. for 3 seconds, and then in the transverse direction, the first stage stretch was stretched at a stretch rate of 6300% / min, 100 The film was held at a constant length of 1.5 times at 100 ° C., then at 100 ° C. for 3 seconds, and then divided into two zones of 105 ° C. and 110 ° C. and stretched to a total of 4.1 times. Next, heat treatment was performed at 110 ° C. for 5.5 seconds to obtain a heat-shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.
[0021]
Example 2
According to the polymerization method of Example 1, 70 mol% of terephthalic acid component, 30 mol% of 2,6 naphthalenedicarboxylic acid component, 29 mol% of ethylene glycol component, 67 mol% of neopentyl glycol component, polytetramethylene glycol ( A polyester having a molecular weight of 650) 4 mol% of the component was obtained. This copolymer had an intrinsic viscosity of 0.71 dl / g.
This polyester was melt extruded at 290 ° C. to obtain an unstretched film having a thickness of 180 μm. The film was stretched 1.1 times at a stretching speed of 11000% / min in the machine direction at 95 ° C., then preheated at 95 ° C. for 3 seconds, and then the first stage stretching in the transverse direction was performed at a stretching speed of 7100% / min. The film was held at 80 ° C. for 1.5 times, then at 80 ° C. for 3 seconds, and then divided into two zones of 85 ° C. and 95 ° C. and stretched to a total of 4.1 times. Subsequently, heat treatment was performed at 80 ° C. for 5.5 seconds to obtain a heat-shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.
[0022]
Comparative Example 1
According to the polymerization method of Example 1, 80 mol% of terephthalic acid component, 20 mol% of 2,6 naphthalenedicarboxylic acid component, 94 mol% of ethylene glycol component, 4 mol% of neopentyl glycol component, polytetramethylene glycol ( A polyester comprising 2 mol% of a component having a molecular weight of 650) was obtained. This copolymer had an intrinsic viscosity of 0.70 dl / g.
This polyester was melt extruded at 280 ° C. to obtain an unstretched film having a thickness of 180 μm. The film was stretched 1.1 times at a stretching speed of 10500% / min in the machine direction at 85 ° C., then preheated at 95 ° C. for 3 seconds, and then the first stage stretching in the transverse direction was performed at a stretching speed of 7100% / min. The film was held at 85 ° C. for 1.5 times, then at 85 ° C. for 3 seconds, and then divided into two zones of 95 ° C. and 100 ° C. and stretched to a total of 4.1 times. Next, heat treatment was performed at 100 ° C. for 5.5 seconds to obtain a heat-shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.
[0023]
Comparative Example 2
According to the polymerization method of Example 1, 90 mol% of terephthalic acid component, 10 mol% of 2,6 naphthalenedicarboxylic acid component, 80 mol% of ethylene glycol component, 19 mol% of neopentyl glycol component, polytetramethylene glycol ( Molecular weight 650) A polyester comprising 1 mol% of component was obtained. This copolymer had an intrinsic viscosity of 0.69 dl / g.
This polyester was melt extruded at 295 ° C. to obtain an unstretched film having a thickness of 180 μm. The film was stretched 1.1 times at 11000% / min in the machine direction at 130 ° C., then preheated at 125 ° C. for 3 seconds, then 7200% / min in the transverse direction at 120 ° C. It extended | stretched to 1 time. Subsequently, heat treatment was performed at 140 ° C. for 5.5 seconds to obtain a heat-shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.
[0024]
Comparative Example 3
According to the polymerization method of Example 1, 95 mol% of terephthalic acid component, 5 mol% of 2,6 naphthalenedicarboxylic acid component, 64 mol% of ethylene glycol component, 35 mol% of neopentyl glycol component, polytetramethylene glycol (molecular weight) 650) A polyester comprising 1 mol% of the component was obtained. This copolymer had an intrinsic viscosity of 0.71 dl / g.
This polyester was melt extruded at 275 ° C. to obtain an unstretched film having a thickness of 180 μm. The film was stretched 1.1 times at 11000% / min in the machine direction at 90 ° C. and then preheated at 120 ° C. for 3 seconds and then 6800% / min in the transverse direction at 90 ° C. Stretched to 0 times. Next, heat treatment was performed at 75 ° C. for 5.5 seconds to obtain a heat-shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.
[0025]
Comparative Example 4
By the polymerization method of Example 1, a polyester composed of 100 mol% of a terephthalic acid component, 98 mol% of an ethylene glycol component, and 2 mol% of a polytetramethylene glycol (molecular weight 650) component was obtained. This copolymer had an intrinsic viscosity of 0.70 dl / g.
This polyester was melt extruded at 285 ° C. to obtain an unstretched film having a thickness of 180 μm. The film was stretched 1.05 times in the machine direction at 9000% / min at 90 ° C., then preheated at 110 ° C. for 3 seconds, and then stretched at 6300% / min in the transverse direction at 85 ° C. Stretched to 0 times. Next, heat treatment was performed at 75 ° C. for 5.5 seconds to obtain a heat-shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.
[0026]
Comparative Example 5
According to the polymerization method of Example 1, a polyester composed of 5 mol% of a terephthalic acid component, 95 mol% of a 2,6-naphthalenedicarboxylic acid component, 75 mol% of an ethylene glycol component, and 25 mol% of a neopentyl glycol component was obtained. This copolymer had an intrinsic viscosity of 0.71 dl / g.
This polyester was melt extruded at 290 ° C. to obtain an unstretched film having a thickness of 180 μm. The film was stretched 1.1 times at a stretching speed of 11000% / min in the machine direction at 120 ° C., then preheated at 140 ° C. for 3 seconds, and then the first stage stretching in the transverse direction was performed at a stretching speed of 6800% / min. The film was held at a constant length of 1.5 times at 120 ° C., then at 120 ° C. for 3 seconds, and then divided into two zones of 125 ° C. and 130 ° C., and stretched to a total of 4.1 times. Subsequently, heat treatment was performed at 100 ° C. for 5.5 seconds to obtain a heat-shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.
[0028]
Comparative Example 6
According to the polymerization method of Example 1, a polyester composed of 82 mol% of terephthalic acid component, 18 mol% of isophthalic acid component, 95 mol% of ethylene glycol component, and 5 mol% of polytetramethylene glycol (molecular weight 1000) component was obtained. . This copolymer had an intrinsic viscosity of 0.70 dl / g.
This polyester was melt extruded at 270 ° C. to obtain an unstretched film having a thickness of 180 μm. The film was preheated at 85 ° C. for 3 seconds and then stretched in the transverse direction to 4.0 times at 65 ° C. at a stretching speed of 7100% / min. Subsequently, heat treatment was performed at 60 ° C. for 5.5 seconds to obtain a heat-shrinkable film having a thickness of 40 μm. The physical properties of the obtained film are shown in Table 1.
As is clear from Table 1, it was found that the film of the present invention has a good finish.
[0029]
【The invention's effect】
A heat-shrinkable polyester film that exhibits particularly favorable heat-shrinkage characteristics in the field of packaging materials such as coating or binding is provided.
[0030]
[Table 1]
Figure 0003802598

Claims (3)

熱収縮ポリエステル系フィルムにおいて該フィルムの1方向の80℃における収縮率が8%以上40%以下であり、かつ1方向の最大収縮速度が 100℃で 0.5%/秒以上24%/秒以下、 140℃で10%/秒以上40%/秒以下であることを特徴とする熱収縮ポリエステル系フィルム。40% or less 1 shrinkage in the direction of 80 ° C. is less than 8% of the film in the heat-shrinkable polyester film, and 0.5% / sec more than 24% at the maximum shrinkage rate in one direction is 100 ° C. / sec or less, heat-shrinkable polyester film characterized in that at 140 ° C. is 10% / second or more to 40% / sec or less. 請求項1記載の熱収縮性フィルムが、ナフタレンジカルボン酸残基を含有することを特徴とする熱収縮性ポリエステルフィルム。Heat-shrinkable film of claim 1, wherein the heat-shrinkable polyester film characterized by containing naphthalenedicarboxylic acid residues. 請求項1記載のフィルムがポリテトラメチレングリコール残基を含有することを特徴とする熱収縮性ポリエステル系フィルム。The heat-shrinkable polyester film, wherein the film according to claim 1 contains a polytetramethylene glycol residue.
JP33500395A 1995-12-22 1995-12-22 Heat-shrinkable polyester film Expired - Lifetime JP3802598B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP33500395A JP3802598B2 (en) 1995-12-22 1995-12-22 Heat-shrinkable polyester film
JP31374298A JPH11221855A (en) 1995-12-22 1998-11-04 Heat-shrinkable polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33500395A JP3802598B2 (en) 1995-12-22 1995-12-22 Heat-shrinkable polyester film

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP31374298A Division JPH11221855A (en) 1995-12-22 1998-11-04 Heat-shrinkable polyester film
JP2002144672A Division JP3852369B2 (en) 2002-05-20 2002-05-20 Heat-shrinkable polyester tube

Publications (2)

Publication Number Publication Date
JPH09174684A JPH09174684A (en) 1997-07-08
JP3802598B2 true JP3802598B2 (en) 2006-07-26

Family

ID=18283656

Family Applications (2)

Application Number Title Priority Date Filing Date
JP33500395A Expired - Lifetime JP3802598B2 (en) 1995-12-22 1995-12-22 Heat-shrinkable polyester film
JP31374298A Withdrawn JPH11221855A (en) 1995-12-22 1998-11-04 Heat-shrinkable polyester film

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP31374298A Withdrawn JPH11221855A (en) 1995-12-22 1998-11-04 Heat-shrinkable polyester film

Country Status (1)

Country Link
JP (2) JP3802598B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502091B2 (en) * 2000-01-28 2010-07-14 東洋紡績株式会社 Heat-shrinkable polyester film
JP4944832B2 (en) 2007-09-07 2012-06-06 帝人デュポンフィルム株式会社 Heat-shrinkable polyester film
WO2009066928A2 (en) * 2007-11-19 2009-05-28 Kolon Industries, Inc. Thermo-shrinkable polyester film
JP6481300B2 (en) * 2013-10-11 2019-03-13 東洋紡株式会社 Polyester resin

Also Published As

Publication number Publication date
JPH09174684A (en) 1997-07-08
JPH11221855A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
JP3336722B2 (en) Heat shrinkable polyester film
JP2943178B2 (en) Heat-shrinkable polyester film
JP3790399B2 (en) Polylactic acid heat-shrinkable sheet
JPH0368634A (en) heat shrinkable polyester film
JP3006001B2 (en) Heat-shrinkable polyester film
JP3050123B2 (en) Heat-shrinkable polyester film
JP3896604B2 (en) Heat-shrinkable polyester film
JP3802598B2 (en) Heat-shrinkable polyester film
JP2932596B2 (en) Heat shrinkable polyester film
JPH0827260A (en) Heat shrinkable polyester film
JP3852369B2 (en) Heat-shrinkable polyester tube
JP3114353B2 (en) Heat-shrinkable polyester film
JP2002234117A (en) Heat shrinkable film
JP2000094513A (en) Polyester film
JPH0825477A (en) Heat shrinkable polyester film
JPH0827285A (en) Heat shrinkable polyester film
JPH0618903B2 (en) Heat-shrinkable polyester film
JPH08323859A (en) Heat-shrinkable polyester film and production thereof
JPH0615732A (en) Heat shrinkable polyester film
JP4502091B2 (en) Heat-shrinkable polyester film
JPH04268338A (en) Heat-shrinkable polyester film
JPH0834841A (en) Heat shrinkable polyester film
JPH0827259A (en) Heat shrinkable polyester film
JPH0827261A (en) Heat shrinkable polyester film
JP3132238B2 (en) Heat-shrinkable polyester film

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

EXPY Cancellation because of completion of term