[go: up one dir, main page]

JP3807662B2 - Connection method of lead wire in electromechanical winding - Google Patents

Connection method of lead wire in electromechanical winding Download PDF

Info

Publication number
JP3807662B2
JP3807662B2 JP2001046485A JP2001046485A JP3807662B2 JP 3807662 B2 JP3807662 B2 JP 3807662B2 JP 2001046485 A JP2001046485 A JP 2001046485A JP 2001046485 A JP2001046485 A JP 2001046485A JP 3807662 B2 JP3807662 B2 JP 3807662B2
Authority
JP
Japan
Prior art keywords
lead wire
heat
varnish
insulating resin
inflow prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001046485A
Other languages
Japanese (ja)
Other versions
JP2002247811A (en
Inventor
英彦 深沢
一良 市原
Original Assignee
デンヨー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンヨー株式会社 filed Critical デンヨー株式会社
Priority to JP2001046485A priority Critical patent/JP3807662B2/en
Publication of JP2002247811A publication Critical patent/JP2002247811A/en
Application granted granted Critical
Publication of JP3807662B2 publication Critical patent/JP3807662B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発電機や電動機等の主として回転を伴う電気機械における電気機械巻線に、出力取出又は電源供給等を行うための口出線を接続する方法に関する。
【0002】
【従来の技術】
交流発電機や溶接用発電機等の発電機における電機子巻線及び、電動機の固定子巻線等(以下、「電気機械巻線」という)に関しては、当該電気機械巻線の耐震性等の機械的強度を上昇させ、また、絶縁性を確保することで空気中等の水分吸湿による絶縁低下を防止させるために、当該電機機械巻線に高強度のエポキシ樹脂などの絶縁樹脂(ワニス)を含浸させる処理(以下、「ワニス含浸処理」という)を行うことが、従来から一般的に行われている。
【0003】
この電気機械巻線のワニス含浸処理方法の一つに高温滴下含浸処理法が存在している。この方法は、鉄心と、当該鉄心に組み込まれた電気機械巻線の組立品(電機子組立品等)を鉄心の水平軸を中心に回転させながら、ワニス滴下装置を用いて、鉄心端部の両コイルエンドにワニスを滴下し、当該ワニスを含浸させる方法である。このとき電気機械巻線の引出線にワニスが浸透して硬化すると、ワニスが浸透した箇所は非常に強固となり、ワニス乾燥後の整形や接続等の後加工ができない状態になる。
【0004】
そのため、従来は、ワニス含浸処理前に、電気機械巻線の引出線と口出線とを接続し、接続した口出線は、前記ワニス含浸処理を行う際に電気機械巻線の組立品の回転に伴う不都合を起こさないように整形作業を行い、コイルエンドに縛線等により仮止めの結束作業を行うとともに、ワニス含浸処理の終了後に当該口出線の仮止め結束部のばらし作業を行っていた。
【0005】
【発明が解決しようとする課題】
しかし、口出線の整形、結束の仮止め作業及び仮止め結束部のばらし作業は人手に頼らざるをえず、非常に繁雑な作業であった。
また、前記ワニス含浸処理を行う場合には、電気機械巻線の組立品の加熱・乾燥作業を行う際において、口出線が高温の炉内を通過することになるため、当該口出線の絶縁被覆が熱劣化を招く場合がある。その熱劣化を防止するためには、高耐熱の絶縁被覆の口出線を使用しなければならず、製造費用の増大を招く原因となっていた。
【0006】
本発明は、前記の各問題点を除くためになされたものであり、絶縁樹脂含浸処理前後の口出線の仮止め作業に要していた煩雑な作業をなくすと同時に、口出線の絶縁被覆の熱劣化を防止することに寄与する電気機械巻線における口出線の接続方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記課題を解決するために、本発明の電気機械巻線における口出線の接続方法は、以下の各工程を含むことを特徴としている。
(1)電気機械巻線から引出線を導出した状態とする引出線導出工程。
(2)前記引出線における先端部から前記電気機械巻線側へ所定長さ離間した位置において、前記引出線を熱溶融性材料を用いて被覆した熱溶融性材料被覆部と、前記熱溶融性材料被覆部の前記先端部側の端部における一部に重ね合わせて、前記引出線の先端部側を絶縁材料により被覆した絶縁材料被覆部と、前記重ね合わせられた絶縁材料被覆部と前記熱溶融性材料被覆部を熱収縮性材料を用いて被覆した熱収縮性材料被覆部と、を備える絶縁樹脂流入防止部を形成する絶縁樹脂流入防止部形成工程。
(3)前記絶縁樹脂流入防止部を所定温度かつ所定時間加熱する加熱工程。
(4)前記電機機械巻線に絶縁樹脂を滴下して含浸させる絶縁樹脂滴下含浸工程。
(5)前記引出線の先端部を口出線と接続する口出線接続工程。
【0008】
ここで、所定長さとは、口出線を接続するために必要となる長さであり、作業性を考慮して定められた引出線の先端部から電気機械巻線側までの長さである。また、熱溶融性材料と熱収縮性材料は、加熱工程の雰囲気下において、前記の各構成材料が熱溶融及び熱収縮を行うような性質を有する材料を適切に選択する必要があることは言うまでもない。
さらに、絶縁材料被覆部は、絶縁樹脂流入防止部の先端部側の端部における熱溶融性材料被覆部と熱収縮性材料被覆部の一部に重ね合わせて設けられているものであればよいが、当該絶縁樹脂流入防止部の全域に重ね合わせられていると、後記する熱溶融性材料被覆部を形成する溶融性材料が、熱収縮性材料被覆部を形成する収縮性材料により引出線に収縮密着する作用を奏さなくなるため、重ね合わせ部分の長さは当該作用を奏するように適切に定める必要がある。
【0009】
従って、本発明によれば、内側の熱溶融性材料被覆部と、その外側の熱収縮性材料被覆部とを備える絶縁樹脂流入防止部を形成し(絶縁樹脂流入防止部形成工程)、当該絶縁樹脂流入防止部を加熱することにより(加熱工程)、絶縁樹脂流入防止部における熱溶融性材料被覆部が溶融し、その外側の熱収縮性材料被覆部は収縮することになる。これにより、引出線のエナメル銅線の素線間隙が熱溶融性材料被覆部を形成する溶融性材料で充填されるとともに、当該溶融性材料は熱収縮性材料被覆部を形成する収縮性材料により引出線に収縮密着することになり、電気機械巻線方向から浸透してきた絶縁樹脂が電気機械巻線の先端部方向に流入することを絶縁樹脂流入防止部により阻止することができる。
そのため、絶縁樹脂滴下含浸工程後においても、引出線における絶縁樹脂流入防止部から先端側の柔軟性が維持できるため、引出線と口出線との接続を容易に行うことが可能となり、絶縁樹脂含浸処理前後の口出線の整形、結束の仮止め作業及び仮止め結束部のばらし作業が不要になるとともに、高耐熱の絶縁被覆を施した口出線を使用する必要がなくなるため、電気機械の製造費用の低減を図ることが可能となる。
【0010】
また、本発明によれば、熱溶融性材料被覆部と熱収縮性材料被覆部の先端部側の端部における一部に重ね合わせて、引出線の先端部側を絶縁材料により被覆した絶縁材料被覆部を形成する構成にしたことから、絶縁樹脂流入防止部から先端部側に至る引出線の部分においても絶縁樹脂滴下含浸工程で絶縁樹脂が流入することなく、当該絶縁樹脂流入防止部において、確実に絶縁樹脂の流入を阻止することができる。
【0011】
さらに、前記絶縁樹脂流入防止部形成工程において、前記熱溶融性材料、前記熱収縮性材料及び前記絶縁材料が、それぞれ可撓性を有するチューブ部材から形成されている構成にしてもよい。
【0012】
従って、本発明によれば、熱溶融性材料、熱収縮性材料及び絶縁材料が、それぞれ可撓性を有するチューブ部材から形成されていることから、容易に絶縁樹脂流入防止部を形成することができ、その作業性を向上させることが可能となるとともに、均一性を有していることからその仕上がり後の良好な品質を確保することができる。
【0013】
【発明の実施の形態】
本発明の実施形態について、発電機における電機子巻線10を電気機械巻線の一例として取り上げ、図面を参照して詳細に説明する。なお、各実施形態の説明において、同一の構成要素に関しては同一の符号を付し、重複した説明は省略する。
【0014】
本発明の電気機械巻線における口出線の接続方法は、(1)引出線導出工程、(2)絶縁樹脂流入防止部形成工程、(3)加熱工程、(4)絶縁樹脂滴下含浸工程、(5)口出線接続工程から構成されている。
【0015】
(1)引出線導出工程
本工程は、電機子巻線10から引出線20を導出した状態に形成する作業を行う工程である。
【0016】
図1に示すように、電機子巻線10は、発電機の電機子11を構成する電機子鉄心12に巻装されており、この電機子鉄心12は、円環形状で内径側にスロット(図示せず)を複数個穿設した薄鉄板である電機子鉄心片を複数枚積層して形成されている。
前記電機子巻線10は、ポリエステルなどのエナメル銅線の素線を、複数本並列に束ねた素線束を巻回して形成され、複数個が所定のスロットに収容されて楔により固定された状態で電機子鉄心12に巻装されている。また、スロットから突出したコイルエンド13は所定寸法に整形されており、巻回した電機子巻線10の端末部からは複数の引出線20が導出された状態になっている。本工程は、前記電機子巻線10から引出線20を導出した状態に形成する一連の作業を行うものである。
【0017】
(2)絶縁樹脂流入防止部形成工程
本工程は、引出線20における先端部から電機子巻線10側へ所定長さ離間した位置(本実施形態では、200mm程度)において、ワニス流入防止部30(絶縁樹脂流入防止部)を形成する工程である。
このワニス流入防止部30は、引出線20を熱溶融性材料により被覆した熱溶融性材料被覆部31と、前記熱溶融性材料被覆部31を熱収縮性材料により被覆した熱収縮性材料被覆部32と、絶縁材料被覆部33とから形成されている。
【0018】
前記熱溶融性材料の一例としては、熱溶融未架橋ポリオレフィン樹脂を主原料とする(軟化点約110℃)とともに、可撓性を有するチューブ部材として形成したものを使用することが好適である(以下、「熱溶融性樹脂チューブ」という)。
前記熱収縮性材料の一例としては、軟質ポリオレフィン樹脂を主原料とし、電子線照射により分子間に架橋結合を施すとともに(収縮条件、125℃±5℃)、可撓性を有するチューブ部材として形成したものを使用することが好適である(以下、「熱収縮チューブ」という)。
前記絶縁材料の一例としては、ガラス繊維を編組したスリーブにシリコーン系重合体を塗布乾燥した可撓性を有するチューブ部材として形成したものを使用することが好適である(以下、「絶縁チューブ」という)。
【0019】
これらの構成材料を使用し、以下の手順により、ワニス流入防止部30の形成を行う。
図2に示すように、まず、引出線20における先端部から電機子巻線10側に所定長さ離間した位置において、当該引出線20を所定長さの熱溶融性樹脂チューブにより被覆して熱溶融性材料被覆部31を形成する。そして、この熱溶融性材料被覆部31における電機子巻線10側の他端側の端部に一部重ね合わせるようにして、引出線20の残部を絶縁チューブにより略先端部にまで被覆して絶縁材料被覆部33を形成する。さらに、熱溶融性材料被覆部31の全域を熱収縮チューブにより被覆して熱収縮材料被覆部32を形成する。
これにより、ワニス流入防止部30における引出線20の電機子巻線10側の所定長さの部位は、熱溶融性材料被覆部31と熱収縮性材料被覆部32の2層構造となっており、他端側の所定長さの部位は、熱溶融性材料被覆部31と熱収縮性材料被覆部32との間に、絶縁材料被覆部33が重ね合わせられている3層構造となっている。
【0020】
そして、図4に示すように、ワニス流入防止部30が形成された引出線20の先端部には銅製の圧着スリーブ21を付設するとともに、ワニス流入防止部30及び当該ワニス流入防止部30から電機子巻線10側の引出線20を、コイルエンド13の外周に沿ってリング状に整形し、適切な位置を結束材15を使用して結束することにより固定する。
【0021】
なお、前記図2に示すように熱溶融性樹脂チューブには、総ての引出線20を構成する素線束(素線を複数本並列に束ねた素線束)をまとめて納めてもよいが、図3に示すように、引出線を複数に分割して、所定数の素線束20’毎に熱溶融性樹脂チューブを被せるものであってもよい。このように、複数本の熱溶融性樹脂チューブを使用する理由は、後記加熱工程において溶融性材料を溶融させた場合に、引出線20の素線束20’が多い場合には、一本の熱溶融性樹脂チューブのみでは、引出線20の素線束20’に形成される間隙を当該溶融性材料で完全に充填できないためである。
【0022】
(3)加熱工程
本工程は、ワニス流入防止部30を所定温度かつ所定時間加熱する作業を行う工程である。
本工程は、次工程である絶縁樹脂滴下含浸工程において、ワニスに流動性を付与して電機子巻線10にワニスを含浸しやすくするため、及び、水分を除去するために電機子11を加熱する作業と兼用して行うものであり、電機子11を所定温度の乾燥炉(図示せず)内に所定時間入れることにより(本実施形態では、135度で約8時間程度)行うものである。
本工程により、ワニス流入防止部30における内側の熱溶融性材料被覆部31を溶融させ、その外側の熱収縮性材料被覆部32を収縮させることにより、引出線20の素線間隙を溶融性材料で充填し、当該溶融性材料を収縮材料により引出線20に収縮密着させ、確実にワニスの流入を防止することが可能なワニス流入防止部30を形成することができる。
【0023】
(4)絶縁樹脂滴下含浸工程
本工程は前記電機子巻線10にワニスを滴下して含浸させる作業を行う工程であり、ワニスを電機子巻線10の素線間隙や当該電機子巻線10と電機子鉄心12間の間隙に含浸させる作業を行うものである。
本工程は、図5に示すように、電機子11を回転装置40に載置し、電機子鉄心12における両端部のコイルエンド13の上方に、当該コイルエンド13と対向して、ワニス供給管42を介してワニス供給装置(図示せず)と接続されている滴下ノズル43を設け、電機子11を事前に加熱した状態で、電機子11を回転体41で回転させながら、コイルエンド13に滴下ノズル42からワニスを所定時間滴下する作業(以下、「ワニス滴下処理」という)を行うものである。
【0024】
これにより、電機子巻線10の素線同士間及び当該電機子巻線10とスロットとの間などにワニスが浸透して充填されることで強固に結合され、電機子巻線10の耐震性等の機械的強度を上昇させること、絶縁性を確保することで空気中等の水分吸湿による絶縁低下を防止させることができる。
【0025】
ここで、ワニス流入防止部30は、ワニス滴下処理を行う前に、コイルエンド13に結束固定されているので、ワニス滴下処理時において滴下するワニスに浸されることによりワニスが充分行き渡り、ワニス滴下処理後はワニスで強固にコイルエンド13に固定されることになる。これに対し、電機子巻線10側から、ワニス流入防止部30の内部の引出線20を構成するエナメル銅線の素線束へのワニスの浸透による流入は、ワニス流入防止部30で阻止される。
一方、ワニス滴下処理時には、ワニス流入防止部30の先端側近傍の絶縁材料被覆部33の表面部へは、コイルエンド13の表層部からワニスが伝わってくることになる。しかし、絶縁材料被覆部33がシリコン系重合体を主原料とした樹脂により形成されており、ワニスをはじく性質を有しているので、当該絶縁材料被覆部33の内部にワニスが浸透することも、付着することもない(例え、付着したとしても接着しない)。従って、ワニス流入防止部30から先端側における絶縁材料被覆部33の内部にはワニスが流入することがないため、当該部位の柔軟性が損なわれることがなく、以下の口出線接続工程を支障なく行うことができる。
【0026】
(5)口出線接続工程
本工程は、引出線20の先端部における圧着スリーブ21を、負荷接続のための口出線(図示せず)と接続する作業を行う工程である。
本工程では、ワニスが硬化した後、電機子11を発電機フレーム(図示せず)に圧入し、引出線20を圧着スリーブ21を介して、口出線に接続する作業を行うものである。
なお、口出線の接続が行われた引出線20は、絶縁処理を施した後に、絶縁樹脂流入防止部形成工程の終了時において、コイルエンド13に結束固定されたワニス流入防止部30に重ねて、当該コイルエンド13の外周に沿うように整形し、適切な箇所を結束材を使用して結束することにより固定することになる。
【0027】
このように、本発明の電気機械巻線における口出線の接続方法によれば、絶縁樹脂流入防止部形成工程において、ワニス流入防止部30を形成し、加熱工程により当該ワニス流入防止部30を加熱することにより、当該ワニス流入防止部30における内側の熱溶融性材料被覆部31が溶融し、その外側の熱収縮性材料被覆部32は収縮することになる。それにより、引出線20の素線間隙が溶融性材料で充填され、当該溶融性材料は収縮材料により収縮密着するために、絶縁樹脂滴下含浸工程時において、引出線20におけるワニス流入防止部30により、電機子巻線10方向から浸入してきたワニスが電機子巻線10の先端部方向に流入することを阻止することができる。
そのため、引出線20におけるワニス流入防止部30から先端側の柔軟性が維持できるため、引出線20と口出線との接続を絶縁樹脂滴下含浸工程後に行うことが可能となる。従って、従来、絶縁樹脂含浸処理の前後に行っていた口出線の整形、結束の仮止め作業及び仮止め結束部のばらし作業が不要になるとともに、高耐熱の絶縁被覆を施した口出線を使用する必要がなくなるため、製造費用の低減を図ることが可能となる。
【0028】
また、熱溶融性材料被覆部31と熱収縮性材料被覆部32の先端部側の端部における一部に重ね合わせて、引出線20の先端部側を絶縁材料により被覆した絶縁材料被覆部33を形成する構成にしたことから、ワニス流入防止部30から先端部側に至る引出線においても、確実にワニスの流入を阻止することができる。
【0029】
以上、本発明について、好適な実施形態の一例を説明した。しかし、本発明は、前記実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜設計変更が可能である。
特に、電気機械巻線は、発電機における電機子巻線に限られるものではなく、電動機の固定子巻線等にも使用することが可能である。
また、熱溶融性材料、熱収縮性材料及び絶縁材料についても、前記実施形態において説明した材料に限定されるものではない。
【0030】
【発明の効果】
本発明によれば、絶縁樹脂含浸処理前後の口出線の仮止め作業に要していた煩雑な作業をなくすと同時に、口出線の絶縁被覆の熱劣化を防止することに寄与する電気機械巻線における口出線の接続方法を提供することができる。
【図面の簡単な説明】
【図1】電機子を示す斜視図である。
【図2】本発明の絶縁樹脂流入防止部形成工程における電機子巻線の引出線の断面図である。
【図3】本発明の絶縁樹脂流入防止部形成工程における電機子巻線の引出線の他の実施形態の断面図である。
【図4】本発明の絶縁樹脂流入防止部形成工程における電機子を示す拡大図である。
【図5】本発明の絶縁樹脂滴下含浸工程における電機子の斜視図である。
【符号の説明】
10 電機子巻線
11 電機子
12 電機子鉄心
13 コイルエンド
15 結束材
20 引出線
20’ 素線束
21 圧着スリーブ
30 ワニス流入防止部(絶縁樹脂流入防止部)
31 熱溶融性材料被覆部
32 熱収縮性材料被覆部
33 絶縁材料被覆部
40 回転装置
41 回転体
42 ワニス供給管
43 滴下ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of connecting a lead wire for performing output extraction or power supply to an electrical machine winding in an electrical machine that mainly rotates, such as a generator or an electric motor.
[0002]
[Prior art]
With regard to armature windings in generators such as AC generators and welding generators, and stator windings of motors (hereinafter referred to as “electric machine windings”), the seismic resistance of the electric machine windings, etc. In order to increase the mechanical strength and prevent insulation deterioration due to moisture absorption in the air etc. by ensuring insulation, the electrical machinery winding is impregnated with insulating resin (varnish) such as high-strength epoxy resin Conventionally, a treatment to be performed (hereinafter referred to as “varnish impregnation treatment”) has been generally performed.
[0003]
One of the varnish impregnation methods for electric machine windings is a high temperature drip impregnation method. This method uses a varnish dropping device to rotate an iron core and an assembly of an electric machine winding (an armature assembly, etc.) incorporated in the iron core around the horizontal axis of the iron core, In this method, varnish is dropped onto both coil ends and impregnated with the varnish. At this time, when the varnish penetrates into the lead wire of the electromechanical winding and hardens, the portion where the varnish has penetrated becomes very strong, and post-processing such as shaping and connection after varnish drying cannot be performed.
[0004]
Therefore, conventionally, before the varnish impregnation treatment, the lead wire and the lead wire of the electromechanical winding are connected, and the connected lead wire is used for the assembly of the electric machine winding when the varnish impregnation treatment is performed. Shaping work so as not to cause inconvenience due to rotation, binding work of the temporary fixing with a tie wire etc. to the coil end, and dismantling of the temporary fixing binding part of the lead wire after finishing the varnish impregnation treatment It was.
[0005]
[Problems to be solved by the invention]
However, the shaping of the lead wire, the temporary fixing work of the binding, and the disassembly work of the temporary fixing and binding part have to be relied on manually, and are very complicated operations.
Further, when the varnish impregnation treatment is performed, the lead wire passes through the high-temperature furnace when the electric machine winding assembly is heated and dried. Insulation coating may cause thermal degradation. In order to prevent the thermal deterioration, a lead wire with a high heat resistance insulating coating must be used, which causes an increase in manufacturing cost.
[0006]
The present invention has been made to eliminate the above-mentioned problems, and at the same time eliminates the troublesome work required for temporarily fixing the lead wire before and after the impregnation with the insulating resin, and at the same time, insulating the lead wire. An object of the present invention is to provide a method for connecting lead wires in an electromechanical winding that contributes to preventing thermal degradation of the coating.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, a method for connecting lead wires in an electromechanical winding according to the present invention includes the following steps.
(1) A lead wire derivation step in which the lead wire is derived from the electromechanical winding.
(2) A heat-meltable material-coated portion in which the lead wire is covered with a heat-meltable material at a position spaced from the tip end portion of the lead wire by a predetermined length toward the electric machine winding side, and the heat-fusible material An insulating material covering portion in which the leading end portion side of the lead wire is covered with an insulating material so as to overlap with a part of the end portion of the leading end portion side of the material covering portion; and the overlapping insulating material covering portion and the heat An insulating resin inflow prevention portion forming step of forming an insulating resin inflow prevention portion comprising: a heat shrinkable material covering portion that covers the meltable material covering portion with a heat shrinkable material.
(3) A heating step of heating the insulating resin inflow prevention portion at a predetermined temperature for a predetermined time.
(4) Insulating resin dropping impregnation step of dripping and impregnating the electric machine winding with insulating resin.
(5) A lead wire connecting step of connecting the leading end portion of the lead wire to the lead wire.
[0008]
Here, the predetermined length is a length necessary for connecting the lead wire, and is a length from the leading end portion of the lead wire determined in consideration of workability to the electromechanical winding side. . In addition, it is needless to say that the heat-meltable material and the heat-shrinkable material need to be appropriately selected from materials having such properties that each of the constituent materials performs heat-melting and heat-shrinking in the atmosphere of the heating process. Yes.
Furthermore, the insulating material covering portion may be provided so as to overlap with a part of the heat-meltable material covering portion and the heat-shrinkable material covering portion at the end portion on the tip end side of the insulating resin inflow prevention portion. However, when the insulating resin inflow prevention portion is overlaid on the entire area, the meltable material forming the heat-meltable material coating portion described later becomes the leader line by the shrinkable material forming the heat-shrinkable material coating portion. Since the effect of contraction and close contact is not achieved, the length of the overlapping portion needs to be appropriately determined so as to exhibit the effect.
[0009]
Therefore, according to the present invention, the insulating resin inflow prevention portion including the inner heat-meltable material covering portion and the outer heat-shrinkable material covering portion is formed (insulating resin inflow prevention portion forming step), and the insulation By heating the resin inflow prevention part (heating step), the heat-meltable material coating part in the insulating resin inflow prevention part is melted, and the heat-shrinkable material coating part on the outside contracts. Thus, the wire gap of the enameled copper wire of the lead wire is filled with the meltable material that forms the heat-meltable material coating portion, and the meltable material is filled with the shrinkable material that forms the heat-shrinkable material coating portion. The insulating resin that has contracted and adhered to the lead wire and the insulating resin permeating from the direction of the electric machine winding can be prevented from flowing in the direction of the tip of the electric machine winding by the insulating resin inflow prevention portion.
Therefore, the flexibility of the leading end side from the insulating resin inflow prevention portion in the lead wire can be maintained even after the step of impregnating the insulating resin, so that the lead wire can be easily connected to the lead wire. Electric machinery before and after the impregnation process is shaped, and the temporary fixing work of the bundling and the dismantling work of the temporary bundling part are not required, and it is not necessary to use a high-heat insulating insulating lead wire. The manufacturing cost can be reduced.
[0010]
Further, according to the present invention, the insulating material in which the leading end side of the lead wire is covered with the insulating material so as to overlap with a part of the end portion on the leading end side of the heat-meltable material covering portion and the heat-shrinkable material covering portion. Since it is configured to form the covering portion, the insulating resin does not flow in the insulating resin dropping impregnation step even in the portion of the lead line extending from the insulating resin inflow preventing portion to the tip portion side. The inflow of insulating resin can be reliably prevented.
[0011]
Further, in the insulating resin inflow prevention portion forming step, the heat-meltable material, the heat-shrinkable material, and the insulating material may be formed from flexible tube members.
[0012]
Therefore, according to the present invention, since the heat-meltable material, the heat-shrinkable material, and the insulating material are each formed from a flexible tube member, the insulating resin inflow prevention portion can be easily formed. It is possible to improve the workability and to ensure good quality after finishing since it has uniformity.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described in detail with reference to the drawings, taking the armature winding 10 in the generator as an example of an electromechanical winding. In the description of each embodiment, the same constituent elements are denoted by the same reference numerals, and redundant description is omitted.
[0014]
The lead wire connecting method in the electromechanical winding according to the present invention includes (1) a lead wire derivation step, (2) an insulating resin inflow prevention portion forming step, (3) a heating step, (4) an insulating resin dripping impregnation step, (5) It is comprised from the lead wire connection process.
[0015]
(1) Leader Wire Deriving Step This step is a step of performing an operation of forming the lead wire 20 in a state where the lead wire 20 is led out from the armature winding 10.
[0016]
As shown in FIG. 1, the armature winding 10 is wound around an armature core 12 constituting an armature 11 of a generator. The armature core 12 has an annular shape and has a slot ( A plurality of armature core pieces, which are thin iron plates with a plurality of holes (not shown), are stacked.
The armature winding 10 is formed by winding a bundle of strands of enameled copper wires such as polyester that are bundled in parallel, a plurality of which are housed in a predetermined slot and fixed by a wedge The armature core 12 is wound around. Further, the coil end 13 protruding from the slot is shaped to a predetermined dimension, and a plurality of lead wires 20 are led out from the terminal portion of the wound armature winding 10. In this step, a series of operations for forming the lead wire 20 from the armature winding 10 is performed.
[0017]
(2) Insulating resin inflow prevention portion forming step In this step, the varnish inflow prevention portion 30 is located at a position (approximately 200 mm in this embodiment) spaced from the tip end portion of the lead wire 20 toward the armature winding 10 side by a predetermined length. It is a process of forming (insulating resin inflow prevention part).
The varnish inflow prevention unit 30 includes a heat-meltable material coating portion 31 in which the lead wire 20 is coated with a heat-meltable material, and a heat-shrinkable material coating portion in which the heat-meltable material coating portion 31 is covered with a heat-shrinkable material. 32 and an insulating material covering portion 33.
[0018]
As an example of the hot-melt material, it is preferable to use a hot-melt uncrosslinked polyolefin resin as a main raw material (softening point of about 110 ° C.) and formed as a flexible tube member ( Hereinafter referred to as “hot-melt resin tube”).
As an example of the heat-shrinkable material, a soft polyolefin resin is used as a main raw material, and cross-linking is performed between molecules by electron beam irradiation (shrinkage condition, 125 ° C. ± 5 ° C.) and formed as a flexible tube member It is preferable to use the one obtained (hereinafter referred to as “heat-shrinkable tube”).
As an example of the insulating material, it is preferable to use a sleeve formed of a glass fiber braided and formed as a flexible tube member obtained by applying and drying a silicone polymer (hereinafter referred to as “insulating tube”). ).
[0019]
Using these constituent materials, the varnish inflow prevention portion 30 is formed by the following procedure.
As shown in FIG. 2, first, the lead wire 20 is covered with a heat-melting resin tube having a predetermined length at a position spaced from the tip end portion of the lead wire 20 toward the armature winding 10 by a predetermined length. A meltable material covering portion 31 is formed. Then, the remaining part of the lead wire 20 is covered with an insulating tube so as to be substantially overlapped with the end portion on the other end side of the armature winding 10 side in the hot melt material covering portion 31. The insulating material covering portion 33 is formed. Further, the entire area of the heat-meltable material covering portion 31 is covered with a heat-shrinkable tube to form the heat-shrinkable material covering portion 32.
Thereby, the site | part of the predetermined length by the side of the armature winding 10 of the leader wire 20 in the varnish inflow prevention part 30 has the two-layer structure of the heat-meltable material coating | coated part 31 and the heat-shrinkable material coating | coated part 32. The part of the predetermined length on the other end side has a three-layer structure in which the insulating material covering portion 33 is overlapped between the heat melting material covering portion 31 and the heat shrinkable material covering portion 32. .
[0020]
As shown in FIG. 4, a copper crimp sleeve 21 is attached to the leading end of the lead wire 20 on which the varnish inflow prevention portion 30 is formed, and the varnish inflow prevention portion 30 and the varnish inflow prevention portion 30 The lead wire 20 on the child winding 10 side is shaped into a ring shape along the outer periphery of the coil end 13, and is fixed by binding an appropriate position using the binding material 15.
[0021]
In addition, as shown in the said FIG. 2, in a heat-meltable resin tube, you may put together the strand bundle (element bundle which bundled several strands in parallel) which comprises all the leader lines 20, As shown in FIG. 3, the lead wire may be divided into a plurality of pieces, and a predetermined number of strands 20 ′ may be covered with a hot-melt resin tube. As described above, the reason for using a plurality of heat-meltable resin tubes is that when the meltable material is melted in the heating process described later, when the strand 20 'of the lead wire 20 is large, one heat This is because the gap formed in the strand 20 'of the lead wire 20 cannot be completely filled with the meltable material only with the meltable resin tube.
[0022]
(3) Heating step This step is a step of heating the varnish inflow prevention unit 30 at a predetermined temperature for a predetermined time.
This step heats the armature 11 in order to impart fluidity to the varnish to facilitate impregnation of the varnish in the armature winding 10 and to remove moisture in the insulating resin dropping impregnation step, which is the next step. The armature 11 is placed in a drying furnace (not shown) at a predetermined temperature for a predetermined time (in this embodiment, approximately 135 hours at 135 degrees). .
By this step, the inner heat-meltable material coating portion 31 in the varnish inflow prevention portion 30 is melted, and the outer heat-shrinkable material coating portion 32 is shrunk, so that the wire gap of the lead wire 20 is melted. It is possible to form the varnish inflow preventing portion 30 that can reliably prevent the inflow of the varnish by filling the melted material with the shrinkable material and shrinking and adhering the meltable material to the lead wire 20 with the shrinkable material.
[0023]
(4) Insulating resin dripping and impregnating step This step is a step of dripping and impregnating the varnish into the armature winding 10 and impregnating the varnish with the wire gap of the armature winding 10 or the armature winding 10. And the armature core 12 are impregnated into the gap.
In this step, as shown in FIG. 5, the armature 11 is placed on the rotating device 40, and the varnish supply pipe is disposed above the coil ends 13 at both ends of the armature core 12 so as to face the coil ends 13. A dripping nozzle 43 connected to a varnish supply device (not shown) through 42 is provided. While the armature 11 is heated in advance, the armature 11 is rotated by the rotating body 41 while the coil end 13 is rotated. The operation of dropping varnish from the dropping nozzle 42 for a predetermined time (hereinafter referred to as “varnish dropping process”) is performed.
[0024]
As a result, the varnish penetrates and fills between the strands of the armature winding 10 and between the armature winding 10 and the slot and the like, so that the armature winding 10 is firmly connected. It is possible to prevent a decrease in insulation due to moisture absorption in the air or the like by increasing the mechanical strength such as, and ensuring the insulation.
[0025]
Here, since the varnish inflow prevention part 30 is bound and fixed to the coil end 13 before performing the varnish dripping treatment, the varnish is sufficiently spread by being immersed in the varnish dripping at the time of the varnish dripping treatment. After the treatment, it is firmly fixed to the coil end 13 with a varnish. On the other hand, the inflow due to the penetration of the varnish from the armature winding 10 side into the strand of enameled copper wire constituting the lead wire 20 inside the varnish inflow prevention unit 30 is blocked by the varnish inflow prevention unit 30. .
On the other hand, during the varnish dripping treatment, the varnish is transmitted from the surface layer portion of the coil end 13 to the surface portion of the insulating material covering portion 33 in the vicinity of the distal end side of the varnish inflow preventing portion 30. However, since the insulating material covering portion 33 is formed of a resin mainly made of a silicon-based polymer and has a property of repelling varnish, the varnish may penetrate into the insulating material covering portion 33. , It does not adhere (for example, it does not adhere even if it adheres). Accordingly, the varnish does not flow from the varnish inflow prevention portion 30 to the inside of the insulating material covering portion 33 on the distal end side, so that the flexibility of the portion is not impaired and the following lead wire connection process is hindered. Can be done without.
[0026]
(5) Lead wire connecting step This step is a step of connecting the crimp sleeve 21 at the leading end of the lead wire 20 to a lead wire (not shown) for load connection.
In this step, after the varnish is cured, the armature 11 is press-fitted into a generator frame (not shown), and the lead wire 20 is connected to the lead wire via the crimp sleeve 21.
The lead wire 20 to which the lead wire is connected is overlapped with the varnish inflow prevention portion 30 that is bound and fixed to the coil end 13 at the end of the insulating resin inflow prevention portion forming step after the insulation treatment. Thus, the coil end 13 is shaped along the outer periphery, and appropriate portions are fixed by binding using a binding material.
[0027]
Thus, according to the connection method of the lead wire in the electromechanical winding of the present invention, the varnish inflow prevention portion 30 is formed in the insulating resin inflow prevention portion forming step, and the varnish inflow prevention portion 30 is formed in the heating step. By heating, the inner heat-meltable material coating portion 31 in the varnish inflow prevention portion 30 is melted, and the outer heat-shrinkable material coating portion 32 is contracted. As a result, the wire gap of the lead wire 20 is filled with a meltable material, and the meltable material shrinks and adheres to the shrinkable material. The varnish that has entered from the direction of the armature winding 10 can be prevented from flowing in the direction of the tip of the armature winding 10.
Therefore, since the flexibility of the leading end side from the varnish inflow preventing portion 30 in the lead wire 20 can be maintained, the lead wire 20 and the lead wire can be connected after the insulating resin dropping impregnation step. This eliminates the need for lead wire shaping, bundling temporary fixing work and temporary fixing bundling work previously performed before and after the insulating resin impregnation treatment, and also provides a high heat-resistant insulating coating. Therefore, it is possible to reduce the manufacturing cost.
[0028]
Further, the insulating material covering portion 33 is formed by overlapping the tip portion side of the lead wire 20 with an insulating material so as to overlap with a part of the end portion on the leading end side of the heat melting material covering portion 31 and the heat shrinkable material covering portion 32. Therefore, the inflow of the varnish can be surely prevented even in the lead line extending from the varnish inflow prevention portion 30 to the tip end side.
[0029]
Heretofore, an example of a preferred embodiment has been described for the present invention. However, the present invention is not limited to the above-described embodiment, and the design of each of the above-described components can be appropriately changed without departing from the spirit of the present invention.
In particular, the electromechanical winding is not limited to the armature winding in the generator, and can be used for a stator winding of the motor.
Further, the heat-meltable material, the heat-shrinkable material, and the insulating material are not limited to the materials described in the embodiment.
[0030]
【The invention's effect】
According to the present invention, an electric machine that contributes to eliminating the troublesome work required for temporary fixing of the lead wire before and after the impregnation with the insulating resin, and at the same time, preventing thermal deterioration of the insulation coating of the lead wire. It is possible to provide a method for connecting lead wires in a winding.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an armature.
FIG. 2 is a cross-sectional view of the lead wire of the armature winding in the insulating resin inflow prevention portion forming step of the present invention.
FIG. 3 is a cross-sectional view of another embodiment of the lead wire of the armature winding in the insulating resin inflow prevention portion forming step of the present invention.
FIG. 4 is an enlarged view showing an armature in the insulating resin inflow prevention portion forming step of the present invention.
FIG. 5 is a perspective view of an armature in an insulating resin dropping impregnation step of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Armature winding 11 Armature 12 Armature core 13 Coil end 15 Bundling material 20 Lead wire 20 'Strand bundle 21 Crimp sleeve 30 Varnish inflow prevention part (insulation resin inflow prevention part)
31 Heat-meltable material coating portion 32 Heat-shrinkable material coating portion 33 Insulating material coating portion 40 Rotating device 41 Rotating body 42 Varnish supply pipe 43 Drip nozzle

Claims (2)

以下の各工程を含むことを特徴とする電気機械巻線における口出線の接続方法。
(1)電気機械巻線から引出線を導出した状態とする引出線導出工程。
(2)前記引出線における先端部から前記電気機械巻線側へ所定長さ離間した位置において、
前記引出線を熱溶融性材料を用いて被覆した熱溶融性材料被覆部と、
前記熱溶融性材料被覆部の前記先端部側の端部における一部に重ね合わせて、前記引出線の先端部側を絶縁材料により被覆した絶縁材料被覆部と、
前記重ね合わせられた絶縁材料被覆部と前記熱溶融性材料被覆部を熱収縮性材料を用いて被覆した熱収縮性材料被覆部と、
を備える絶縁樹脂流入防止部を形成する絶縁樹脂流入防止部形成工程。
(3)前記絶縁樹脂流入防止部を所定温度かつ所定時間加熱する加熱工程。
(4)前記電機機械巻線に絶縁樹脂を滴下して含浸させる絶縁樹脂滴下含浸工程。
(5)前記引出線の先端部を口出線と接続する口出線接続工程。
A method for connecting lead wires in an electromechanical winding comprising the following steps.
(1) A lead wire derivation step in which the lead wire is derived from the electromechanical winding.
(2) At a position spaced a predetermined length from the tip of the lead wire to the electromechanical winding side,
A heat-meltable material-coated portion in which the lead wire is covered with a heat-meltable material;
An insulating material covering portion that is overlapped with a part of the end portion on the tip end portion side of the heat-meltable material covering portion, and covering the tip end side of the lead wire with an insulating material;
A heat-shrinkable material covering portion obtained by covering the superposed insulating material covering portion and the heat-meltable material covering portion with a heat-shrinkable material;
An insulating resin inflow prevention portion forming step of forming an insulating resin inflow prevention portion.
(3) A heating step of heating the insulating resin inflow prevention portion at a predetermined temperature for a predetermined time.
(4) Insulating resin dropping impregnation step of dripping and impregnating the electric machine winding with insulating resin.
(5) A lead wire connecting step of connecting the leading end portion of the lead wire to the lead wire.
前記絶縁樹脂流入防止部形成工程において、
前記熱溶融性材料、前記熱収縮性材料及び前記絶縁材料が、それぞれ可撓性を有するチューブ部材から形成されていることを特徴とする請求項1に記載の電気機械巻線における口出線の接続方法。
In the insulating resin inflow prevention part forming step,
The lead wire in the electric machine winding according to claim 1, wherein the heat-meltable material, the heat-shrinkable material, and the insulating material are each formed from a flexible tube member. Connection method.
JP2001046485A 2001-02-22 2001-02-22 Connection method of lead wire in electromechanical winding Expired - Lifetime JP3807662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001046485A JP3807662B2 (en) 2001-02-22 2001-02-22 Connection method of lead wire in electromechanical winding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001046485A JP3807662B2 (en) 2001-02-22 2001-02-22 Connection method of lead wire in electromechanical winding

Publications (2)

Publication Number Publication Date
JP2002247811A JP2002247811A (en) 2002-08-30
JP3807662B2 true JP3807662B2 (en) 2006-08-09

Family

ID=18908101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001046485A Expired - Lifetime JP3807662B2 (en) 2001-02-22 2001-02-22 Connection method of lead wire in electromechanical winding

Country Status (1)

Country Link
JP (1) JP3807662B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457417A (en) * 2013-09-12 2013-12-18 安徽奥特佳科技发展有限公司 Leading-out method for brushless direct current motor outgoing lines for electric compressor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646270B2 (en) * 2010-10-06 2014-12-24 株式会社東芝 Protective sleeve, rotating electric machine with protective sleeve, manufacturing method of protective sleeve, and manufacturing method of rotating electric machine with protective sleeve
DE112010006096B4 (en) * 2010-12-28 2021-03-18 Denso Corporation Stator and rotating electrical machine equipped with this stator
CN102594036A (en) * 2011-12-23 2012-07-18 浙江京马电机有限公司 Internal joint process of aluminum wire motor
JP5955094B2 (en) * 2012-05-16 2016-07-20 三菱電機株式会社 Winding device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103457417A (en) * 2013-09-12 2013-12-18 安徽奥特佳科技发展有限公司 Leading-out method for brushless direct current motor outgoing lines for electric compressor

Also Published As

Publication number Publication date
JP2002247811A (en) 2002-08-30

Similar Documents

Publication Publication Date Title
US7863795B2 (en) Method for producing a conductor bar of transposed stranded conductors
US20020046875A1 (en) Insulation of stator windings with shrink-on sleeves
US5729068A (en) Electric machine with deformable insulation on soldering lugs
JP2001510015A (en) Stator and manufacturing method thereof
JP3807662B2 (en) Connection method of lead wire in electromechanical winding
JPH11178264A (en) Armature windings for low voltage electric machines
JPH0554242B2 (en)
MXPA01009914A (en) Improvements in electrical machines.
JP7031292B2 (en) Stator and how to manufacture the stator
JP7031291B2 (en) Stator and how to manufacture the stator
JPH06327203A (en) Method for impregnating varnish of electrical equipment
JPH09308158A (en) Low voltage rotating machine stator insulation coil
JP7484621B2 (en) Manufacturing method of the stator
JPS605138B2 (en) Insulation treatment method for electrical winding connections
JP2004048917A (en) Stator for rotating electric machine and method of manufacturing the same
JPH01222640A (en) A method for making a stator coil vent tube and a product obtained by the method
JPH056423B2 (en)
JPS5818724B2 (en) Insulated conductor for winding
JP2597724B2 (en) Superconductive magnet
JPH0329973Y2 (en)
JP2022124161A (en) Stator for rotating electrical machine and method for manufacturing stator for rotating electrical machine
JP2921354B2 (en) Rotor of vehicle alternator and method of manufacturing the same
JPS6118331A (en) Coil insulation method for rotating electric machines
JP2023132032A (en) Electric motor and protection method for electric motor coil
JPH0318253A (en) Connecting method for lead wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3807662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140526

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term