[go: up one dir, main page]

JP3817065B2 - Valve timing control device for internal combustion engine - Google Patents

Valve timing control device for internal combustion engine Download PDF

Info

Publication number
JP3817065B2
JP3817065B2 JP11294898A JP11294898A JP3817065B2 JP 3817065 B2 JP3817065 B2 JP 3817065B2 JP 11294898 A JP11294898 A JP 11294898A JP 11294898 A JP11294898 A JP 11294898A JP 3817065 B2 JP3817065 B2 JP 3817065B2
Authority
JP
Japan
Prior art keywords
chamber
hydraulic
passage
pressure
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11294898A
Other languages
Japanese (ja)
Other versions
JPH11303612A (en
Inventor
誠次 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11294898A priority Critical patent/JP3817065B2/en
Priority to DE19980580T priority patent/DE19980580T1/en
Priority to KR1019997010893A priority patent/KR100338204B1/en
Priority to PCT/JP1999/001385 priority patent/WO1999049187A1/en
Priority to US09/402,831 priority patent/US6263843B1/en
Publication of JPH11303612A publication Critical patent/JPH11303612A/en
Application granted granted Critical
Publication of JP3817065B2 publication Critical patent/JP3817065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/146

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の吸気弁,排気弁である機関弁の開閉時期を運転状態に応じて可変にするいわゆるベーンタイプのバルブタイミング制御装置に関する。
【0002】
【従来の技術】
従来のベーンタイプのバルブタイミング制御装置としては、例えば特開平8−121124号公報に記載されているものが知られている。
【0003】
概略を説明すれば、このバルブタイミング制御装置は、前記開口端がフロントカバーとリアカバーで閉塞されたタイミングプーリの筒状のハウジング内部に、カムシャフトの端部に固定されたベーンが回転自在に収納されていると共に、ハウジングの内周面に直径方向から互いに内方へ突出されたほぼ台形状の2つの隔壁部とベーンの2つの羽根部との間に進角側油圧室と遅角側油圧室が画成されている。そして、機関運転状態に応じて前記進角側と遅角側の各油圧室に油圧が給排されてかかる駆動油圧によりベーンを正逆回転させることによりタイミングプーリとカムシャフトとの相対回動位相を変化させて、吸気弁の開閉時期を可変にするようになっている。
【0004】
ところで、前記カムシャフトには、機関作動中におけるバルブスプリングのばね力などに起因して正負(正転,逆転)の回転変動トルク(交番トルク)が発生していることは周知の通りであるが、前述のベーンの遅角側あるいは進角側への回転駆動中にかかる大きな回転変動トルクが作用すると、ベーンの駆動油圧が回転変動トルクの反力に負けてベーンが押し戻されることにより、ベーンの回転挙動が不安定になる。すなわち、ベーンは、例えば進角側へ回転する際に、遅角側油圧室に供給された駆動油圧が正の変動トルクの反力に負けて図11の実線で示すように進角側と遅角側への正転,逆転(進退)を繰り返しながら進角側へ回転する。したがって、カムシャフトも同じく正転,逆転を繰り返しながらタイミングプーリとの相対回転を行うため、機関弁の開閉時期制御であるバルブスプリングの制御応答性が低下してしまう。
【0005】
そこで、特開平8−121123号公報に記載した技術のように、ベーンの内部に逆止弁とパイロット弁とからなるパイロット式逆止弁を設け、この両弁の作動によって進角側あるいは遅角側の油圧室に供給された駆動油圧の油通路内への逆流を規制して、変動トルクによるベーンの逆転を防止するものも提供されている。
【0006】
【発明が解決しようとする課題】
しかしながら、この後者の従来例にあっては、パイロット式逆止弁を用いて例えば進角側油圧室内からの駆動油圧の逆流を阻止するものの、このパイロット式逆止弁は進角側油圧室に供給された油圧を直接利用して作動するため、かかる油圧室内の油圧の保持能力の低下によって作動精度が低下するおそれがある。すなわち、ハウジング内を摺動回転するベーンの前後端面とフロントカバー及びリアカバーとの間には、ベーンの良好な摺動回転性を確保するために、微小な隙間が形成されている一方、隣接する各油圧室間には大きな差圧が生じている。このため、進角側油圧室に供給された油圧が微小隙間を通り遅角側の油圧室内にリークしてしまうおそれがある。この結果、パイロット式逆止弁のチェック機能が低下して逆流を効果的に阻止できない可能性がある。
【0007】
また、ハウジングとフロントカバー,リアカバーとの間のシール部材も長期間経過後の劣化などによって進角側油圧室から外部への油圧のリークが生じた場合にも、パイロット式逆止弁のチェック機能が低下してしまう可能性がある。
【0008】
この結果、バルブタイミングの制御応答性が低下するといった前者の従来例と同じ技術的課題を招来する。
【0009】
【課題を解決するための手段】
本発明は、前記従来例の実情に鑑みて案出されたもので、請求項1記載の発明は、機関のクランクシャフトによって回転駆動する回転体と、外周に機関弁を作動させる駆動カムを有しかつ回転体と相対回動可能なカムシャフトと、該カムシャフトの端部に固定されて、回転体のハウジング内を摺動回転する複数の羽根部を有するベーンと、前記ハウジングの内周面に内方へ突設された複数の隔壁部と、該各隔壁部と前記各羽根部の両側面との間に隔成された遅角側油圧室及び進角側油圧室と、該両油圧室に相対的に油圧を給排して前記ベーンを正逆回転させる油圧回路と、機関作動時に前記カムシャフトに作用する回転変動トルクに伴うベーンの揺動振動を規制する規制機構とを備えたバルブタイミング制御装置であって、前記規制機構は、前記ベーンの少なくとも1つの羽根部内に形成された作動用孔内に固定された筒状のシート部材と、該シート部材の外周に進退動自在に設けられて、先端頭部が前記隔壁部かあるいはハウジングの内周面方向へ指向したプランジャと、前記シート部材の内部に有する仕切壁によって隔成されたプランジャ頭部内の高圧室及びシート部材内のリザーバ室と、前記仕切壁に貫通形成された連通路を開閉してリザーバ室から高圧室側へのみ作動液の流通を許容するチェック弁と、前記リザーバ室内に油圧を給排する第1通路と、リザーバ室内に給排された作動液を高圧室内に給排する第2通路と、前記シート部材内に摺動自在に設けられて、該リザーバ室内の油圧に応じて前記第2通路を開閉する制御弁とから構成されていることを特徴としている。
【0010】
請求項2記載の発明は、前記第1通路は、前記作動用孔とシート部材との間に形成されて、前記遅角側あるいは進角側油圧室に連通する第1通路溝と、シート部の周壁に穿設されてリザーバ室に開口した第1通孔とから構成されている一方、前記第2通路は、シート部材の周壁に前記第1通孔よりも仕切壁側に穿設されて、リザーバ室に臨む第2通孔と、シート部材の外周面とプランジャの内周面との間に形成されて、前記第2通孔と高圧室とを連通する第2通路溝とから構成されていることを特徴としている。
【0011】
請求項3記載の発明は、前記制御弁は、スプール状に形成され、シート部材内を摺動して前記第2通孔を開閉する弁体と、該弁体の反対側に設けられて、リザーバ室の油圧を受けて弁体を第2通孔の閉方向へ移動させる受圧部と、該受圧部の後端側に弾装されて弁体を開方向に付勢するばね部材とから構成されたことを特徴としている。
【0012】
請求項4記載の発明は、前記受圧部の後端面を、前記プランジャが進退動する油圧室と反対側の他方側の油圧室に臨設し、該他方側の油圧室内の油圧と前記ばね部材のばね力との共働の圧力で前記弁体を開方向へ移動させるようにしたことを特徴としている。
【0013】
したがって、本発明によれば、機関運転状態の変化に伴い、ベーンを例えば遅角側位置から進角側へ回転させようとする場合には、油圧回路から進角側油圧室内に油圧が供給されると同時に、第1通路からリザーバ室内に油圧が供給される。したがって、ベーンは、進角側油圧室の油圧の上昇によって進角側へ回転し始める一方、リザーバ室の油圧の上昇に伴って弁体がばね部材のばね力に抗して一方へ摺動して第2通路を閉止する。このため、リザーバ室の油圧は、連通路からチェック弁を押し開いて高圧室に流入してプランジャを例えば隔壁部の一側面方向へ押し出して当接する形になる。
【0014】
ここで、カムシャフトから伝達された回転変動トルクが作用し、例えば正の変動トルクによって進角側油圧室に供給された油圧に抗してベーンを遅角側へ押し戻そうとする反力が作用すると、プランジャは、密閉された高圧室の油圧で隔壁部一側面に対する押圧反力、つまり突張力が働いて正の変動トルクに打ち勝つ。このため、ベーンは、回転中におけるプランジャの進出に伴い逆回転を確実に規制されながら進角側へ速やかに回転する。尚、ここで、負の回転変動トルクは、ベーンを進角側へ回転させるアシスト力として作用することとなる。
【0015】
また、機関運転状態が変化して、ベーンを前記最大進角位置から遅角側へ回転させようとする場合は、油圧回路から今度は遅角側油圧室に油圧供給されると、この油圧が受圧部の後端面に作用して、この油圧とばね部材のばね力との合成力によって弁体を押し出すため第2通路が開成される。このため、高圧室内の油圧は、第2通路を通って一旦リザーバ室に速やかに流入して、ここから第1通路を逆流して進角側油圧室を通って外部に排出される。したがって、プランジャは隔壁部一側面に対する突張力が即座に解除されて、自由に後退動する。これにより、ベーンは、遅角側油圧室内の油圧によって遅角側へ速やかに回転することができる。
【0016】
【発明の実施の形態】
図1〜図4は本発明に係る内燃機関のバルブタイミング制御装置の実施形態を示し、吸気弁側に適用したものを示している。
【0017】
すなわち、機関の図外のクランクシャフトによりタイミングチェーンを介して回転駆動される回転体たるタイミングスプロケット1と、該タイミングスプロケット1に対して相対回動可能に設けられたカムシャフト2と、該カムシャフト2の端部に固定されてタイミングスプロケット1内に回転自在に収容されたベーン3と、該ベーン3を油圧によって正逆回転させる油圧回路4と、タイミングスプロケット1とベーン3との相対回動を最大遅角側の回動位置でロックするロック機構10と、前記カムシャフト2に作用する正の回転変動トルクに伴うベーンの揺動振動を規制する規制機構20とを備えている。
【0018】
前記タイミングスプロケット1は、図4にも示すように、外周にタイミングチェーンが噛合する歯部5aを有する回転部材5と、該回転部材5の前方に配置されてベーン3を回転自在に収容した筒状のハウジング6と、該ハウジング6の前端開口を閉塞する蓋体たる円板状のフロントカバー7と、ハウジング6と回転部材5との間に配置されてハウジング6の後端開口を閉塞するほぼ円板状のリアカバー8とから構成され、これら回転部材5とハウジング6及びフロントカバー7,リアカバー8は、4本の小径ボルト9によって軸方向から一体的に結合されている。
【0019】
前記回転部材5は、ほぼ円環状を呈し、周方向の約90°の等間隔位置に各小径ボルト9が螺着する4つの雌ねじ孔5bが前後方向へ貫通形成されていると共に、内部中央位置に後述するスリーブ25が嵌合する段差径状の嵌合孔11が貫通形成されている。さらに、前端面には、前記リアカバー8が嵌合する円板状の嵌合溝12が形成されている。
【0020】
また、前記ハウジング6は、前後両端が開口形成された円筒状を呈し、内周面の周方向の90°位置には4つの隔壁部13が突設されている。この隔壁部13は、横断面台形状を呈しており、それぞれハウジング6の軸方向に沿って設けられて、前後の各両端縁がハウジング6の両端縁と同一面になっていると共に、基端側には、小径ボルト9が挿通する4つのボルト挿通孔14が軸方向へ貫通形成されている。さらに、各隔壁部13の内端面中央位置に軸方向に沿って切欠形成された保持溝13a内にコ字形のシール部材15と該シール部材15を内方へ押圧する板ばね16が嵌合保持されている。
【0021】
さらに、前記フロントカバー7は、中央に比較的大径なボルト挿通孔17が穿設されていると共に、前記ハウジング6の各ボルト挿通孔14と対応する位置に4つのボルト孔18が穿設されている。
【0022】
また、リアカバー8は、後端面に前記回転部材5の嵌合溝12内に嵌合保持される円板部8aを有していると共に、中央にスリーブ25の小径な円環部25aが嵌入する嵌入孔8cが穿設され、さらに前記ボルト挿通孔14に対応する位置に4つのボルト孔19が同じく形成されている。
【0023】
前記カムシャフト2は、シリンダヘッド22の上端部にカム軸受23を介して回転自在に支持され、外周面所定位置に吸気弁をバルブリフターを介して開作動させる図外のカムが一体に設けられていると共に、前端部にはフランジ部24が一体に設けられている。
【0024】
前記べーン3は、焼結合金材で一体に形成され、前記フランジ部24と嵌合孔11に夫々前後部が嵌合した前記スリーブ25を介して軸方向から挿通した固定ボルト26によってカムシャフト2の前端部に固定されており、中央に前記固定ボルト26が挿通するボルト挿通孔27aを有する円環状のロータ部27と、該ロータ部27の外周面の周方向の90°位置に一体に設けられた4つの羽根部28とを備えている。
【0025】
前記第1〜第4羽根部28は、3つが横断面長方形状を呈し、他の1つが断面ほぼ逆台形状を呈し、それぞれが各隔壁部13間に配置されていると共に、各外周面の中央に軸方向に切欠された保持溝29にハウジング6の内周面6aに摺接するコ字形のシール部材30と該シール部材30を外方に押圧する板ばね31が夫々嵌着保持されている。また、この各羽根部28の両側と各隔壁部13の両側面との間に夫々4つの進角側油圧室32と遅角側油圧室33が隔成されている。
【0026】
前記油圧回路4は、図1,図3に示すように進角側油圧室32に対して油圧を給排する第1油圧通路41と、遅角側油圧室33に対して油圧を給排する第2油圧通路42との2系統の油圧通路を有し、この両油圧通路41,42には、供給通路43とドレン通路44とが夫々通路切替用の電磁切替弁45を介して接続されている。前記供給通路43には、オイルパン46内の油を圧送するオイルポンプ47が設けられている一方、ドレン通路44の下流端がオイルパン46に連通している。
【0027】
前記第1油圧通路41は、シリンダヘッド22内からカムシャフト2の軸心内部に形成された第1通路部41aと、固定ボルト26の内部軸線方向を通って頭部26a内で分岐形成されて第1通路部41aと連通する第1油路41bと、該頭部26aの小径な外周面とベーン3の基部27内のボルト挿通孔27aの内周面との間に形成されて第1油路41bに連通する油室41cと、ベーン3の基部27内にほぼ放射状に形成されて油室41cと各進角側油圧室32に連通する4本の分岐路41dとから構成されている。
【0028】
一方、第2油圧通路42は、シリンダヘッド22内及びカムシャフト2の内部一側に形成された第2通路部42aと、前記スリーブ25の内部にほぼL字形状に折曲形成されて第2通路部42aと連通する第2油路42bと、回転部材5の嵌合孔11の外周側孔縁に形成されて第2油路42bと連通する4つの油通路溝42cと、リアカバー8の周方向の約90°の位置に形成されて、各油通路溝42cと遅角側油圧室33とを連通する4つの油孔42dとから構成されている。
【0029】
前記電磁切替弁45は、4ポート2位置型であって、内部の弁体が各油圧通路41,42と供給通路43及びドレン通路44とを相対的に切り替え制御するようになっていると共に、コントローラ48からの制御信号によって切り替え作動されるようになっている。尚、電磁切換弁45は、供給通路43とドレン通路44とを相対的に切り替えるようになっているが、その切り替え作動は短時間に断続的にも行うようになっている。コントローラ48は、機関回転数を検出するクランク角センサや吸入空気量を検出するエアフローメータからの信号によって現在の運転状態を検出すると共に、クランク角及びカム角センサからの信号によってタイミングスプロケット1とカムシャフト2との相対回動位置を検出している。
【0030】
前記ロック機構10は、図4及び図5に示すように前記回転部材5の嵌合溝12の外周側所定位置に形成された係合溝5cと、この係合溝5cに対応した前記リアカバー8の所定位置に貫通形成されて、内周面がテーパ状の係合孔21と、該係合孔21に対応した前記1つの羽根部28のほぼ中央位置に内部軸方向に沿って貫通形成された摺動用孔35と、該1つの羽根部28の前記摺動用孔35内に摺動自在に設けられたロックピン34と、該ロックピン34の後端側に弾装されたばね部材であるコイルスプリング39と、ロックピン34と摺動用孔35との間に形成された環状受圧室40とから構成されている。
【0031】
そして、ベーン3が最大遅角側に回転した時点でコイルスプリング39のばね力によってロックピン34が進出して先端係合部34aが係合孔21に係合することにより、ベーン3をリアカバー8にロックさせるようになっている。一方、進角側への回転時には、進角側油圧室32への油圧の供給と同時に油孔36を介して環状受圧室40に同じ油圧が供給されて、ロックピン34をコイルスプリング39のばね力に抗して後退動させて前記係合部34aと係合孔21とのロックを解除するようになっている。
【0032】
そして、前記規制機構20は、図1,図2に示すように周方向へ肉厚の大きな1つの羽根部28に設けられ、該羽根部28の遅角側油圧室33に臨む側面から内部円周方向に沿って形成された有底筒状の作動用孔50と、該作動用孔50の内部に固定された円筒状のシート部材51と、該シート部材51の外周面に遅角側油圧室33方向へ進退可能に摺動自在に設けられたプランジャ52と、シート部材51の内部前端側に有する仕切壁51aの前後つまりシート部材51の内部とプランジャ52の先端頭部52aの内部に形成されたリザーバ室53及び高圧室54と、仕切壁51aの中央に穿設された連通路55を開閉してリザーバ室53の油圧を高圧室54内へのみ流入を許容するチェック弁56と、前記第1油圧通路41と連通し、前記リザーバ室53内に油圧を給排する第1通路57と、リザーバ室53内に給排された作動油を高圧室54内に給排する第2通路58と、前記シート部材51内に摺動自在に設けられて前記第2通路58を開閉するスプール状の制御弁59とから主として構成されている。
【0033】
前記作動用孔50は、進角側油圧室32に臨むプランジャ52の摺動用孔部と、その後端側の小径溝部50aとから構成されており、摺動用孔部は、内周面がプランジャ52の外径よりも若干大きな内径を有して、プランジャ52の外周面が摺動自在に配置されている。
【0034】
前記シート部材51は、後端部51bが摺動用孔部の底部側に形成された前記小径溝部50a内に圧入固定されている。
【0035】
前記プランジャ52は、有蓋円筒状を呈し、先端の頭部52aの前端面が球面状に形成されていると共に、該頭部52aが一つの隔壁部13の横断面湾曲状に切欠された一側面13aに当接配置されている。
【0036】
前記チェック弁56は、高圧室54の内部に設けられ、連通路55を開閉するボール弁体62と、該ボール弁体62をカップ状のリテーナ63を介して閉方向へ付勢するバルブスプリング64と、プランジャ先端部52aの底壁とリテーナ63の外周縁フランジ部との間に弾装されて、リテーナ63及びボール弁体62等を仕切壁51a方向へ保持する圧縮スプリング65とから構成されている。
【0037】
また、前記リテーナ63のカップ面には前記ボール弁体62が開弁した時に油圧を前記高圧室54に導入するための側孔63aが設けられている。
【0038】
前記第1通路57は、作動用孔50の摺動用孔部とシート部材51の外周面との間に形成されて、前記第1油圧通路41の分岐路41dに連通する第1通路溝57aと、シート部51の後端部51b周壁に直径方向に沿って穿設されて、第1通路溝57aとリザーバ室53とを連通する第1通孔57bとから構成されている。
【0039】
第2通路58は、シート部材51の仕切壁51a近傍に直径方向に沿って穿設されて、リザーバ室53に臨む第2通孔58aと、シート部材51の仕切壁51a側の外周面とプランジャ52の内周面との間に形成されて、第2通孔58aと高圧室54とを連通する筒状の第2通路溝58bとから構成されている。
【0040】
前記制御弁59は、リザーバ室53の仕切壁51a側の内部を摺動して前記第2通孔58aを開閉する弁体59aと、該弁体59aの反対側に弁軸を介して設けられ、シート部材51の後端部51b内を摺動する受圧部59bと、該受圧部59bと小径溝部50aの底面との間に形成されて、弁体59aを開方向に付勢するばね部材たるリターンスプリング59cとから構成されている。
【0041】
前記弁体59aは、横断面ほぼコ字形状を呈し、その長さが仕切壁51aと第2通孔58aの孔縁付近までの長さとほぼ同一に設定されて、前端縁が仕切壁51aの端面に当接した段階で第2通孔58aを全開させるようになっている一方、受圧部58bが小径溝部50aの底面に当接移動した状態で第2通孔58aを全閉させるようになっている。また、弁体59aには、リザーバ室53と連通路55とを連通させる複数の貫通孔60が穿設されている。
【0042】
前記受圧部58bは、弁体59aと同じく横断面ほぼコ字形状を呈し、リザーバ室53側の前端面が第1受圧面として形成され、後端面が第2受圧面として形成され、該第2受圧面とシート部材51の後端部51b内面との間に形成された受圧室61には羽根部28の基端部に穿設された通孔28aを介して遅角側油圧室33の油圧が供給されるようになっている。したがって、第2受圧面には、リターンスプリング59cのばね力と受圧室61内の油圧との合成力が作用するようになっている。
【0043】
前記リターンスプリング59cは、リザーバ室53や受圧室61に油圧が作用しない場合に、弁体59aを開方向に付勢する程度の小さなセット荷重に設定されている。
【0044】
以下、本実施形態の作用を説明する。まず、機関始動時及びアイドリング運転時には、コントローラ48から制御信号が出力された電磁切替弁48が供給通路43と第2油圧通路42を連通させると共に、ドレン通路44と第1油圧通路41とを連通させる。このため、オイルポンプ47から圧送された油圧は第2油圧通路42(油通路溝42c→油孔42d)を通って遅角側油圧室33に供給される一方、進角側油圧室32には、機関停止時と同じく油圧が供給されず低圧状態を維持している。このため、ベーン3は、図1に示すように各羽根部28が進角側油圧室32側の各隔壁部13の一側面に当接した状態になる。
【0045】
したがって、タイミングスプロケット1とカムシャフト2との相対回動位置が一方側(遅角側)に保持されて、吸気弁の開閉時期を遅角側に制御する。これによって、慣性吸気の利用による燃焼効率が向上して機関回転の安定化と燃費の向上が図れる。
【0046】
ここで、規制機構20は、図1,図2に示すようにリターンスプリング59cのばね力と、遅角側油圧室33へ供給された油圧とによって、受圧部59bの第2受圧面が押圧されて弁体59aを仕切壁51a側に押し付け、第2通孔58aを全開状態にする。このため、プランジャ52は、高圧室54内が低圧状態になっているので進出動(伸びストローク)することなく、前述の遅角側油圧室33の油圧による前記他の3つのベーン28の隔壁部13の一側面への当接と同様に先端頭部52aが対向する一側面13aに当接している。
【0047】
その後、車両が発進して機関が低回転低負荷域から中回転中負荷域の通常運転に移行すると、コントローラ48からの制御信号によって電磁切替弁45が作動して、供給通路43と第1油圧通路41を連通させる一方、ドレン通路44と第2油圧通路42を連通させる。したがって、今度は遅角側油圧室33内の作動油が第2油圧通路42を通ってドレン通路44からオイルパン46内に戻されて遅角側油圧室33内が低圧になる一方、進角側油圧室32内に油圧が第1油路41a→41b→分岐路41dを経由して供給されて高圧となる。このため、ベーン3は、図1に示す位置から時計方向に回転して各羽根部28が図7に示す中間位置を経て,図8に示すように反対側(遅角側油圧室側)の各隔壁部13の他側面に当接する最大進角位置まで回転する。
【0048】
したがって、タイミングスプロケット1とカムシャフト2とは、他方側へ相対回動して吸気弁の開閉時期を進角側へ制御する。これによって、機関のポンプ損失が低減して出力の向上が図れる。
【0049】
そして、規制機構20は、かかる遅角側から進角側へ切り換えられた時点では、遅角側油圧室33内の油圧が前述のようにドレンされて低圧状態になるため、受圧室61内の油圧も通孔28aを介して遅角側油圧室33に戻されて低圧になる。一方、進角側油圧室32に供給された油圧が図6〜図8の矢印に示すように第1通路57の第1通路溝57aと第1通孔57bを通ってリザーバ室53内に流入して、受圧部59bの第1受圧面をリターンスプリング59cのばね力に抗して押圧して受圧部59bを小径溝部50aの底面に押し付ける。したがって、弁体59aは、図6〜図8に示すように弁軸を介して受圧室61方向へ摺動して、第2通孔58aを全閉状態にする。このため、第2通路58を介する高圧室54とリザーバ室53との連通が遮断される一方、リザーバ室53内の油圧が弁体59aの各貫通孔60を通って連通路55からバルブスプリング64のばね力に抗してボール弁体62を押開きながら高圧室54内に流入する。
【0050】
このため、プランジャ52は、羽根部28の図1に示す位置から時計方向の回転に伴い該回転ストローク量に応じて図6〜図8に示すように進出(伸長)して頭部52aが一側面13aに常時当接状態を維持する。
【0051】
ここで、カムシャフト2からベーン3に伝達された変動トルクのうち正の変動トルクが作用して羽根部28を反時計方向へ一時的に回転させようとすると、プランジャ52はボール弁体62で閉塞された高圧室54の油圧によって後退動が規制されているため、正の変動トルクに対するベーン3の反時計方向の回転に対していわば突張力が作用して該正の変動トルクに打ち勝つ。このため、ベーン3は、図11の破線で示すように最遅角側から最進角側への回転中にプランジャ52の進出に伴い反時計方向(遅角側)への回転が確実に規制されながら時計方向(進角側)へ速やかに回転する。
【0052】
したがって、タイミングスプロケット1とカムシャフト2との進角側への相対回転速度が上昇して、バルブタイミングの制御応答性が向上する。
【0053】
尚、ここで、負の回転変動トルクは、ベーン3を進角側へ回転させるアシスト力として作用するため、バルブタイミングの制御応答性がさらに向上することになる。
【0054】
一方、機関中回転中負荷域から高回転高負荷域に移行した場合は、図9に示すように進角側油圧室32から作動油が排出される一方、遅角側油圧室33に油圧が供給され、この油圧が第1通路57を介してリザーバ室53に供給される。したがって、制御弁59の弁体59aは、図9に示すように受圧室61内の上昇油圧とリターンスプリング59cのばね力との合成力が、さらには装置の回転遠心力も加わって仕切壁51a方向へ速やかに摺動し、第2通孔58aを開成する。このため、高圧室54の作動油が第2通路58を通って一旦リザーバ室53に流入し、ここから第1通路57,進角側油圧室32を経てドレン通路44に排出される。したがって、プランジャ64は、隔壁部一側面13aに対する突張力が即座に解除されて自由に後退動する。
【0055】
これによって、ベーン3は、遅角側油圧室33内の油圧によって反時計方向(遅角側)へ速やかに回転することができ、タイミングスプロケット1とカムシャフト2とを一方側へ相対回動させ、吸気弁の開閉時期を遅角側へ応答性良く制御することができる。これによって、吸気充填効率の向上による出力の向上が図れる。
【0056】
また、この時点では、機関の高回転化に伴いオイルポンプ47の吐出圧も高くなっているため、最大遅角位置に回転保持されたベーン3は、遅角側油圧室33の高油圧によって進角側油圧室32側の隔壁部13方向へ強く押し付けられる。したがって、正負の変動トルクによるベーン3の揺動振動(ばたつき)が抑制されている。
【0057】
さらに、所定の機関運転状態に移行して、ベーン3を中間回転位置に保持する場合には、コントローラ48から電磁切換弁45が断続的に切替作動して、進角側油圧室32と遅角側油圧室33とに油圧が相対的に給排され、該各油圧室32,33にほぼ均一な油圧が供給される。したがって、ベーン3の各羽根部28は、図10に示すように進角側と遅角側のほぼ中間位置に保持され、タイミングスプロケット1とカムシャフト2との相対位置を中間回動位置に保持する。このとき、リザーバ室53と受圧室61とには、各油圧室32,33と同じくほぼ均一圧な油圧が供給されるため、弁体59aはリターンスプリング59cのばね力によって仕切壁51a側へ付勢されて、第2通孔58aを開成する。したがって、プランジャ52は、突張力が解除されてフリーな状態になるが、この時点ではベーン3が中間位置に保持されるだけであるから、正負の変動トルクが作用しても制御応答性などの問題は生じない。
【0058】
また、前記機関高回転時やベーン3が中間位置に保持された運転域では、プランジャ52は隔壁部13に強く圧接せずにコイルスプリング65の小さなばね力で弾接しているだけであるから、隔壁部13やプランジャ頭部52aの摩耗の発生が抑制される。
【0059】
さらに、機関停止時には、両油圧室32,33への油圧の供給が停止されるため、弁体59aは、リターンスプリング59cのばね力によって仕切壁51a側へ押し付けられて第2通孔58aを開成し、したがって、高圧室54が低圧状態になりプランジャ52の突張力が解除される。そして、この状態時において、吸気弁の図外のバルブスプリングのばね力がカムシャフト2を介してベーン3に作用し、該ベーン3を遅角側へ回転させる。したがって、再始動時には、バルブタイミングは予め遅角側に制御されているため、前述のような始動性が向上する。また、この始動時における最大遅角側位置では、ロック機構10のロックピン34によってベーン3がロックされているため、正負の回転変動トルクによるベーン3の揺動振動が抑制される。
【0060】
さらに、規制機構20によるベーン3の反時計方向の回転を規制することによって、変動トルクによる進角側油圧室32の一時的な高圧化に伴う該進角側油圧室32からの油圧の外部リークを防止できるため、作動油の消費量を低減できる。
【0061】
本発明は、前記実施形態の構成に限定されるものではなく、例えば規制機構20を各羽根部28に2つ以上設けることも可能である。さらには、プランジャ52を反対向きに配置して、ベーン3の進角側から遅角側への回転中において、負の変動トルクに対する回転戻りを規制することも可能であり、また、両方を組み合わせて構成することも可能である。
【0062】
また、高圧室54に供給される油圧の油圧回路を、各油圧室32,33の油圧回路4とは独立に形成することも可能である。
【0063】
【発明の効果】
以上の説明で明らかなように、本発明によれば、ベーンの遅角側から進角側、あるいは進角側から遅角側への回転時に、規制機構によって正負の回転変動トルクによるベーンの逆転を確実に規制できるため、ベーンの一方向への回転速度が上昇して、バルブタイミング制御の応答性が向上する。
【0064】
しかも、本発明は、規制機構が従来例のように各油圧室の油圧を直接利用して油通路を閉塞するのではなく、主としてリザーバ室内の油圧とばね部材のばね力によって制御弁を開閉させると共に、かかる制御弁の作動により高圧室に油圧を供給してプランジャを進出させて対向壁に圧接させることにより変動トルクに対抗させるものであるから、たとえ各油圧室内の油圧が外部へリークして低圧となっても、プランジャの進出動には何ら影響されることがなく、常時安定かつ確実な規制作用が得られる。
【0065】
したがって、特に、機関低回転時のようにポンプ回転数が低くポンプ吐出圧が小さい場合もプランジャを進出動させて、回転変動トルクによる揺動振動を効果的に抑制することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す図3のA−A線矢視図。
【図2】本実施形態の一部拡大図。
【図3】図1のB−B線断面図。
【図4】本実施形態の分解斜視図。
【図5】本実施形態に供されるロック機構の断面図。
【図6】本実施形態のベーン進角側への回転中間位置を示す作用説明図。
【図7】本実施形態のベーン進角側への回転中間位置を示す作用説明図。
【図8】本実施形態のベーン最大進角時の作用説明図。
【図9】ベーンの最大進角時から遅角側への回転変換時の作用説明図。
【図10】ベーンの中間回転位置制御を示す作用説明図。
【図11】本実施形態と従来例のベーンの回転特性図。
【符号の説明】
1…タイミングスプロケット(回転体)
2…カムシャフト
3…ベーン
4…油圧回路
6…ハウジング
6a…内周面
7…フロントカバー
13…隔壁部
13a…一側面
20…規制機構
28…羽根部
32…進角側油圧室
33…遅角側油圧室
50…作動用孔
51…シート部材
51a…仕切壁
52…プランジャ
53…リザーバ室
54…高圧室
55…連通路
56…チェック弁
57…第1通路
58…第2通路
59…制御弁
61…受圧室
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a so-called vane type valve timing control device that makes opening / closing timings of engine valves, which are intake valves and exhaust valves of an internal combustion engine, variable according to operating conditions.
[0002]
[Prior art]
As a conventional vane type valve timing control device, for example, a device described in JP-A-8-121124 is known.
[0003]
Briefly, in this valve timing control device, the vane fixed to the end of the camshaft is rotatably housed in the cylindrical housing of the timing pulley whose opening end is closed by the front cover and the rear cover. And an advance side hydraulic chamber and a retard side hydraulic pressure between two substantially trapezoidal partition walls projecting inward from the diameter direction on the inner peripheral surface of the housing and the two vane parts of the vane. A room is defined. Then, hydraulic pressure is supplied to and discharged from each of the advance side and retard side hydraulic chambers according to the engine operating state, and the vane is rotated forward and backward by the driving hydraulic pressure to thereby rotate the relative rotation phase between the timing pulley and the camshaft. Is changed so that the opening / closing timing of the intake valve is variable.
[0004]
As is well known, positive and negative (forward rotation, reverse rotation) rotational fluctuation torque (alternating torque) is generated on the camshaft due to the spring force of the valve spring during engine operation. When a large rotational fluctuation torque is applied during rotational driving of the vane to the retard side or the advance side, the vane drive hydraulic pressure is defeated by the reaction force of the rotational fluctuation torque, and the vane is pushed back. Rotational behavior becomes unstable. That is, when the vane rotates, for example, toward the advance side, the drive hydraulic pressure supplied to the retard side hydraulic chamber loses the reaction force of the positive fluctuation torque, and as shown by the solid line in FIG. Rotate forward while repeating forward and reverse rotation (advance and retreat) to the angle side. Accordingly, since the camshaft also rotates relative to the timing pulley while repeating forward and reverse rotation, the control response of the valve spring, which is the opening / closing timing control of the engine valve, is lowered.
[0005]
Therefore, as in the technique described in Japanese Patent Application Laid-Open No. 8-121123, a pilot type check valve including a check valve and a pilot valve is provided inside the vane, and the advance side or the retard angle is determined by the operation of both valves. There is also provided one that restricts the reverse flow of the drive hydraulic pressure supplied to the hydraulic chamber on the side into the oil passage to prevent the vane from reversing due to the fluctuating torque.
[0006]
[Problems to be solved by the invention]
However, in this latter conventional example, the pilot check valve is used to prevent the backflow of the drive hydraulic pressure from, for example, the advance side hydraulic chamber, but this pilot type check valve is connected to the advance side hydraulic chamber. Since the operation is performed by directly using the supplied hydraulic pressure, the operation accuracy may be reduced due to a decrease in the hydraulic pressure holding capacity in the hydraulic chamber. That is, a minute gap is formed between the front and rear end surfaces of the vane that slides and rotates in the housing, and the front cover and the rear cover, in order to ensure good sliding rotation of the vane, but adjacent to each other. A large differential pressure is generated between the hydraulic chambers. For this reason, the hydraulic pressure supplied to the advance side hydraulic chamber may leak into the retarded side hydraulic chamber through a minute gap. As a result, there is a possibility that the check function of the pilot check valve is lowered and the backflow cannot be effectively prevented.
[0007]
The check function of the pilot check valve is also used when the seal member between the housing, front cover, and rear cover also leaks from the advance side hydraulic chamber to the outside due to deterioration after a long period of time. May be reduced.
[0008]
As a result, the same technical problem as that of the former conventional example is caused such that the control response of the valve timing is lowered.
[0009]
[Means for Solving the Problems]
The present invention has been devised in view of the actual situation of the conventional example, and the invention according to claim 1 has a rotating body that is driven to rotate by a crankshaft of an engine and a drive cam that operates an engine valve on the outer periphery. And a camshaft that is rotatable relative to the rotating body, a vane that is fixed to an end of the camshaft and has a plurality of blade portions that slide and rotate within the housing of the rotating body, and an inner peripheral surface of the housing A plurality of partition walls projecting inwardly, a retarded-side hydraulic chamber and an advanced-side hydraulic chamber defined between the respective partition sections and both side surfaces of each of the blade sections, and both the hydraulic pressures A hydraulic circuit that rotates the vane forward and backward by supplying and discharging hydraulic pressure relative to the chamber; and a regulation mechanism that regulates the oscillation vibration of the vane due to the rotational fluctuation torque acting on the camshaft when the engine is operated. A valve timing control device, wherein the regulating mechanism is: A cylindrical sheet member fixed in an operating hole formed in at least one blade portion of the vane, and provided on the outer periphery of the sheet member so as to be movable forward and backward. A plunger directed toward the inner peripheral surface of the housing, a high-pressure chamber in the plunger head and a reservoir chamber in the seat member separated by a partition wall included in the seat member, and a through-hole formed in the partition wall A check valve that opens and closes the communication passage to allow the hydraulic fluid to flow only from the reservoir chamber to the high-pressure chamber, a first passage that supplies and discharges hydraulic pressure to the reservoir chamber, and a high-pressure hydraulic fluid supplied to and discharged from the reservoir chamber A second passage for supplying and discharging into the room and a control valve that is slidably provided in the seat member and opens and closes the second passage according to the hydraulic pressure in the reservoir chamber. Have
[0010]
According to a second aspect of the present invention, the first passage is formed between the operation hole and the seat member, and communicates with the retard side or advance side hydraulic chamber, and a seat portion. The second passage is formed in the peripheral wall of the sheet member on the partition wall side with respect to the first through hole, while the second passage is formed in the peripheral wall of the sheet member. And a second passage hole facing the reservoir chamber, and a second passage groove formed between the outer peripheral surface of the sheet member and the inner peripheral surface of the plunger and communicating the second through hole and the high-pressure chamber. It is characterized by having.
[0011]
According to a third aspect of the present invention, the control valve is formed in a spool shape, and is provided on a side opposite to the valve body that slides in the seat member to open and close the second through hole. A pressure receiving portion that receives the hydraulic pressure of the reservoir chamber and moves the valve body in the closing direction of the second through hole, and a spring member that is elastically mounted on the rear end side of the pressure receiving portion and biases the valve body in the opening direction. It is characterized by that.
[0012]
According to a fourth aspect of the present invention, the rear end surface of the pressure receiving portion is provided adjacent to a hydraulic chamber on the other side opposite to the hydraulic chamber in which the plunger moves forward and backward, and the hydraulic pressure in the hydraulic chamber on the other side and the spring member The valve element is moved in the opening direction by a pressure cooperating with the spring force.
[0013]
Therefore, according to the present invention, when the vane is to be rotated from the retard side position to the advance side, for example, with the change of the engine operating state, the hydraulic pressure is supplied from the hydraulic circuit to the advance side hydraulic chamber. At the same time, hydraulic pressure is supplied from the first passage into the reservoir chamber. Accordingly, the vane starts to rotate toward the advance side due to the increase in the hydraulic pressure in the advance side hydraulic chamber, while the valve body slides to one side against the spring force of the spring member as the hydraulic pressure in the reservoir chamber increases. To close the second passage. For this reason, the hydraulic pressure in the reservoir chamber pushes the check valve from the communication passage and flows into the high-pressure chamber, and pushes the plunger, for example, in the direction of one side surface of the partition wall to come into contact therewith.
[0014]
Here, the rotational fluctuation torque transmitted from the camshaft acts, and for example, a reaction force that tries to push back the vane to the retard side against the hydraulic pressure supplied to the advance side hydraulic chamber by the positive fluctuation torque. When acted, the plunger overcomes the positive fluctuation torque by the pressure reaction force against the one side surface of the partition wall, that is, the thrust, by the hydraulic pressure of the sealed high pressure chamber. For this reason, the vane rotates rapidly toward the advance side while the reverse rotation is reliably restricted as the plunger advances during rotation. Here, the negative rotational fluctuation torque acts as an assist force for rotating the vane toward the advance side.
[0015]
In addition, when the engine operating state changes and the vane is to be rotated from the maximum advance position to the retard side, when the hydraulic pressure is supplied from the hydraulic circuit to the retard side hydraulic chamber, the oil pressure is reduced. The second passage is opened to act on the rear end surface of the pressure receiving portion and push out the valve body by the combined force of the hydraulic pressure and the spring force of the spring member. For this reason, the hydraulic pressure in the high pressure chamber once flows into the reservoir chamber once through the second passage, and then flows back through the first passage and is discharged to the outside through the advance side hydraulic chamber. Accordingly, the plunger is immediately released from the protruding tension on the one side surface of the partition wall, and freely moves backward. Thus, the vane can be quickly rotated to the retard side by the hydraulic pressure in the retard side hydraulic chamber.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
1 to 4 show an embodiment of a valve timing control device for an internal combustion engine according to the present invention, which is applied to an intake valve side.
[0017]
That is, a timing sprocket 1 that is a rotating body that is rotationally driven via a timing chain by a crankshaft (not shown) of the engine, a camshaft 2 that is provided to be rotatable relative to the timing sprocket 1, and the camshaft 2, a vane 3 fixed to the end of 2 and rotatably accommodated in the timing sprocket 1, a hydraulic circuit 4 that rotates the vane 3 forward and backward by hydraulic pressure, and a relative rotation between the timing sprocket 1 and the vane 3. A lock mechanism 10 that locks at the rotation position on the maximum retard angle side, and a restriction mechanism 20 that restricts the oscillation vibration of the vane accompanying the positive rotational fluctuation torque acting on the camshaft 2 are provided.
[0018]
As shown in FIG. 4, the timing sprocket 1 includes a rotating member 5 having a tooth portion 5 a that engages with a timing chain on the outer periphery, and a cylinder that is disposed in front of the rotating member 5 and rotatably accommodates the vane 3. A housing 6, a disc-shaped front cover 7 serving as a lid that closes the front end opening of the housing 6, and the housing 6 and the rotating member 5. The rotating member 5, the housing 6, the front cover 7, and the rear cover 8 are integrally coupled from the axial direction by four small-diameter bolts 9.
[0019]
The rotating member 5 has a substantially annular shape, and has four female screw holes 5b through which the small-diameter bolts 9 are screwed in the circumferentially equidistant positions of about 90 ° in the front-rear direction. A fitting hole 11 having a stepped diameter, through which a sleeve 25 described later is fitted, is formed through. Further, a disc-like fitting groove 12 into which the rear cover 8 is fitted is formed on the front end surface.
[0020]
The housing 6 has a cylindrical shape with openings at the front and rear ends, and four partition wall portions 13 project from the circumferential position of the inner peripheral surface at 90 °. The partition wall 13 has a trapezoidal shape in cross section, is provided along the axial direction of the housing 6, and both front and rear end edges are flush with the both end edges of the housing 6. On the side, four bolt insertion holes 14 through which the small-diameter bolts 9 are inserted are formed in the axial direction. Further, a U-shaped seal member 15 and a leaf spring 16 that presses the seal member 15 inward are fitted and held in a holding groove 13a that is cut out along the axial direction at the center position of the inner end face of each partition wall portion 13. Has been.
[0021]
Further, the front cover 7 has a relatively large-diameter bolt insertion hole 17 formed in the center, and four bolt holes 18 formed at positions corresponding to the bolt insertion holes 14 of the housing 6. ing.
[0022]
The rear cover 8 has a disc portion 8a fitted and held in the fitting groove 12 of the rotating member 5 on the rear end surface, and a small-diameter annular portion 25a of the sleeve 25 is fitted in the center. A fitting hole 8c is formed, and four bolt holes 19 are similarly formed at positions corresponding to the bolt insertion holes 14.
[0023]
The camshaft 2 is rotatably supported at the upper end of the cylinder head 22 via a cam bearing 23, and an unillustrated cam for opening the intake valve via a valve lifter is integrally provided at a predetermined position on the outer peripheral surface. In addition, a flange portion 24 is integrally provided at the front end portion.
[0024]
The vane 3 is integrally formed of a sintered alloy material and is cammed by a fixing bolt 26 inserted from the axial direction through the sleeve 25 in which the front and rear portions are fitted in the flange portion 24 and the fitting hole 11, respectively. An annular rotor portion 27 that is fixed to the front end portion of the shaft 2 and has a bolt insertion hole 27a through which the fixing bolt 26 is inserted at the center, and a 90 ° position in the circumferential direction of the outer peripheral surface of the rotor portion 27 are integrated. And four blade portions 28 provided on the surface.
[0025]
As for the said 1st-4th blade | wing part 28, three exhibit a cross-sectional rectangular shape, another one exhibits a cross-sectional substantially inverted trapezoid shape, and each is arrange | positioned between each partition part 13, and each outer peripheral surface A U-shaped seal member 30 slidably contacting the inner peripheral surface 6a of the housing 6 and a leaf spring 31 that presses the seal member 30 outward are fitted and held in a holding groove 29 cut in the center in the axial direction. . Further, four advance-side hydraulic chambers 32 and retard-side hydraulic chambers 33 are formed between both sides of each blade 28 and both sides of each partition 13.
[0026]
As shown in FIGS. 1 and 3, the hydraulic circuit 4 supplies and discharges hydraulic pressure to and from the first hydraulic passage 41 that supplies and discharges hydraulic pressure to the advance side hydraulic chamber 32 and the retard side hydraulic chamber 33. There are two systems of hydraulic passages, the second hydraulic passage 42, and a supply passage 43 and a drain passage 44 are connected to both the hydraulic passages 41, 42 via a passage switching electromagnetic switching valve 45. Yes. The supply passage 43 is provided with an oil pump 47 that pumps the oil in the oil pan 46, while the downstream end of the drain passage 44 communicates with the oil pan 46.
[0027]
The first hydraulic passage 41 is branched from the cylinder head 22 in the head portion 26a through the first passage portion 41a formed in the shaft center of the camshaft 2 and the internal axial direction of the fixing bolt 26. The first oil passage 41b that communicates with the first passage portion 41a, and the first oil formed between the small-diameter outer peripheral surface of the head portion 26a and the inner peripheral surface of the bolt insertion hole 27a in the base portion 27 of the vane 3. The oil chamber 41c communicates with the passage 41b, and four branch passages 41d that are formed substantially radially in the base portion 27 of the vane 3 and communicate with the oil chamber 41c and each advance-side hydraulic chamber 32.
[0028]
On the other hand, the second hydraulic passage 42 is formed into a second passage portion 42a formed inside the cylinder head 22 and one side of the camshaft 2 and the inside of the sleeve 25 so as to be bent in a substantially L shape. A second oil passage 42b communicating with the passage portion 42a, four oil passage grooves 42c formed at the outer peripheral side edge of the fitting hole 11 of the rotating member 5 and communicating with the second oil passage 42b, and the periphery of the rear cover 8. The four oil holes 42 d are formed at positions of about 90 ° in the direction and communicate with each oil passage groove 42 c and the retard side hydraulic chamber 33.
[0029]
The electromagnetic switching valve 45 is a 4-port 2-position type, and an internal valve body is configured to relatively switch and control the hydraulic passages 41, 42, the supply passage 43, and the drain passage 44, and Switching is performed by a control signal from the controller 48. The electromagnetic switching valve 45 switches between the supply passage 43 and the drain passage 44 relatively, but the switching operation is performed intermittently in a short time. The controller 48 detects the current operating state based on signals from a crank angle sensor that detects the engine speed and an air flow meter that detects the amount of intake air, and the timing sprocket 1 and the cam based on signals from the crank angle and cam angle sensors. The relative rotation position with respect to the shaft 2 is detected.
[0030]
As shown in FIGS. 4 and 5, the lock mechanism 10 includes an engagement groove 5c formed at a predetermined position on the outer peripheral side of the fitting groove 12 of the rotating member 5, and the rear cover 8 corresponding to the engagement groove 5c. The inner peripheral surface is formed in a substantially central position of the one blade portion 28 corresponding to the engagement hole 21 along the inner axial direction. A sliding hole 35, a lock pin 34 slidably provided in the sliding hole 35 of the one blade portion 28, and a coil which is a spring member elastically mounted on the rear end side of the lock pin 34 The spring 39 includes an annular pressure receiving chamber 40 formed between the lock pin 34 and the sliding hole 35.
[0031]
When the vane 3 rotates to the maximum retard angle side, the lock pin 34 advances by the spring force of the coil spring 39 and the tip engaging portion 34a engages with the engaging hole 21 so that the vane 3 is moved to the rear cover 8. Is supposed to be locked. On the other hand, at the time of rotation to the advance side, the same hydraulic pressure is supplied to the annular pressure receiving chamber 40 through the oil hole 36 simultaneously with the supply of the hydraulic pressure to the advance side hydraulic chamber 32, and the lock pin 34 is moved to the spring of the coil spring 39. The engagement portion 34a and the engagement hole 21 are unlocked by moving backward against the force.
[0032]
As shown in FIGS. 1 and 2, the regulating mechanism 20 is provided in one blade portion 28 having a large thickness in the circumferential direction, and has an internal circle from a side surface facing the retarded-side hydraulic chamber 33 of the blade portion 28. A bottomed cylindrical operating hole 50 formed along the circumferential direction, a cylindrical sheet member 51 fixed inside the operating hole 50, and a retarded side hydraulic pressure on the outer peripheral surface of the sheet member 51 Plunger 52 slidably provided so as to be able to advance and retreat in the direction of chamber 33, formed in front of and behind partition wall 51 a on the inner front end side of sheet member 51, that is, inside seat member 51 and inside distal end head 52 a of plunger 52. The reservoir chamber 53 and the high-pressure chamber 54, and the check valve 56 that opens and closes the communication passage 55 formed in the center of the partition wall 51a to allow the hydraulic pressure of the reservoir chamber 53 to flow only into the high-pressure chamber 54; Communicating with the first hydraulic passage 41, front A first passage 57 that supplies and discharges hydraulic pressure to and from the reservoir chamber 53, a second passage 58 that supplies and discharges hydraulic oil supplied to and discharged from the reservoir chamber 53 into the high-pressure chamber 54, and slides into the seat member 51. A spool-shaped control valve 59 that is freely provided and opens and closes the second passage 58 is mainly configured.
[0033]
The operating hole 50 is composed of a sliding hole portion of the plunger 52 facing the advance side hydraulic chamber 32 and a small-diameter groove portion 50a on the rear end side, and the inner peripheral surface of the sliding hole portion is the plunger 52. The outer peripheral surface of the plunger 52 is slidably disposed so as to have an inner diameter slightly larger than the outer diameter.
[0034]
The sheet member 51 is press-fitted and fixed in the small-diameter groove portion 50a formed with a rear end portion 51b on the bottom side of the sliding hole portion.
[0035]
The plunger 52 has a cylindrical shape with a lid, the front end surface of the head portion 52a at the tip is formed in a spherical shape, and the one side surface in which the head portion 52a is cut out in a curved cross section of one partition wall portion 13. 13a is arranged in contact with.
[0036]
The check valve 56 is provided inside the high-pressure chamber 54, and a ball valve body 62 that opens and closes the communication passage 55, and a valve spring 64 that urges the ball valve body 62 in a closing direction via a cup-shaped retainer 63. And a compression spring 65 which is elastically mounted between the bottom wall of the plunger tip 52a and the outer peripheral flange portion of the retainer 63 and holds the retainer 63, the ball valve body 62 and the like in the direction of the partition wall 51a. Yes.
[0037]
Further, a side hole 63 a for introducing hydraulic pressure into the high pressure chamber 54 when the ball valve body 62 is opened is provided on the cup surface of the retainer 63.
[0038]
The first passage 57 is formed between the sliding hole portion of the operation hole 50 and the outer peripheral surface of the seat member 51, and communicates with the first passage groove 57 a communicating with the branch passage 41 d of the first hydraulic passage 41. The first end hole 51b is formed in the peripheral wall of the rear end portion 51b of the seat portion 51 along the diameter direction and communicates the first passage groove 57a and the reservoir chamber 53.
[0039]
The second passage 58 is formed in the vicinity of the partition wall 51a of the sheet member 51 along the diametrical direction, the second through hole 58a facing the reservoir chamber 53, the outer peripheral surface of the sheet member 51 on the partition wall 51a side, and the plunger. The cylindrical second passage groove 58 b is formed between the second through hole 58 a and the high pressure chamber 54.
[0040]
The control valve 59 is provided through a valve shaft on the opposite side of the valve body 59a and a valve body 59a that opens and closes the second through hole 58a by sliding inside the partition wall 51a side of the reservoir chamber 53. A spring member that is formed between the pressure receiving portion 59b that slides in the rear end portion 51b of the seat member 51, and the bottom surface of the pressure receiving portion 59b and the small-diameter groove portion 50a, and biases the valve body 59a in the opening direction. And return spring 59c.
[0041]
The valve body 59a has a substantially U-shaped cross section, and its length is set to be substantially the same as the length of the partition wall 51a and the vicinity of the hole edge of the second through hole 58a, and the front edge is the partition wall 51a. The second through hole 58a is fully opened at the stage of contact with the end face, while the second through hole 58a is fully closed with the pressure receiving part 58b in contact with the bottom surface of the small diameter groove part 50a. ing. The valve body 59a has a plurality of through holes 60 that allow the reservoir chamber 53 and the communication passage 55 to communicate with each other.
[0042]
The pressure receiving portion 58b has a substantially U-shaped cross section like the valve body 59a, the front end surface on the reservoir chamber 53 side is formed as a first pressure receiving surface, the rear end surface is formed as a second pressure receiving surface, The pressure receiving chamber 61 formed between the pressure receiving surface and the inner surface of the rear end portion 51b of the sheet member 51 has a hydraulic pressure in the retard side hydraulic chamber 33 through a through hole 28a formed in the base end portion of the blade portion 28. Is to be supplied. Therefore, a combined force of the spring force of the return spring 59c and the hydraulic pressure in the pressure receiving chamber 61 acts on the second pressure receiving surface.
[0043]
The return spring 59c is set to a small set load that urges the valve body 59a in the opening direction when no hydraulic pressure acts on the reservoir chamber 53 or the pressure receiving chamber 61.
[0044]
Hereinafter, the operation of the present embodiment will be described. First, at the time of engine start and idling operation, the electromagnetic switching valve 48 to which a control signal is output from the controller 48 causes the supply passage 43 and the second hydraulic passage 42 to communicate with each other, and the drain passage 44 and the first hydraulic passage 41 communicate with each other. Let For this reason, the hydraulic pressure pumped from the oil pump 47 is supplied to the retard-side hydraulic chamber 33 through the second hydraulic passage 42 (oil passage groove 42c → oil hole 42d), while the advanced-side hydraulic chamber 32 has In the same way as when the engine is stopped, the hydraulic pressure is not supplied and the low pressure state is maintained. For this reason, as shown in FIG. 1, the vane 3 is in a state in which each blade portion 28 is in contact with one side surface of each partition wall portion 13 on the advance side hydraulic chamber 32 side.
[0045]
Accordingly, the relative rotational position of the timing sprocket 1 and the camshaft 2 is held on one side (retarded side), and the opening / closing timing of the intake valve is controlled to the retarded side. As a result, the combustion efficiency by using the inertial intake air is improved, and the engine rotation can be stabilized and the fuel consumption can be improved.
[0046]
Here, as shown in FIGS. 1 and 2, the regulating mechanism 20 presses the second pressure receiving surface of the pressure receiving portion 59 b by the spring force of the return spring 59 c and the hydraulic pressure supplied to the retard side hydraulic chamber 33. Then, the valve body 59a is pressed against the partition wall 51a, and the second through hole 58a is fully opened. For this reason, since the plunger 52 is in a low pressure state in the high pressure chamber 54, it does not move forward (elongation stroke), and the partition portions of the other three vanes 28 by the hydraulic pressure of the retard side hydraulic chamber 33 are used. Similarly to the abutment on one side surface 13, the front end head 52a abuts on the opposite side surface 13a.
[0047]
Thereafter, when the vehicle starts and the engine shifts from the low rotation / low load range to the normal rotation / medium rotation / medium load range, the electromagnetic switching valve 45 is actuated by the control signal from the controller 48, thereby supplying the supply passage 43 and the first hydraulic pressure. While the passage 41 is in communication, the drain passage 44 and the second hydraulic passage 42 are in communication. Accordingly, the hydraulic oil in the retarded hydraulic chamber 33 is now returned to the oil pan 46 from the drain passage 44 through the second hydraulic passage 42, and the retarded hydraulic chamber 33 is reduced in pressure while being advanced. The hydraulic pressure is supplied into the side hydraulic chamber 32 via the first oil passage 41a → 41b → branch passage 41d and becomes high pressure. For this reason, the vane 3 rotates clockwise from the position shown in FIG. 1 so that each vane portion 28 passes through the intermediate position shown in FIG. 7 and is on the opposite side (retarding side hydraulic chamber side) as shown in FIG. It rotates to the maximum advance angle position in contact with the other side surface of each partition wall 13.
[0048]
Therefore, the timing sprocket 1 and the camshaft 2 are relatively rotated to the other side to control the opening / closing timing of the intake valve to the advance side. As a result, the pump loss of the engine is reduced and the output can be improved.
[0049]
When the restriction mechanism 20 is switched from the retarded angle side to the advanced angle side, the hydraulic pressure in the retarded angle side hydraulic chamber 33 is drained as described above to become a low pressure state. The hydraulic pressure is also returned to the retarded-side hydraulic chamber 33 through the through hole 28a and becomes low pressure. On the other hand, the hydraulic pressure supplied to the advance side hydraulic chamber 32 flows into the reservoir chamber 53 through the first passage groove 57a and the first through hole 57b of the first passage 57 as shown by the arrows in FIGS. Then, the first pressure receiving surface of the pressure receiving portion 59b is pressed against the spring force of the return spring 59c to press the pressure receiving portion 59b against the bottom surface of the small diameter groove portion 50a. Accordingly, the valve body 59a slides in the direction of the pressure receiving chamber 61 via the valve shaft as shown in FIGS. 6 to 8, and the second through hole 58a is fully closed. For this reason, the communication between the high pressure chamber 54 and the reservoir chamber 53 via the second passage 58 is blocked, while the hydraulic pressure in the reservoir chamber 53 passes through each through hole 60 of the valve body 59a from the communication passage 55 to the valve spring 64. The ball valve body 62 flows into the high-pressure chamber 54 while pushing the ball valve body 62 against the spring force.
[0050]
For this reason, the plunger 52 advances (extends) as shown in FIGS. 6 to 8 according to the rotation stroke amount from the position shown in FIG. The state of constantly contacting the side surface 13a is maintained.
[0051]
Here, when a positive fluctuation torque among the fluctuation torques transmitted from the camshaft 2 to the vane 3 acts and the blade portion 28 is temporarily rotated counterclockwise, the plunger 52 is moved by the ball valve body 62. Since the backward movement is restricted by the hydraulic pressure of the closed high pressure chamber 54, so-called impulsive tension acts on the counterclockwise rotation of the vane 3 with respect to the positive fluctuation torque to overcome the positive fluctuation torque. Therefore, the vane 3 is reliably restricted from rotating counterclockwise (retarded side) as the plunger 52 advances during rotation from the most retarded angle side to the most advanced angle side as indicated by the broken line in FIG. While rotating, it rotates quickly in the clockwise direction (advance side).
[0052]
Therefore, the relative rotational speed of the timing sprocket 1 and the camshaft 2 toward the advance side is increased, and the control response of the valve timing is improved.
[0053]
Here, since the negative rotational fluctuation torque acts as an assisting force that rotates the vane 3 toward the advance side, the control response of the valve timing is further improved.
[0054]
On the other hand, when the engine intermediate rotation load range shifts to the high rotation high load range, the hydraulic oil is discharged from the advance side hydraulic chamber 32 as shown in FIG. This hydraulic pressure is supplied to the reservoir chamber 53 via the first passage 57. Therefore, as shown in FIG. 9, the valve body 59a of the control valve 59 has a combined force of the rising hydraulic pressure in the pressure receiving chamber 61 and the spring force of the return spring 59c, and further the rotational centrifugal force of the device, in the direction of the partition wall 51a. The second through hole 58a is opened. Therefore, the hydraulic oil in the high pressure chamber 54 once flows into the reservoir chamber 53 through the second passage 58, and is discharged from here through the first passage 57 and the advance side hydraulic chamber 32 to the drain passage 44. Therefore, the plunger 64 is released from the protruding tension immediately on the one side surface 13a of the partition wall portion and freely moves backward.
[0055]
Accordingly, the vane 3 can be quickly rotated counterclockwise (retarded side) by the hydraulic pressure in the retarded hydraulic chamber 33, and the timing sprocket 1 and the camshaft 2 are relatively rotated to one side. In addition, the opening / closing timing of the intake valve can be controlled to the retard side with good responsiveness. As a result, the output can be improved by improving the intake charge efficiency.
[0056]
At this time, since the discharge pressure of the oil pump 47 is also increased as the engine speed increases, the vane 3 rotated and held at the maximum retard position is advanced by the high hydraulic pressure in the retard side hydraulic chamber 33. It is strongly pressed toward the partition wall 13 on the corner side hydraulic chamber 32 side. Therefore, the oscillation vibration (flapping) of the vane 3 due to the positive / negative fluctuation torque is suppressed.
[0057]
Further, when shifting to a predetermined engine operating state and holding the vane 3 at the intermediate rotational position, the electromagnetic switching valve 45 is intermittently switched from the controller 48 to cause the advance side hydraulic chamber 32 and the retard angle. The hydraulic pressure is relatively supplied to and discharged from the side hydraulic chamber 33, and a substantially uniform hydraulic pressure is supplied to the hydraulic chambers 32 and 33. Therefore, each vane portion 28 of the vane 3 is held at a substantially intermediate position between the advance side and the retard side as shown in FIG. 10, and the relative position between the timing sprocket 1 and the camshaft 2 is held at the intermediate rotation position. To do. At this time, the reservoir chamber 53 and the pressure receiving chamber 61 are supplied with substantially uniform pressure as in the hydraulic chambers 32 and 33, so that the valve element 59a is attached to the partition wall 51a side by the spring force of the return spring 59c. Thus, the second through hole 58a is opened. Therefore, the plunger 52 is released from the projecting tension, but at this time, the vane 3 is only held at the intermediate position. There is no problem.
[0058]
Further, in the operating range where the engine is rotating at a high speed or when the vane 3 is held at the intermediate position, the plunger 52 is not in strong pressure contact with the partition wall portion 13 but only in elastic contact with the small spring force of the coil spring 65. Generation | occurrence | production of abrasion of the partition part 13 and the plunger head 52a is suppressed.
[0059]
Further, when the engine is stopped, the supply of hydraulic pressure to the hydraulic chambers 32 and 33 is stopped, so that the valve body 59a is pressed toward the partition wall 51a by the spring force of the return spring 59c to open the second through hole 58a. Therefore, the high pressure chamber 54 is in a low pressure state, and the thrust of the plunger 52 is released. In this state, the spring force of the valve spring (not shown) of the intake valve acts on the vane 3 via the camshaft 2 to rotate the vane 3 to the retard side. Therefore, at the time of restart, the valve timing is controlled in advance to the retard side, so that the startability as described above is improved. Further, since the vane 3 is locked by the lock pin 34 of the lock mechanism 10 at the maximum retarded angle position at the time of starting, the oscillation vibration of the vane 3 due to positive and negative rotational fluctuation torque is suppressed.
[0060]
Further, by restricting the counterclockwise rotation of the vane 3 by the regulating mechanism 20, an external leakage of hydraulic pressure from the advance side hydraulic chamber 32 due to temporary high pressure of the advance side hydraulic chamber 32 due to fluctuating torque. Therefore, the consumption of hydraulic oil can be reduced.
[0061]
The present invention is not limited to the configuration of the above-described embodiment, and for example, two or more regulating mechanisms 20 can be provided in each blade portion 28. Furthermore, the plunger 52 can be arranged in the opposite direction to restrict the return of rotation with respect to the negative fluctuation torque during the rotation of the vane 3 from the advance side to the retard side. It is also possible to configure.
[0062]
It is also possible to form a hydraulic circuit for the hydraulic pressure supplied to the high pressure chamber 54 independently of the hydraulic circuit 4 of each hydraulic chamber 32, 33.
[0063]
【The invention's effect】
As is apparent from the above description, according to the present invention, when the vane rotates from the retard side to the advance side or from the advance side to the retard side, the vane reverses due to positive and negative rotational fluctuation torque by the regulation mechanism. Therefore, the rotational speed of the vane in one direction is increased, and the responsiveness of the valve timing control is improved.
[0064]
In addition, according to the present invention, the control mechanism opens and closes the control valve mainly by the hydraulic pressure in the reservoir chamber and the spring force of the spring member, instead of directly closing the oil passage by directly using the hydraulic pressure of each hydraulic chamber as in the conventional example. At the same time, since the hydraulic pressure is supplied to the high-pressure chamber by operating the control valve and the plunger is advanced and pressed against the opposing wall to counter the fluctuating torque, the hydraulic pressure in each hydraulic chamber leaks to the outside. Even if the pressure becomes low, the movement of the plunger is not affected at all, and a stable and reliable regulation action is always obtained.
[0065]
Therefore, especially when the pump rotational speed is low and the pump discharge pressure is small as in the case of low engine speed, the plunger can be moved forward to effectively suppress the oscillation vibration caused by the rotational fluctuation torque.
[Brief description of the drawings]
FIG. 1 is a view taken along the line AA in FIG. 3 showing a first embodiment of the present invention.
FIG. 2 is a partially enlarged view of the present embodiment.
3 is a cross-sectional view taken along line BB in FIG.
FIG. 4 is an exploded perspective view of the present embodiment.
FIG. 5 is a cross-sectional view of a lock mechanism provided in the present embodiment.
FIG. 6 is an operation explanatory view showing a rotation intermediate position toward the vane advance angle side of the embodiment.
FIG. 7 is an operation explanatory view showing a rotation intermediate position toward the vane advance angle side of the embodiment.
FIG. 8 is an explanatory diagram of the operation at the time of the vane maximum advance angle according to the present embodiment.
FIG. 9 is an explanatory diagram of the action at the time of rotation conversion from the maximum advance angle to the retard angle side of the vane.
FIG. 10 is an operation explanatory view showing intermediate rotation position control of a vane.
FIG. 11 is a rotational characteristic diagram of the vane of this embodiment and the conventional example.
[Explanation of symbols]
1. Timing sprocket (rotating body)
2 ... Camshaft
3 ... Vane
4 ... Hydraulic circuit
6 ... Housing
6a ... Inner surface
7 ... Front cover
13 ... partition wall
13a ... One side
20 ... Regulatory mechanism
28 ... feather part
32 ... Advance side hydraulic chamber
33 ... retarded-side hydraulic chamber
50. Operation hole
51. Sheet member
51a ... partition wall
52 ... Plunger
53 ... Reservoir chamber
54 ... High pressure chamber
55 ... Communication passage
56 ... Check valve
57 ... 1st passage
58 ... Second passage
59 ... Control valve
61 ... Pressure receiving chamber

Claims (4)

機関のクランクシャフトによって回転駆動する回転体と、外周に機関弁を作動させる駆動カムを有しかつ回転体と相対回動可能なカムシャフトと、該カムシャフトの端部に固定されて、回転体のハウジング内を摺動回転する複数の羽根部を有するベーンと、前記ハウジングの内周面に内方へ突設された複数の隔壁部と、該各隔壁部と前記各羽根部の両側面との間に隔成された遅角側油圧室及び進角側油圧室と、該両油圧室に相対的に油圧を給排して前記ベーンを正逆回転させる油圧回路と、機関作動時に前記カムシャフトに作用する回転変動トルクに伴うベーンの揺動振動を規制する規制機構とを備えたバルブタイミング制御装置であって、
前記規制機構は、前記ベーンの少なくとも1つの羽根部内に形成された作動用孔内に固定された筒状のシート部材と、該シート部材の外周に進退動自在に設けられて、先端頭部が前記隔壁部かあるいはハウジングの内周面方向へ指向したプランジャと、前記シート部材の内部に有する仕切壁によって隔成されたプランジャ頭部内の高圧室及びシート部材内のリザーバ室と、前記仕切壁に貫通形成された連通路を開閉してリザーバ室から高圧室側へのみ作動液の流通を許容するチェック弁と、前記進角側油圧室あるいは遅角側油圧室内に給排された油圧を前記リザーバ室内に給排する第1通路と、リザーバ室内に給排された作動液を高圧室内に給排する第2通路と、前記シート部材内に摺動自在に設けられて、少なくとも前記リザーバ室内に油圧が供給されることによって前記第2通路を閉止し、前記進角側油圧室あるいは遅角側油圧室内に供給された油圧に押圧されることによって前記第2通路を開成する制御弁とから構成され、前記いずれか一方の油圧室から前記第1通路を介して前記リザーバ室内に供給された油圧により前記プランジャを進出方向へ移動させることを特徴とする内燃機関のバルブタイミング制御装置。
A rotating body that is rotationally driven by the crankshaft of the engine, a camshaft having a drive cam that operates an engine valve on the outer periphery and that can rotate relative to the rotating body, and a rotating body that is fixed to the end of the camshaft A vane having a plurality of blade portions that slide and rotate in the housing, a plurality of partition walls projecting inwardly on the inner peripheral surface of the housing, each partition wall portion, and both side surfaces of each blade portion A retarding-side hydraulic chamber and an advancing-side hydraulic chamber, a hydraulic circuit for supplying and discharging hydraulic pressure relatively to both the hydraulic chambers to rotate the vane forward and reverse, and the cam during engine operation A valve timing control device comprising a regulation mechanism for regulating the oscillation vibration of the vane accompanying the rotational fluctuation torque acting on the shaft,
The regulating mechanism is provided with a cylindrical sheet member fixed in an operating hole formed in at least one blade portion of the vane, and is provided on the outer periphery of the sheet member so as to be movable forward and backward. The partition wall or the plunger directed toward the inner peripheral surface of the housing, the high pressure chamber in the plunger head and the reservoir chamber in the seat member separated by the partition wall provided in the seat member, and the partition wall A check valve that allows the hydraulic fluid to flow only from the reservoir chamber to the high-pressure chamber side by opening and closing the communication passage formed through the pressure chamber, and the hydraulic pressure supplied to and discharged from the advance-side hydraulic chamber or the retard-side hydraulic chamber A first passage for supplying and discharging the reservoir chamber; a second passage for supplying and discharging the hydraulic fluid supplied and discharged into the reservoir chamber; and a slidable member provided in the seat member, and at least in the reservoir chamber. oil Closing the second passage by but supplied, is composed of a control valve for opening said second passage by being pressed against the advance side hydraulic chamber or supplied to the retard side hydraulic chamber pressure A valve timing control device for an internal combustion engine, wherein the plunger is moved in the advancing direction by hydraulic pressure supplied from one of the hydraulic chambers to the reservoir chamber via the first passage .
前記第1通路は、前記作動用孔とシート部材との間に形成されて、前記遅角側あるいは進角側油圧室に連通する第1通路溝と、シート部の周壁に穿設されてリザーバ室に開口した第1通孔とから構成されている一方、前記第2通路は、シート部材の周壁に前記第1通孔よりも仕切壁側に穿設されて、リザーバ室に臨む第2通孔と、シート部材の外周面とプランジャの内周面との間に形成されて、前記第2通孔と高圧室とを連通する第2通路溝とから構成されていることを特徴とする請求項1記載の内燃機関のバルブタイミング制御装置。  The first passage is formed between the actuation hole and the seat member, and is formed in the reservoir through a first passage groove communicating with the retard side or advance side hydraulic chamber, and a peripheral wall of the seat portion. The second passage is formed in the peripheral wall of the sheet member closer to the partition wall than the first passage, and faces the reservoir chamber. And a second passage groove formed between the outer peripheral surface of the seat member and the inner peripheral surface of the plunger and communicating the second through hole and the high pressure chamber. Item 2. A valve timing control device for an internal combustion engine according to Item 1. 前記制御弁は、スプール状に形成され、シート部材内を摺動して前記第2通孔を開閉する弁体と、該弁体の反対側に設けられて、リザーバ室の油圧を受けて弁体を第2通孔の閉方向へ移動させる受圧部と、該受圧部の後端側に弾装されて弁体を開方向に付勢するばね部材とから構成されたことを特徴とする請求項1または2記載の内燃機関のバルブタイミング制御装置。  The control valve is formed in a spool shape, and is provided on a side opposite to the valve body that opens and closes the second through hole by sliding in the seat member, and receives the hydraulic pressure in the reservoir chamber. A pressure receiving portion that moves the body in the closing direction of the second through hole, and a spring member that is elastically mounted on the rear end side of the pressure receiving portion and biases the valve body in the opening direction. Item 3. A valve timing control device for an internal combustion engine according to Item 1 or 2. 前記受圧部の後端面を、前記プランジャが進退動する油圧室と反対側の他方側の油圧室に臨設し、該他方側の油圧室内の油圧と前記ばね部材のばね力との共働の圧力で弁体を開方向へ移動させるようにしたことを特徴とする請求項3記載の内燃機関のバルブタイミング制御装置。  The rear end surface of the pressure receiving portion is provided adjacent to the hydraulic chamber on the other side opposite to the hydraulic chamber where the plunger moves forward and backward, and the pressure of the cooperation between the hydraulic pressure in the hydraulic chamber on the other side and the spring force of the spring member 4. The valve timing control apparatus for an internal combustion engine according to claim 3, wherein the valve body is moved in the opening direction.
JP11294898A 1998-03-25 1998-04-23 Valve timing control device for internal combustion engine Expired - Fee Related JP3817065B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11294898A JP3817065B2 (en) 1998-04-23 1998-04-23 Valve timing control device for internal combustion engine
DE19980580T DE19980580T1 (en) 1998-03-25 1999-03-19 Valve timing device for an internal combustion engine
KR1019997010893A KR100338204B1 (en) 1998-03-25 1999-03-19 Valve timing control device of internal combustion engine
PCT/JP1999/001385 WO1999049187A1 (en) 1998-03-25 1999-03-19 Valve timing control device of internal combustion engine
US09/402,831 US6263843B1 (en) 1998-03-25 1999-03-19 Valve timing control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11294898A JP3817065B2 (en) 1998-04-23 1998-04-23 Valve timing control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11303612A JPH11303612A (en) 1999-11-02
JP3817065B2 true JP3817065B2 (en) 2006-08-30

Family

ID=14599538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11294898A Expired - Fee Related JP3817065B2 (en) 1998-03-25 1998-04-23 Valve timing control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3817065B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105980674A (en) * 2014-02-14 2016-09-28 爱信精机株式会社 Valve timing control apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507151B2 (en) * 2000-10-06 2010-07-21 株式会社デンソー Valve timing adjustment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105980674A (en) * 2014-02-14 2016-09-28 爱信精机株式会社 Valve timing control apparatus

Also Published As

Publication number Publication date
JPH11303612A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
US10145273B2 (en) Control valve for valve timing control device and valve timing control device for internal combustion engine
US6053139A (en) Valve timing control device
JP4253109B2 (en) Variable valve operating device for internal combustion engine
KR100338204B1 (en) Valve timing control device of internal combustion engine
EP0845584A1 (en) Variable valve timing mechanism for internal combustion engine
JP4358180B2 (en) Valve timing control device for internal combustion engine
JP2011069287A (en) Valve opening/closing timing control device
JP4019614B2 (en) Intake valve drive control device for internal combustion engine
JP4553795B2 (en) Valve timing control device for internal combustion engine
JP3817067B2 (en) Valve timing control device for internal combustion engine
JP3817065B2 (en) Valve timing control device for internal combustion engine
JP4498976B2 (en) Valve timing control device for internal combustion engine
JP5288044B2 (en) Variable valve operating device for internal combustion engine
US6935291B2 (en) Variable valve timing controller
JP3688459B2 (en) Valve timing control device for internal combustion engine
JP4163700B2 (en) Valve timing control device for internal combustion engine
JP6533322B2 (en) Valve timing control system for internal combustion engine
JP4000127B2 (en) Valve timing control device for internal combustion engine
JP4507417B2 (en) Variable valve operating device for internal combustion engine
JP2003106113A (en) Valve timing control device for internal combustion engine
JP2000145414A (en) Valve timing control device for internal combustion engine
JPH10159515A (en) Valve timing control device for internal combustion engine
JP4138414B2 (en) Valve timing control device for internal combustion engine
JP3688456B2 (en) Valve timing control device for internal combustion engine
JP3604293B2 (en) Valve timing control device for internal combustion engine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees