[go: up one dir, main page]

JP3818882B2 - Method for producing hydrophilic silica coating - Google Patents

Method for producing hydrophilic silica coating Download PDF

Info

Publication number
JP3818882B2
JP3818882B2 JP2001261258A JP2001261258A JP3818882B2 JP 3818882 B2 JP3818882 B2 JP 3818882B2 JP 2001261258 A JP2001261258 A JP 2001261258A JP 2001261258 A JP2001261258 A JP 2001261258A JP 3818882 B2 JP3818882 B2 JP 3818882B2
Authority
JP
Japan
Prior art keywords
film
coating
solution
hydrophilic silica
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001261258A
Other languages
Japanese (ja)
Other versions
JP2002161240A (en
Inventor
敏明 杉本
健児 木田
慶和 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2001261258A priority Critical patent/JP3818882B2/en
Publication of JP2002161240A publication Critical patent/JP2002161240A/en
Application granted granted Critical
Publication of JP3818882B2 publication Critical patent/JP3818882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Paints Or Removers (AREA)
  • Chemically Coating (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、ルームエアコン、カーエアコンなどの熱交換器の蒸発器におけるフィンなどに使用される金属基材においてとくに耐蝕性および親水性を長期間にわたって保つ親水性シリカ被膜の製造方法に関する。
【0002】
【従来技術とその課題】
一般に熱交換器、特に空気調節器の蒸発器などにおいては、フィンの表面温度が大気の露点以下になるためにフィンの表面に水が結露する。この様な水分の付着は、熱交換される空気の流通抵抗の増大をもたらすことによる熱交換性能の低下をはじめ、送風に起因する騒音の発生、水滴の飛散などの様々の問題の原因となる。
【0003】
これらの問題点を解決することを目的として、フィンの表面に親水性を付与し付着水の流れを良くすることにより、空気の流路の閉塞を防ぐことが一般的に行われている。例えば、特開昭50−38645号明細書には、アルニミウム表面をアルカリ金属炭酸塩とアルカリ金属クロム酸塩とを含有する溶液に浸漬し、被覆し、さらにアルカリ金属酸化物と二酸化ケイ素とを含む溶液に浸漬し、アルミニウム表面に連続した、粗い、多孔性かつ親水性被膜のコーティングを形成する方法が開示されている。
【0004】
特開昭62−235477号明細書には、アルミニウム表面をアルカリ金属珪酸塩と無機硬化剤と水溶性有機高分子化合物を含む溶液でコーティングすることにより親水性被膜を形成する方法が開示されている。
【0005】
特開昭62−272099号明細書には、アルミニウムからなる部品の表面に、シラノール基を有する化合物とポリビニルピロリドンを含有する水性媒体中に浸漬することによる親水性付与の方法が開示されている。
【0006】
特開平1−208475号明細書には、クロメート処理を施し、つぎに正リン酸を含むアルカリ金属珪酸塩水溶液を塗布した後、さらに正リン酸溶液を塗布し、しかる後加熱乾燥することによる親水性被膜形成方法が開示されている。
【0007】
既述のように公開特許明細書に記載された具体的方法について明らかにしたが、いずれの方法もアルカリ金属珪酸塩の呈する水との親和性をその根本原理としており、実用上要求される被膜の耐久性の向上を図るために、無機硬化剤や有機高分子成分を添加するなどにより耐久性の改良を企図しているものということができる。また、同時に表面を予め多孔質とし親水性を有する膜と基材との付着性を強化することも試みられている。
【0008】
このようなアルカリ金属珪酸塩の特性を利用して付与された親水性は、その目的を充分に達成しており実用上においても広く使用されているものである。しかしながら、この様な親水性被膜を長時間にわたり水と接触させておくと、アルカリ金属珪酸塩の卓越した水への溶解性のために、被膜の親水性の機能を発揮する部分が消滅するという問題を生じることがある。また、カーエアコンなどの閉鎖性の強い空間での使用においては、人体の呼気に含まれる炭酸ガスあるいは有機物質とアルカリ金属珪酸塩との反応による、炭酸塩の形成による膜の変化または有機分解物による異臭を発生することも問題である。さらに有機高分子化合物を被膜の構成材料の一部とするものにおいては、通常の使用条件ではそれほどの高温に曝されることはないものの長期間における耐熱性において不安を残している。
【0009】
【課題を解決するための手段】
本発明者らは前述した問題点を解決するために、有機化合物を被膜の構成材料とせず、また長期間にわたりその親水性が本質的に変化することのない被膜を金属表面に形成する方法について鋭意検討を加えたところ、平均粒子径5μm以下の二酸化チタンおよび少なくともシリカを含有してなる被膜が実用上必要な親水性と同時に苛酷な条件、例えば、加熱水中においても長時間にわたり安定であることを見出し本発明に到った。
【0010】
すなわち、本発明は、親水性シリカ被膜形成用塗布溶液を基材に塗布し、50〜200℃で乾燥および仮焼成し、300℃以上で焼成する親水性シリカ被膜の製造方法であり、前記親水性シリカ被膜形成用塗布溶液を一般式Si(OR 1 )(OR 2 )(OR 3 )(OR 4 )、SiCl(OR 1 )(OR 2 )(OR 3 )、SiCl 2 (OR 1 )(OR 2 )またはSiCl 3 (OR 1 )(ただし、式中R 1 、R 2 、R 3 、R 4 はメチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基のいずれかを示す。)で表されるケイ素のアルコキシ化合物またはそれらの加水分解物を有機溶媒に溶解した溶液に平均粒子径5μm以下の二酸化チタンを、被膜中で前記二酸化チタンの組成が3〜40wt%となるように含有させ、溶液に占める前記ケイ素の濃度がSiO 換算で0.1〜5mol/lであるものとすることで、シリカ被膜の表面に二酸化チタンに起因する凹凸とともに微細な細孔またはクラックを発生させた膜厚が0.1〜10μmの親水性多孔質膜を形成することを特徴とする親水性シリカ被膜の製造方法である
【0011】
ところで、金属アルコキシドを基材の表面に塗布し、焼成することは従来から各種の目的のもとに様々の研究が行われ、いろいろの用途に利用されており、そのなかにはほとんど本発明の方法と同様のように見受けられるが、全く反対の目的、すなわち、基材の表面を疎水化して防汚性を付与することを目的とするものも見られる。したがって、本発明においては金属アルコキシドを含む特定の組成からなる被膜形成用溶液を使用することが必要であり、それらは平均粒子径5μm以下の二酸化チタンおよび一般式Si(OR 1 )(OR 2 )(OR 3 )(OR 4 )、SiCl(OR 1 )(OR 2 )(OR 3 )、SiCl 2 (OR 1 )(OR 2 )またはSiCl 3 (OR 1 )(ただし、式中R 1 、R 2 、R 3 、R 4 はメチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基のいずれかを示す。)で表されるケイ素のアルコキシ化合物またはそれらの加水分解物とを含有する混合物でなければならない。
【0012】
本発明の被膜はアルカリ金属の珪酸塩は勿論、アルカリ金属をも使用せず、それらの溶出に起因する水中での長期にわたる安定性の欠如を来すことはない。本発明の被膜は、機械的強度が大きく、多孔性を有し、かつ長期の安定性を保つことのできる親水性の膜である。被膜の表面は図1に示すように微細な凹凸で覆われていることが認められ、この凹凸が親水性の発現に関与していることと考えられる。しかしながら、図1において認められる微粒子に起因する凹凸のみが本発明の親水性に寄与しているのではなく、むしろ図1によっては確認することの困難なさらに微細な細孔またはクラックが親水性の主たる原因と考えられる。この微細な細孔の生成原因は明確ではないが、膜が焼成により形成されるときにシリカ成分は収縮するにも拘わらず、固形分は収縮しないため部分的に応力を残しながら膜となるために、このような微細な細孔が表面に大きな密度で発生するものと考えられる。
【0013】
細孔を有する多孔質物質においては、水は自身の表面張力により内部に浸透し、マクロには表面に液体を接触させた場合の接触角の低さ、または表面に水滴を滴下したときの広がりとして親水性を示すことが観察される。本発明の被膜は、
この様な機構による親水性を示すと同時に、主にケイ素よりなる膜それ自身の表面エネルギーに起因する親水性を併せ有するものである。
【0014】
本発明における平均粒子径5μm以下の二酸化チタンの被膜中における組成は、3〜40wt%が好ましく、10〜30wt%がより好ましい。3wt%以下の場合、膜は充分な凹凸および前記の微細孔を形成せず、望ましい親水性を発現することなく、また40wt%以上のときは膜の強度が低くなり、また粒子の剥落が起こるため取扱い上好ましくない。
【0015】
本発明における固形分である平均粒子径5μm以下の二酸化チタンとしては、TiO2(ルチル、アナターゼ)の繊維状物質およびこれらの混合物などが使用でき、顔料として微粒子化されたものは好適である。微粒子の粒子径の分布はとくに狭い必要はなく、0.05〜5μm程度に広く分布する方が好ましい。また繊維状物質の場合直径は0.05〜5μm程度が好ましく、長さは100μm以下が好ましい。
【0016】
本発明の被膜を形成するのに用いられる固形分以外の成分の原料は、焼成処理により実質的に酸化物を形成しうる一般式Si(OR 1 )(OR 2 )(OR 3 )(OR 4 )、SiCl(OR 1 )(OR 2 )(OR 3 )、SiCl 2 (OR 1 )(OR 2 )またはSiCl 3 (OR 1 )(ただし、式中R 1 、R 2 、R 3 、R 4 はメチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基のいずれかを示す。)で表されるアルコキシ化合物またはそれらの加水分解物であればよい
【0017】
特にテトラエトキシシラン、テトラメトキシシラン、テトライソプロポキシシラン、テトラノルマルプロポキシシラン、テトラノルマルブトキシシラン、テトラターシャリブトキシシランなどまたはその加水分解物が好ましい
【0018】
また、本発明におけるアルコール類などの有機溶媒に可溶な酸化ケイ素には、一般にコロイダルシリカと称する物が著名であるが、アルコール類に溶解させた場合に溶解するかもしくは均一に分散するものであればよい。
【0019】
本発明においては、ケイ素を膜形成の主たる成分としているので造膜性、被膜の基材への付着性、膜の安定性に優れるが、必要に応じて焼成したときに対応する酸化物となる亜鉛、鉛の化合物を添加することも有効である。
【0020】
親水性被膜形成に使用される塗布薬液の濃度は、溶液に占める固形分以外のケイ素の濃度としてSiO 換算で0.1〜5mol/lが好ましいが、0.4〜2mol/lがより好ましい。同濃度が0.1mol/lよりも低いと1回の塗布操作において形成される膜が薄いものとなり、繰り返し塗布に要する回数が増え実用上好ましくない。一方、5mol/lより高い場合はチョーキング(粉吹き現象)や極端な体積収縮のため膜に剥離の原因となる程の大きなクラックが生じることがあるため好ましくない。しかしながら、必ずしもこの濃度条件でなければならないという訳ではなく、添加物、溶媒の種類により調節は可能である。
【0021】
濃度調節用の溶媒にはアルコール類を用いるのがよく、メタノール、エタノール、i−プロパノール、n−プロパノール、n−ブタノール、i−ブタノール、t−ブタノール、メトキシエタノール、エトキシエタノール、エチレングリコールなどが例示でき、これらの2種以上を組み合わせて使用することも可能である。
【0022】
この時得られる親水性被膜の膜厚は、0.1〜10μmが好ましく、0.3〜5μmがより好ましい。細孔容積は膜厚にほぼ比例するので膜厚が0.1μmよりも薄い膜では、金属表面の親水性の付与効果が充分でなく、一方、10μmよりも厚い膜では微粒子による凹凸発生の効果が充分ではなく、また剥離が生じやすく好ましくない。親水性被膜は、1回の塗布で形成することも複数回で形成することも可能である。
【0023】
薬液の基板上への塗布は、浸漬法、スプレー法、ローラーコート法、フローコート法、スクリーン印刷法、刷毛塗り等の方法により行う。親水性表面を有する金属の種類は、熱伝導性、化学的安定性、機械的強度などをもとに使用条件を考慮して選択されるが、鉄、アルミニウム、アルミニウム合金、銅、真鍮、ステンレスなどが好ましく、それらの形状は板状または中空コイル状のものが一般的であるが、各種の金属を積層したものや複合したものに親水性を付与することも当然可能である。
【0024】
本発明の被膜の製造方法においては基材の表面に各種の前処理を施すことは有用である。機械研磨、電気研磨、酸洗浄、アルカリ洗浄、水洗浄あるいは有機溶剤による脱脂洗浄などはいずれの金属にたいしても有効である。アルミニウムまたはアルミニウム合金の場合には当分野において周知の技術である、アルマイト処理、クロメート処理あるいは亜鉛、チタン、ジルコニウムなどの燐酸塩による化成処理などが耐蝕性、被膜の付着性の向上を目的として使用することもできる。さらに本発明の目的を逸脱しない範囲においては、有機高分子化合物による前処理を適用できる場合もある。
【0025】
各種方法により形成された塗膜は、50〜200℃で5〜30分間乾燥および仮焼成し、電気炉により300℃以上で10〜60分間焼成することにより優れた親水性表面を有する金属を得ることができる。焼成温度の上限はとくに限定する必要はないが、ステンレス鋼においては、約500℃以下が好ましい。
【0026】
以下に実施例によりさらに詳しく本発明を説明する。
【0027】
【実施例】
実施例1
攪拌機を具えた2Lの三ツ口フラスコに、SiO2換算20.0wt%のテトラエトキシシランのエタノール溶液(コルコート(株)製)500gを入れ、それに35%塩酸約1ccと水50ccを添加し50℃において3時間還流下に攪拌した。ついで、攪拌しながら平均粒子径0.2μmのルチル型酸化チタン16.7gを投入し、それをさらにSiO2の濃度が1.0mol/lになるように、エタノール70%とメトキシエタノール30%の混合溶媒約1100ccで希釈し、白色塗布用溶液を調した。
【0028】
この塗布用溶液を500ccガラス製ビーカーに取り、その中へ50x100x0.2mmのSUS304製の試料片を投入し、次いで試料片を4mm/secの一定速度で塗布用溶液から引き上げ、空気中、70℃で20分間乾燥し、さらに電気炉により空気中150℃で20分間仮焼成し、室温まで冷却した。
【0029】
ついで、再度同様の塗布、乾燥を繰り返し、その後さらに5℃/minの速度で200℃から450℃に昇温し、20分間そのまま保持し、電気炉から取り出し放冷すると、白色の被膜が形成された試料片が得られた。被膜の表面の走査型電子顕微鏡写真を図1に示す。
【0030】
被覆処理を施した試料について次の評価試験を行い、膜の親水性と化学的安定性を確認した。
1)耐酸性試験: ガラス製の1Lーカーに1重量%塩酸溶液をいれ、その中に試料を浸漬し、室温で24時間放置した。時間の経過後試料を流水により洗浄し、表面状態の観察を目視により行った。評価は全く変化の見られない物を○、クラックや剥離を認められるものを×とし、中間を○とした。
【0031】
2)耐溶剤試験: ガラス製の1Lビーカーにアセトンをいれ、その中に試料を浸漬し、室温で24時間放置した。時間の経過後試料を流水により洗浄し、表面状態の観察を目視により行った。評価は全く変化の見られない物を○、クラックや剥がれの見られるものを×とし、中間を○とした。
【0032】
3)水割れ試験: 蒸留水を入れたビーカーに試料を10秒浸漬し、速やかに引き上げた際の水の切れ方を評価し、水滴の全く見られないものを○、全面にわたり水滴以外に濡れた部分の認められない場合を×、その中間を△とした。
【0033】
4)濡れ拡がりの測定: 試料の表面にマイクロシリンジで5μlの蒸留水を静かに滴下し、5秒後における水滴の拡がりをノギスで測定した。また、親水性の加速試験としての温水浸漬試験は、経時変化については45℃の蒸留水に浸漬し、所定時間経過後、槽より取り出し、ついで80℃で恒量になるまで乾燥し、室温に冷却した上で前記の測定を行った。
【0034】
それぞれの測定結果は表1に示す。被膜の濡れ拡がり性および水割れ試験において比較例と比べ極めて優れた親水性を有することは明白である。
【0035】
[表1]
--------------------------------------------------------------------------------
成膜用組成物 濡れ拡がり
--------------------------------------------------------------------------------
*1 *2濃度 希釈 安定性 水割れ mmφ
原料 wt% mol/l 容積比 外観 酸水 アセトン 初期 24hr
--------------------------------------------------------------------------------
実施例1 TEOS 85.7 1.0 EtOH 7 ○ ○ ○ ○ 12.6 9.1
TiO2 14.3 EGME3
--------------------------------------------------------------------------------
比較例1 TEOS 100 1.0 EtOH ○ ○ ○ × 4.2 2.4
--------------------------------------------------------------------------------
EtOH:エタノール、EGME:エトキシエタノール
*1 酸化物とした場合の各成分のwt%
*2 固形分以外の成分の濃度 mol/l
【0036】
比較例1
テトラエトキシシラン(コルコート製)のSiO2換算20.0wt%のエタノール溶液をSiO の濃度が1.0mol/lの濃度に調し、実施例1と同様の方法で被膜形成をおこなった。結果は表1に示す。
【0037】
【発明の効果】
本発明の被膜形成用溶液を用いて製造されたシリカ被膜は、実施例の結果を示す表1から明らかなように、熱交換器の凝縮器などに要求される親水性および水流れ性を有し、しかも、アルカリ金属の珪酸塩や有機物を含まないため苛酷な使用条件においても長期間にわたって性能の変化しない親水性を発現する被膜を形成できるという効果を有する。
【図面の簡単な説明】
【図1】 実施例1の基板上に形成された薄膜の図面代用電子顕微鏡写真である。
[0001]
[Industrial application fields]
The present invention relates to a method for producing a hydrophilic silica coating that maintains corrosion resistance and hydrophilicity for a long period of time, particularly in metal substrates used for fins and the like in evaporators of heat exchangers such as room air conditioners and car air conditioners.
[0002]
[Prior art and its problems]
In general, in a heat exchanger, particularly an evaporator of an air conditioner, water is condensed on the surface of the fin because the surface temperature of the fin is below the dew point of the atmosphere. Such adhesion of moisture causes various problems such as a decrease in heat exchange performance due to an increase in flow resistance of air to be heat exchanged, generation of noise due to air blowing, and scattering of water droplets. .
[0003]
In order to solve these problems, it is a common practice to prevent blockage of the air flow path by imparting hydrophilicity to the fin surface and improving the flow of the attached water. For example, in Japanese Patent Application Laid-Open No. 50-38645, the surface of aluminum is dipped in a solution containing an alkali metal carbonate and an alkali metal chromate, coated, and further contains an alkali metal oxide and silicon dioxide. A method of immersing in a solution and forming a continuous, porous, hydrophilic coating on an aluminum surface is disclosed.
[0004]
Japanese Patent Application Laid-Open No. 62-235477 discloses a method of forming a hydrophilic film by coating an aluminum surface with a solution containing an alkali metal silicate, an inorganic curing agent, and a water-soluble organic polymer compound. .
[0005]
Japanese Patent Application Laid-Open No. 62-272099 discloses a method for imparting hydrophilicity by immersing a surface of a part made of aluminum in an aqueous medium containing a compound having a silanol group and polyvinylpyrrolidone.
[0006]
In Japanese Patent Application Laid-Open No. 1-208475, chromate treatment is performed, and then an alkali metal silicate aqueous solution containing normal phosphoric acid is applied, then a normal phosphoric acid solution is further applied, and then heated and dried. A method for forming a conductive film is disclosed.
[0007]
As described above, the specific methods described in the published patent specifications have been clarified, but each method has an affinity with water exhibited by alkali metal silicate as its fundamental principle, and is a coating that is practically required. In order to improve the durability, it can be said that the durability is improved by adding an inorganic curing agent or an organic polymer component. At the same time, attempts have been made to reinforce the adhesion between the substrate having a porous surface and a hydrophilic film and a substrate.
[0008]
The hydrophilicity imparted by utilizing such characteristics of the alkali metal silicate has sufficiently achieved its purpose and is widely used in practice. However, if such a hydrophilic coating is kept in contact with water for a long time, the portion that exhibits the hydrophilic function of the coating disappears due to the excellent solubility of the alkali metal silicate in water. May cause problems. Also, when used in highly closed spaces such as car air conditioners, the membrane changes due to the formation of carbonates or organic degradation products due to the reaction between carbon dioxide or organic substances contained in the breath of the human body and alkali metal silicates. It is also a problem to generate an off-flavor due to. Further, in the case of using an organic polymer compound as a part of the constituent material of the film, although it is not exposed to such a high temperature under normal use conditions, there remains anxiety in heat resistance over a long period of time.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have disclosed a method for forming a coating film on a metal surface without using an organic compound as a constituent material of the coating film and having essentially no change in hydrophilicity over a long period of time. As a result of intensive studies, a coating film containing titanium dioxide having an average particle size of 5 μm or less and at least silica is practically necessary for hydrophilicity and stable under severe conditions such as heated water for a long time. And found the present invention.
[0010]
That is, this invention is a manufacturing method of the hydrophilic silica film which apply | coats the coating solution for hydrophilic silica film formation to a base material, and is dried and temporarily baked at 50-200 degreeC, and baked at 300 degreeC or more , The said hydrophilic The coating solution for forming a conductive silica film is represented by the general formula Si (OR 1 ) (OR 2 ) (OR 3 ) (OR 4 ), SiCl (OR 1 ) (OR 2 ) (OR 3 ), SiCl 2 (OR 1 ) (OR 2 ) or SiCl 3 (OR 1 ) (wherein R 1 , R 2 , R 3 and R 4 are methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, secondary butyl group, methoxyethyl group) , An ethoxyethyl group or a phenyl group.) In a solution of an alkoxy compound of silicon represented by the following formula or a hydrolyzate thereof dissolved in an organic solvent, titanium dioxide having an average particle size of 5 μm or less is coated. In the film, the composition of titanium dioxide is contained so as to be 3 to 40 wt%, and the concentration of the silicon in the solution is 0.1 to 5 mol / l in terms of SiO 2 . It is a method for producing a hydrophilic silica coating, characterized in that a hydrophilic porous film having a thickness of 0.1 to 10 μm with fine pores or cracks generated along with unevenness caused by titanium dioxide is formed on the surface. .
[0011]
By the way, applying a metal alkoxide to the surface of a base material and firing has been conventionally conducted for various purposes and has been used for various purposes, and most of them are the method of the present invention. Although it seems that it is the same, there is also an object of completely opposite object, that is, an object of imparting antifouling property by hydrophobizing the surface of the substrate. Therefore, in the present invention, it is necessary to use a film-forming solution having a specific composition containing a metal alkoxide, which includes titanium dioxide having an average particle diameter of 5 μm or less and a general formula Si (OR 1 ) (OR 2 ). (OR 3 ) (OR 4 ), SiCl (OR 1 ) (OR 2 ) (OR 3 ), SiCl 2 (OR 1 ) (OR 2 ) or SiCl 3 (OR 1 ) (wherein R 1 , R 2 , R 3 and R 4 represent a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a secondary butyl group, a methoxyethyl group, an ethoxyethyl group, or a phenyl group. And a mixture containing the alkoxy compound or a hydrolyzate thereof .
[0012]
The coatings of the present invention do not use alkali metals as well as alkali metal silicates, and do not cause long-term lack of stability in water due to their elution. The coating film of the present invention is a hydrophilic film having high mechanical strength, porosity, and long-term stability. It is recognized that the surface of the coating is covered with fine irregularities as shown in FIG. 1, and this irregularity is considered to be involved in the expression of hydrophilicity. However, only the irregularities caused by the fine particles observed in FIG. 1 do not contribute to the hydrophilicity of the present invention, but rather fine pores or cracks that are difficult to confirm depending on FIG. 1 are hydrophilic. It is thought to be the main cause. The cause of the formation of these fine pores is not clear, but the silica component shrinks when the film is formed by firing, but the solid content does not shrink, so the film remains partially while leaving a stress. In addition, it is considered that such fine pores are generated at a large density on the surface.
[0013]
In porous materials with pores, water penetrates into the inside due to its surface tension, and macroscopically, the contact angle is low when a liquid is brought into contact with the surface, or the spread when water drops are dropped on the surface. As being hydrophilic. The coating of the present invention is
In addition to exhibiting hydrophilicity by such a mechanism, it also has hydrophilicity due to the surface energy of the film made of silicon itself.
[0014]
In the present invention, the composition of the titanium dioxide film having an average particle diameter of 5 μm or less is preferably 3 to 40 wt%, more preferably 10 to 30 wt%. When the content is 3 wt% or less, the film does not form sufficient irregularities and the above-described micropores, and does not exhibit desirable hydrophilicity. When the content is 40 wt% or more, the strength of the film decreases and particle peeling occurs. Therefore, it is not preferable in handling.
[0015]
As titanium dioxide having an average particle size of 5 μm or less, which is a solid content in the present invention, a fibrous material of TiO 2 (rutile, anatase), a mixture thereof, or the like can be used, and those finely divided as a pigment are preferable. The particle size distribution of the fine particles does not have to be particularly narrow, and it is preferable that the particle size is widely distributed to about 0.05 to 5 μm. In the case of a fibrous material, the diameter is preferably about 0.05 to 5 μm, and the length is preferably 100 μm or less.
[0016]
The raw materials of the components other than the solid content used to form the coating film of the present invention are represented by the general formula Si (OR 1 ) (OR 2 ) (OR 3 ) (OR 4 ) that can form an oxide substantially by the firing treatment. ), SiCl (OR 1 ) (OR 2 ) (OR 3 ), SiCl 2 (OR 1 ) (OR 2 ) or SiCl 3 (OR 1 ) (wherein R 1 , R 2 , R 3 , R 4 are An alkoxy compound represented by a methyl group, an ethyl group, a normal propyl group, an isopropyl group, a normal butyl group, a secondary butyl group, a methoxyethyl group, an ethoxyethyl group or a phenyl group) or a hydrolyzate thereof. If it is .
[0017]
In particular, tetraethoxysilane, tetramethoxysilane, tetraisopropoxysilane, tetranormalpropoxysilane, tetranormalbutoxysilane, tetratertiarybutoxysilane, or the like, or a hydrolyzate thereof is preferable .
[0018]
In addition, the silicon oxide soluble in organic solvents such as alcohols in the present invention is generally known as colloidal silica, but it is dissolved or uniformly dispersed when dissolved in alcohols. I just need it.
[0019]
In the present invention, since silicon is the main component for film formation, it is excellent in film forming property, adhesion of the film to the substrate, and stability of the film, but it becomes an oxide corresponding to firing when necessary. It is also effective to add zinc and lead compounds.
[0020]
The concentration of the coating chemical used for forming the hydrophilic film is preferably 0.1 to 5 mol / l in terms of SiO 2 as the concentration of silicon other than the solid content in the solution, but more preferably 0.4 to 2 mol / l. . If the concentration is lower than 0.1 mol / l, the film formed in one application operation becomes thin, and the number of times required for repeated application increases, which is not preferable for practical use. On the other hand, if it is higher than 5 mol / l, it is not preferable because large cracks that cause peeling may occur in the film due to choking (powder blowing phenomenon) or extreme volume shrinkage. However, this concentration condition does not necessarily have to be adjusted, and adjustment is possible depending on the type of additive and solvent.
[0021]
Alcohols should be used as the solvent for concentration adjustment, and examples include methanol, ethanol, i-propanol, n-propanol, n-butanol, i-butanol, t-butanol, methoxyethanol, ethoxyethanol, and ethylene glycol. It is also possible to use a combination of two or more of these.
[0022]
The thickness of the hydrophilic coating obtained at this time is preferably from 0.1 to 10 μm, more preferably from 0.3 to 5 μm. Since the pore volume is almost proportional to the film thickness, the effect of imparting hydrophilicity to the metal surface is not sufficient when the film is thinner than 0.1 μm, while the effect of generating irregularities due to fine particles is obtained when the film is thicker than 10 μm. Is not sufficient, and peeling is likely to occur. The hydrophilic film can be formed by a single application or a plurality of times.
[0023]
The chemical solution is applied onto the substrate by a method such as dipping, spraying, roller coating, flow coating, screen printing, or brush coating. The type of metal with a hydrophilic surface is selected in consideration of the use conditions based on thermal conductivity, chemical stability, mechanical strength, etc., but iron, aluminum, aluminum alloy, copper, brass, stainless steel These are generally plate-shaped or hollow-coiled, but it is naturally possible to impart hydrophilicity to a laminate or composite of various metals.
[0024]
In the method for producing a film of the present invention, it is useful to perform various pretreatments on the surface of the substrate. Mechanical polishing, electropolishing, acid cleaning, alkali cleaning, water cleaning or degreasing cleaning with an organic solvent are effective for any metal. In the case of aluminum or aluminum alloy, alumite treatment, chromate treatment, or chemical conversion treatment with phosphates such as zinc, titanium, zirconium, etc. are used for the purpose of improving corrosion resistance and coating adhesion. You can also Furthermore, pretreatment with an organic polymer compound may be applied within a range not departing from the object of the present invention.
[0025]
The coating film formed by various methods is dried and temporarily fired at 50 to 200 ° C. for 5 to 30 minutes, and then fired at 300 ° C. or higher for 10 to 60 minutes in an electric furnace to obtain a metal having an excellent hydrophilic surface. be able to. The upper limit of the firing temperature is not particularly limited, but is preferably about 500 ° C. or less in stainless steel.
[0026]
Hereinafter, the present invention will be described in more detail with reference to examples.
[0027]
【Example】
Example 1
In a 2 L three-necked flask equipped with a stirrer, 500 g of a 20.0 wt% tetraethoxysilane ethanol solution (manufactured by Colcoat Co.) in terms of SiO 2 was added, and about 1 cc of 35% hydrochloric acid and 50 cc of water were added thereto at 50 ° C. The mixture was stirred for 3 hours under reflux. Next, 16.7 g of rutile titanium oxide having an average particle diameter of 0.2 μm was added while stirring, and the mixture was further added with 70% ethanol and 30% methoxyethanol so that the SiO 2 concentration became 1.0 mol / l. diluted with a mixed solvent of about 1100cc, the white coating solution was made of tone.
[0028]
Take this coating solution in a 500 cc glass beaker, put a 50 × 100 × 0.2 mm SUS304 sample piece into it, then pull the sample piece out of the coating solution at a constant rate of 4 mm / sec, in air at 70 ° C. For 20 minutes, and further calcined in air at 150 ° C. for 20 minutes and cooled to room temperature.
[0029]
Next, the same coating and drying were repeated again, and then the temperature was further raised from 200 ° C. to 450 ° C. at a rate of 5 ° C./min, kept for 20 minutes, and taken out from the electric furnace and allowed to cool to form a white film. Sample pieces were obtained. A scanning electron micrograph of the surface of the coating is shown in FIG.
[0030]
The following evaluation test was performed on the coated sample, and the hydrophilicity and chemical stability of the film were confirmed.
1) Acid resistance test: A 1 wt% hydrochloric acid solution was placed in a glass 1 L-ker, the sample was immersed therein, and allowed to stand at room temperature for 24 hours. After a lapse of time, the sample was washed with running water, and the surface state was observed visually. In the evaluation, ○ indicates that there is no change at all, × indicates that crack or peeling is observed, and ○ indicates the middle.
[0031]
2) Solvent resistance test: Acetone was placed in a 1 L glass beaker, the sample was immersed in it, and allowed to stand at room temperature for 24 hours. After a lapse of time, the sample was washed with running water, and the surface state was observed visually. In the evaluation, ○ indicates that no change is observed, × indicates that a crack or peeling is observed, and ○ indicates an intermediate.
[0032]
3) Water cracking test: Immerse the sample in a beaker containing distilled water for 10 seconds and evaluate how it drains quickly when it is pulled up. The case where no part was recognized was marked with ×, and the middle of the marked portion was marked with Δ.
[0033]
4) Measurement of wetting and spreading: 5 μl of distilled water was gently dropped on the surface of the sample with a microsyringe, and the spreading of the water droplets after 5 seconds was measured with calipers. In addition, the hot water immersion test as a hydrophilic acceleration test is immersed in distilled water at 45 ° C. for changes over time, taken out from the tank after a predetermined time, then dried to a constant weight at 80 ° C., and cooled to room temperature. Then, the above measurement was performed.
[0034]
Each measurement result is shown in Table 1. It is obvious that the coating has wettability and water cracking test and has extremely superior hydrophilicity as compared with the comparative example.
[0035]
[Table 1]
-------------------------------------------------- ------------------------------
Film-forming composition Wet spread
-------------------------------------------------- ------------------------------
* 1 * 2 Concentration Dilution Stability Water cracking mmφ
Raw material wt% mol / l Volume ratio Appearance Acidic water Acetone Initial 24hr
-------------------------------------------------- ------------------------------
Example 1 TEOS 85.7 1.0 EtOH 7 ○ ○ ○ ○ 12.6 9.1
TiO 2 14.3 EGME3
-------------------------------------------------- ------------------------------
Comparative Example 1 TEOS 100 1.0 EtOH ○ ○ ○ × 4.2 2.4
-------------------------------------------------- ------------------------------
EtOH: Ethanol, EGME: Ethoxyethanol
* 1 wt% of each component when oxide
* 2 Concentration of components other than solids mol / l
[0036]
Comparative Example 1
The terms of SiO 2 20.0 wt% ethanol solution of tetraethoxysilane (manufactured by Colcoat) concentration of SiO 2 is adjusted to a concentration of 1.0 mol / l, it was subjected to film formation in the same manner as in Example 1. The results are shown in Table 1.
[0037]
【The invention's effect】
As is apparent from Table 1 showing the results of the examples, the silica film produced using the film forming solution of the present invention has hydrophilicity and water flow properties required for a condenser of a heat exchanger. In addition, since it does not contain alkali metal silicate or organic matter, it has an effect that it can form a film that exhibits hydrophilicity whose performance does not change over a long period of time even under severe use conditions.
[Brief description of the drawings]
1 is a drawing-substituting electron micrograph of a thin film formed on a substrate of Example 1. FIG.

Claims (1)

親水性シリカ被膜形成用塗布溶液を基材に塗布し、50〜200℃で乾燥および仮焼成し、300℃以上で焼成する親水性シリカ被膜の製造方法であり、前記親水性シリカ被膜形成用塗布溶液を一般式Si(OR 1 )(OR 2 )(OR 3 )(OR 4 )、SiCl(OR 1 )(OR 2 )(OR 3 )、SiCl 2 (OR 1 )(OR 2 )またはSiCl 3 (OR 1 )(ただし、式中R 1 、R 2 、R 3 、R 4 はメチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、セカンダリブチル基、メトキシエチル基、エトキシエチル基またはフェニル基のいずれかを示す。)で表されるケイ素のアルコキシ化合物またはそれらの加水分解物を有機溶媒に溶解した溶液に平均粒子径5μm以下の二酸化チタンを、被膜中で前記二酸化チタンの組成が3〜40wt%となるように含有させ、溶液に占める前記ケイ素の濃度がSiO 換算で0.1〜5mol/lであるものとすることで、シリカ被膜の表面に二酸化チタンに起因する凹凸とともに微細な細孔またはクラックを発生させた膜厚が0.1〜10μmの親水性多孔質膜を形成することを特徴とする親水性シリカ被膜の製造方法。The hydrophilic silica film-forming coating solution was applied to a substrate, dried and calcined at 50 to 200 ° C., a method for producing a sintered hydrophilic silica coating at 300 ° C. or higher, the coating the hydrophilic silica coating formation The solution may be represented by the general formula Si (OR 1 ) (OR 2 ) (OR 3 ) (OR 4 ), SiCl (OR 1 ) (OR 2 ) (OR 3 ), SiCl 2 (OR 1 ) (OR 2 ) or SiCl 3 ( OR 1 ) (wherein R 1 , R 2 , R 3 and R 4 are methyl, ethyl, normal propyl, isopropyl, normal butyl, secondary butyl, methoxyethyl, ethoxyethyl or phenyl) In a coating film, titanium dioxide having an average particle size of 5 μm or less is added to a solution obtained by dissolving a silicon alkoxy compound or a hydrolyzate thereof in an organic solvent. The silicon composition is contained in an amount of 3 to 40 wt%, and the silicon concentration in the solution is 0.1 to 5 mol / l in terms of SiO 2. A method for producing a hydrophilic silica film, comprising forming a hydrophilic porous film having a film thickness of 0.1 to 10 μm in which fine pores or cracks are generated together with unevenness caused by the unevenness.
JP2001261258A 2001-08-30 2001-08-30 Method for producing hydrophilic silica coating Expired - Fee Related JP3818882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261258A JP3818882B2 (en) 2001-08-30 2001-08-30 Method for producing hydrophilic silica coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261258A JP3818882B2 (en) 2001-08-30 2001-08-30 Method for producing hydrophilic silica coating

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11044492A Division JP3340149B2 (en) 1992-04-28 1992-04-28 Hydrophilic coating and method for forming the coating

Publications (2)

Publication Number Publication Date
JP2002161240A JP2002161240A (en) 2002-06-04
JP3818882B2 true JP3818882B2 (en) 2006-09-06

Family

ID=19088332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261258A Expired - Fee Related JP3818882B2 (en) 2001-08-30 2001-08-30 Method for producing hydrophilic silica coating

Country Status (1)

Country Link
JP (1) JP3818882B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210027A1 (en) 2002-03-07 2003-09-18 Creavis Tech & Innovation Gmbh Hydrophilic surfaces
US20080014447A1 (en) * 2004-05-28 2008-01-17 Ngk Insulators, Ltd. Method Of Forming Film On Zirconium-Based Metallic Glass Surface, And Zirconium-Based Metallic Glass Component
JP2010090461A (en) * 2008-10-10 2010-04-22 Central Glass Co Ltd Hydrophilic membrane and heat exchanging element member using the same
JP5376149B2 (en) * 2009-08-04 2013-12-25 三菱マテリアル株式会社 Hydrophobic silica coated metal foam
JP6095803B2 (en) * 2013-12-18 2017-03-15 三菱電機株式会社 Hydrophilic coating film and method for producing the same, humidifying element and humidifying device
KR101807018B1 (en) * 2016-07-12 2017-12-08 현대자동차 주식회사 Manufacturing method for porous thermal insulation coating layer, porous thermal insulation coating layer and internal combustion engine using the same

Also Published As

Publication number Publication date
JP2002161240A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP3340149B2 (en) Hydrophilic coating and method for forming the coating
JP5254042B2 (en) COATING COMPOSITION AND METHOD FOR PRODUCING THE SAME, HEAT EXCHANGER, AND AIR CONDITIONER
KR101769228B1 (en) Aqueous hydrophilic coating composition capable of forming coating film having excellent self-cleaning ability against stains adhered thereon, and surface-treated material having formed thereon coating film having excellent self-cleaning ability against stains adhered thereon
JPWO2016051750A1 (en) Low reflection coating, glass plate, glass substrate, and photoelectric conversion device
WO2014034514A1 (en) Anti-fouling coating, heat exchanger provided with same, and production method for same
JP3818882B2 (en) Method for producing hydrophilic silica coating
JP6560210B2 (en) Low reflection coating, substrate with low reflection coating and photoelectric conversion device
KR101940924B1 (en) manufacturing method of a nano ceramic coating Glass with Hydrophilic and Easy-Clean Effect
JP5989808B2 (en) Manufacturing method of glass plate with low reflection coating and coating liquid used therefor
JP3147251B2 (en) Hydrophilic coating and method for forming the coating
JPH0885186A (en) Fluorine plastic hydrophilic structure and manufacture
JP2001040287A (en) Antibacterial coatings and coated substrates
KR101302720B1 (en) Coating composition for forming scratch resistant silica thin layers containing silica nano-particles of different sizes, method of preparing the same
JP2599531B2 (en) Hydrophilic coating
JP6487933B2 (en) Low reflection coating, glass plate with low reflection coating, glass plate with low reflection coating, glass substrate, photoelectric conversion device, and method of manufacturing low reflection coating
JP2004149347A (en) Method for forming thin film on glass substrate and thin film-coated glass substrate
JP2004107437A (en) Photocatalytic coating composition for metal substrate, photocatalytic metal material obtained using the same, and method for producing photocatalytic metal material
JP3313605B2 (en) Rust prevention film and its coating method
KR102798840B1 (en) Coating composition for stainless and stainless member comprising the coating layer and the manufacturing for the same
JP2007145977A (en) Aqueous coating solution and functional coating
JP2010090461A (en) Hydrophilic membrane and heat exchanging element member using the same
JPH04202378A (en) Zirconium based coating composition and production of zirconium oxide-coated graphite formed article
JP2022019380A (en) Substrate with silica film
CN118546550A (en) A super-hydrophilic and easy-to-clean inorganic nano coating and preparation method thereof
JP2024103145A (en) Frost-resistant items

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees