[go: up one dir, main page]

JP3824754B2 - Method for producing shape memory alloy cast member - Google Patents

Method for producing shape memory alloy cast member Download PDF

Info

Publication number
JP3824754B2
JP3824754B2 JP27106997A JP27106997A JP3824754B2 JP 3824754 B2 JP3824754 B2 JP 3824754B2 JP 27106997 A JP27106997 A JP 27106997A JP 27106997 A JP27106997 A JP 27106997A JP 3824754 B2 JP3824754 B2 JP 3824754B2
Authority
JP
Japan
Prior art keywords
alloy
shape memory
memory alloy
heat treatment
cast member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27106997A
Other languages
Japanese (ja)
Other versions
JPH11106880A (en
Inventor
真人 浅井
賢悟 水戸瀬
人士 浜中
隆之 米山
寿 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP27106997A priority Critical patent/JP3824754B2/en
Publication of JPH11106880A publication Critical patent/JPH11106880A/en
Application granted granted Critical
Publication of JP3824754B2 publication Critical patent/JP3824754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dental Prosthetics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、形状記憶合金製の精密鋳造部材の製造方法に関する。
【0002】
【従来の技術】
形状記憶合金は、超弾性、形状回復性などの諸特性に優れ、センサー、スイッチ、クリップ、ソケット等の産業用機器部材に使用されている。また、歯科医療用部材として、例えば、欠損した歯を補う治療法の一つの補綴で用いる部分義歯床用のクラスプなどの材質として形状記憶合金を用いることが提案されている。
【0003】
クラスプとは、図1の説明図((イ)上面図、(ロ)側面図)に示すように、隣の歯を挟んで義歯を支持する部材である。義歯は、クラスプ1の先端を広げて歯2に取り付けることによって装着され、形状記憶合金製のクラスプではその後体温で温められることによってクラスプ2が閉じて、固定される。
ところで、クラスプのサイズは、取り付け位置での歯の太さによって決まる。クラスプの取り付け位置は、義歯を装着したときにクラスプが目立たないようにできるだけ歯の根元に近い方が好ましいが、クラスプを歯に取り付ける時にはその先端が歯の豊隆部よりも大きく広げられる。そのため、クラスプは歯の豊隆部3とクラスプの取り付け位置の歯の太さとの差(アンダーカット)を許容する歪み量を有していなければならない。したがって、クラスプの取り付け位置はこのアンダーカット量とクラスプの有する許容歪み量との兼ね合いによって決まり、クラスプの有する許容歪み量が小さい場合には歯の豊隆部に近いところにクラスプを取り付けざるを得ない。従来のクラスプ用合金としてはCoCr合金、AuAgPd合金が使用されているがこれらの合金よりも、形状記憶合金は許容歪み量が大きいために、形状記憶合金のクラスプは、その取り付け位置をより歯頚部に近く設定することができ好ましい。
その他、形状記憶合金のクラスプは、義歯の着脱を繰り返しても歯を挟んで義歯本体を支持する力の低下が極めて小さい、また、与えられた歪みに対する発生力が一定であるために、着脱の際に大きな力を必要としないなどの点で従来より用いられてきた合金に比べて優れている。
【0004】
【発明が解決しようとする課題】
形状記憶合金は、その優れた形状記憶特性、超弾性のために有用な各種部材となり得、線材などに加工されて広く利用されている。ところが、形状記憶合金の鋳造品は、鋳造状態で利用する場合、形状記憶熱処理前に材料に塑性歪みを付与できないことから、許容歪み量の大きな超弾性を有する部材を得るために極めて厳密に工程を制御しなければならず、安定した製造が困難であった。
【0005】
本発明は、このような問題を解決するためになされたもので、許容歪み量の大きな超弾性と適度な保持力を有する鋳造部材を安定して製造する方法を提供するものである。
【0006】
【課題を解決するための手段】
すなわち、本発明においては、リン酸塩系鋳型材からなる鋳型に拘束されたままの状態で形状記憶熱処理を施す工程を含む形状記憶合金鋳造部材の製造方法が提供される。前記形状記憶合金は、Ti48〜52at%、残部Niと不可避的不純物とからなるTiNi合金、Ti48〜52at%、Pd3〜30at%、残部Niと不可避的不純物とからなるTiPdNi合金、または、Ti48〜52at%、Cu3〜15at%、残部Niと不可避的不純物とからなるTiCuNi合金とする。また、TiNi合金、TiPdNi合金、または、TiCuNi合金は、それぞれの合金組成成分の一部を、全体で2at%以下の以下に述べるような金属と置換したものとしてもよい。TiNi合金においては、TiおよびまたはNiの一部を、Cr、Fe、Co、V、Mn、Mo、B、Cu、Nbからなる群の少なくとも1種で置換した合金を用いることができる。前記TiPdNi合金において、合金組成の一部を、2at%以下の、Cr、Fe、Co、V、Mn、Mo、B、Cuからなる群の少なくとも1種で置換した合金を用いることができる。前記TiCuNi合金において、合金組成の一部を、2at%以下の、Cr、Fe、Co、V、Mn、Mo、Bからなる群の少なくとも1種で置換した合金を用いることができる。リン酸塩系鋳型材からなる鋳型に拘束されたままの状態で形状記憶熱処理を施す際の温度条件としては、300〜650℃、かつ、形状記憶合金の熱収縮量が鋳型材の熱収縮量よりも小さい温度で行うとよい。
【0007】
【発明の実施の形態】
鋳造部材の製造工程中に、合金に形状記憶熱処理を施す際に鋳型に拘束されたままの状態で熱処理を施すことによって、安定して、超弾性効果を有する鋳造部材を製造することができる。その原理は明らかではないが、合金を鋳型に鋳込んだ状態で冷却、熱処理などの熱変化が起こると、合金と鋳型材との熱収縮量が異なることによって鋳型中の合金は鋳型より応力を受ける。そのストレスが、鋳造材に超弾性を発現させるのに寄与していると推定される。
鋳造部材の形状記憶熱処理は、合金が鋳型に鋳込まれた後、室温にまで温度が下がる前に行うようにし、鋳造後、続けてただちに熱処理を行うようにするとよい。室温にまで温度が下がってから熱処理を施すと、超弾性の発現が不安定になったり、超弾性が発現しないことがある。
【0008】
鋳型に拘束されたままの状態で形状記憶熱処理を施す際の温度条件としては、300〜650℃、かつ、形状記憶合金の熱収縮量が鋳型材の熱収縮量よりも小さいことを満足する温度で行うようにする。300℃未満では、超弾性の発現を促す歪みを十分に与えることができず、650℃を越えると合金の再結晶化や過剰析出等の現象によって超弾性を示さなくなる。
本発明において熱収縮量とは、ある温度での物体の長さ(l)の、室温での長さ(l0 )に対する変化量を室温での長さを基準として表したものである。したがって、ある温度での熱収縮量は、({(l−l0 )/l0 }×100(%))で表せる。
【0009】
図3に、温度を変化させたときのTiNi合金鋳造材と、鋳型として使用されるl0 リン酸系鋳型材の熱収縮量を示す。図3に示すように、1000℃から室温にまで温度変化させると、リン酸系鋳型材では1000〜500℃までほぼ一定の収縮量を保っているのに対して、TiNi系合金材は温度の低下にともなってほぼ一様に収縮量が減少している。形状記憶処理は、300〜650℃で、形状記憶合金の熱収縮量が鋳型材の熱収縮量よりも小さいことを満足する温度で行うことが好ましいので、図3のような熱収縮挙動を示すTiNi合金と、リン酸系鋳型材では、300〜650℃の範囲の温度で熱処理を行うことができる。
【0010】
熱処理時間は温度によって異なり、300℃ならば15〜150分、650℃ならば0.25〜60分程度が適当である。この範囲で、所望の応力レベルとなる処理条件を選択すればよい。
【0011】
鋳型として用いられる材料としては、リン酸系以外にシリカ系、マグネシア系、アルミナ系、ジルコニア系、カルシア系などがあるが、いずれの鋳型材料を用いた場合でも、その熱収縮量と、使用する合金の熱収縮量を勘案して熱処理温度や時間が設定される。
【0012】
また、本発明の製造方法の中で行う熱処理に際しては、特別な処理雰囲気を必要とせず、大気下で十分に必要な特性を有する鋳造部材を得ることができる。
【0013】
本発明の形状記憶合金鋳造部材の製造方法においては、形状記憶合金の組成として、Ti48〜52at%、残部Niと不可避的不純物とからなるTiNi合金とするとよい。
Tiが48at%未満では、TiNi系の介在物に起因すると推定される応力誘起マルテンサイト変態の応力が増大して、その結果合金が硬化し、マルテンサイト変態を生じる前に破断することがある。また、Tiが52at%を越えると、Ti系酸化物の介在物を生じやすくなって得られる鋳造部材が脆くなり、強度が低下する。
【0014】
上記TiNi合金は、TiおよびまたはNiの一部を、2at%以下の範囲でCr、Fe、Co、V、Mn、Mo、B、Cu、Nbからなる群の少なくとも1種の元素で置換することによって、超弾性特性を損なわずにマルテンサイト変態点の制御が可能である。特にNbを微量含有した鋳造部材は、温度ヒステリシスを大きくすることができ、それ故、部材保管時の温度管理が容易であるという点で好ましく、部材使用時の作業性の向上が期待できる。
【0015】
また、形状記憶合金の組成として、TiNi合金にPdを加えた、Ti48〜52at%、Pd3〜30at%、残部Niと不可避的不純物とからなるTiPdNi合金とすると、より安定して、超弾性を有する精密な鋳造部材を得ることができる。Pdを含有する形状記憶合金は応力レベルや許容歪み量の制御が難しいが、本発明の製造方法によれば応力ヒステリシスを減少させたり、高温での動作を可能にするなど、応力レベルや許容歪み量を制御しやすい。
【0016】
上記TiPdNi合金は、合金組成の一部を、2at%以下の範囲で、Cr、Fe、Co、V、Mn、Mo、B、Cuからなる群の少なくとも1種の元素で置換することによって、超弾性特性を損なわずに所望のマルテンサイト変態点への制御が可能である。
【0017】
例えば、形状記憶合金の組成として、Ti48〜52at%、Cu3〜15at%、残部Niと不可避的不純物とからなるTiCuNi合金とするとよい。Cuが添加されていると、マルテンサイト相、母相間の相変態の繰り返しによる疲労を抑制し、応力ヒステリシスを小さくすることが可能である。
【0018】
上記TiCuNi合金は、Ti、CuおよびNiのいずれか1種以上を、2at%以下の範囲で、Cr、Fe、Co、V、Mn、Mo、Bからなる群の少なくとも1種の元素で置換することによって、より安定して、超弾性を有する精密な鋳造部材を得ることができる。本発明の製造方法によれば応力ヒステリシスを減少させたり、高温での動作を可能にするなど、超弾性特性を損なわずにマルテンサイト変態点の制御が可能である。
【0019】
本発明の製造方法によれば、良好な超弾性、形状記憶特性を有する形状記憶合金の鋳造部材を安定して製造することができる。例えば、歯科医療部材の部分義歯床用のクラスプを本発明方法により製造すれば、得られたクラスプは、その良好な回復力によりアンダーカットを大きく取ることが可能であるため、取り付け位置を歯頚部に近い低い位置に設定することができ好ましい。また、本発明方法では、歯を掴んで保持する力を制御することが容易であるため、適度な保持力を有するクラスプを安定して作製することができる。
【0020】
【実施例】
本発明の実施例を以下に説明する。
【0021】
図2に示す引っ張り試験片を作製するために、シリカ−リン酸塩系鋳型材を用いてワックスパターンを作製し、乾燥、脱ワックス、焼成を行い、一方端が開いた引っ張り試験片作製用の鋳型を作製した。鋳造用合金としては、
(合金1)Ti49.15at%−Ni合金
(合金2)Ti50.0at%−Pd7.5at%−Ni合金
(合金3)Ti50.0at%−Cu10.0at%−Ni合金
(合金4)Ti49.15at%−Fe0.4at%−Ni合金
(合金5)Ti49.2at%−Nb0.4at%−Ni合金
(合金6)Ti50.0at%−Pd6.0at%−V0.6at%−Ni合金
(合金7)Ti52.0at%−Cu7.5at%−Cr0.5at%−Ni合金
(合金8)Ti47.7%−Ni合金
を用いた。
【0022】
(実施例1〜7)(比較例1〜4)
鋳型を真空精密鋳造機にセットし、溶解銅ハース上に60gのボタン状合金原料を置いて、1×10-4Torrまで真空排気した後アーク溶解した。合金原料が完全に溶けた後、ハースを傾けて溶湯を鋳型に落として鋳造を行った。鋳造終了後、ただちに鋳型を鋳造機より取り出し、表1に示す温度に設定された熱処理炉中に入れ、表1に示す条件で熱処理を行った。熱処理終了後、サンドブラストにより鋳型を除去して、ダイヤモンドカッターで湯道とバリを取り除き、砥石、バフで表面研磨して、図2に示す形状の実施例1〜7および比較例1〜4の引っ張り試験用鋳造部材を作製した。
なお、比較例2では鋳型から鋳造部材を取り出してから熱処理を行った。
【0023】
得られた引っ張り試験用鋳造部材に、歪み量3%まで伸びを与えた後、除荷し、どの程度まで歪みが回復するかを測定した。試験温度は37℃、n=10とした。
回復率(%)を(回復歪み量/3%歪み量)×100として求めた。結果を表1に示す。また、試験後の試料の形状についても併せて表1に示す。
【0024】
【表1】

Figure 0003824754
* 比較例2 鋳型から取り出してから熱処理した
【0025】
表1より明らかなように、本発明による鋳造部材は、良好な回復力を示している。それに対して、熱処理を行わなかったり、鋳型から取り出した後に熱処理を施した比較例1、2では良好な回復力が得られず、比較例2では試料形状がゆがんでしまっていた。また、熱処理条件が不適当である比較例3、4では、試料が歪みを与える試験中に破断したり、回復力が低下したりした。
【0026】
(実施例8、9)
(合金A)Ti50.3at%−Pd20.0at%−Niat%合金、(合金B)Ti50.03at%−Ni合金を用いて、熱処理条件を450℃、30分とした以外は、上記と同様の製造方法で図2に示す実施例8と実施例9の引っ張り試験用鋳造部材を作製した。
実施例8の鋳造部材を100℃に保った状態で歪み量3%の伸びを与え、その後除荷したところ、約2%の歪みが残留した。150℃に昇温したところ残留していた歪みは完全に回復した。
実施例9の鋳造部材を37℃に保った状態で歪み量3%の伸びを与え、その後除荷したところ、約2%の歪みが残留した。100℃に昇温したところ残留していた歪みは完全に回復した。
(比較例5)
(合金A)を用い熱処理しないで作製した引っ張り試験用鋳造部材について、同様に歪みを与える試験を行ったところ、昇温しても歪みが完全に回復しなかった。
【0027】
【発明の効果】
本発明の製造方法によれば、許容歪み量の大きな超弾性と適度な保持力を有する鋳造部材を安定して製造することができる。また、本発明の製造方法は、歯科医療用部材、センサー、スイッチ、クリップ、ソケット等の産業機器部材の形状記憶合金鋳造材の製造に好適に用いることができる。例えば、部分義歯床用のクラスプに適用すれば、繰り返して着脱しても保持力の低下が極めて抑制された優れたものが得られる。
【図面の簡単な説明】
【図1】部分義歯床用のクラスプの使用状況を説明するための説明図、(イ)は側面図、(ロ)は上面図。
【図2】引っ張り試験用鋳造部材の説明図。
【図3】TiNi合金とリン酸系鋳型材の熱収縮量の変化を表すグラフ。
【符号の説明】
1 部分義歯床用のクラスプ
2 歯
3 豊隆部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a precision cast member made of a shape memory alloy.
[0002]
[Prior art]
Shape memory alloys are excellent in various properties such as superelasticity and shape recoverability, and are used in industrial equipment members such as sensors, switches, clips and sockets. As a member for dentistry, it has been proposed to use a shape memory alloy as a material such as a clasp for a partial denture base used in one prosthesis of a treatment method for repairing a missing tooth.
[0003]
A clasp is a member which supports a denture on both sides of adjacent teeth, as shown in the explanatory views of FIG. 1 ((A) top view, (B) side view). The denture is mounted by expanding the tip of the clasp 1 and attaching it to the tooth 2. In the clasp made of shape memory alloy, the clasp 2 is then closed and fixed by being heated at body temperature.
By the way, the size of the clasp is determined by the thickness of the tooth at the attachment position. The attachment position of the clasp is preferably as close to the root of the tooth as possible so that the clasp is not conspicuous when the denture is attached. However, when the clasp is attached to the tooth, the tip of the clasp is wider than the ridge of the tooth. Therefore, the clasp must have a distortion amount that allows a difference (undercut) between the tooth ridge 3 and the tooth thickness at the clasp attachment position. Therefore, the clasp attachment position is determined by the balance between the undercut amount and the allowable distortion amount of the clasp. If the allowable distortion amount of the clasp is small, the clasp must be attached near the tooth ridge. . CoCr alloy and AuAgPd alloy are used as conventional clasp alloys. However, since shape memory alloys have a larger allowable strain than these alloys, the shape memory alloy clasps have a higher attachment position in the neck region. It can be set close to and is preferable.
In addition, the shape memory alloy clasp has a very small drop in the force to support the denture body even when the denture is repeatedly attached and detached, and the generated force against a given strain is constant. It is superior to the conventionally used alloys in that a large force is not required.
[0004]
[Problems to be solved by the invention]
Shape memory alloys can be useful members for their excellent shape memory characteristics and superelasticity, and are widely used after being processed into wires. However, when a shape memory alloy casting is used in a cast state, since it cannot impart plastic strain to the material before shape memory heat treatment, a very strict process is performed to obtain a member having superelasticity with a large allowable strain amount. Therefore, stable production was difficult.
[0005]
The present invention has been made to solve such a problem, and provides a method for stably producing a cast member having a superelasticity having a large allowable strain amount and an appropriate holding force.
[0006]
[Means for Solving the Problems]
That is, in the present invention, there is provided a method for producing a shape memory alloy cast member including a step of performing a shape memory heat treatment while being restrained by a mold made of a phosphate-based mold material . The shape memory alloy is Ti48-52at%, TiNi alloy composed of the balance Ni and unavoidable impurities, Ti48-52at%, Pd3-30at%, TiPdNi alloy composed of the balance Ni and unavoidable impurities, or Ti48-52at. %, Cu3 to 15 at%, the balance being Ni and an inevitable impurity TiCuNi alloy. Further, in the TiNi alloy, TiPdNi alloy, or TiCuNi alloy, a part of each alloy composition component may be replaced with a metal as described below of 2 at% or less as a whole. In the TiNi alloy, an alloy in which a part of Ti and / or Ni is substituted with at least one selected from the group consisting of Cr, Fe, Co, V, Mn, Mo, B, Cu, and Nb can be used. In the TiPdNi alloy, it is possible to use an alloy in which a part of the alloy composition is substituted by at least one member selected from the group consisting of Cr, Fe, Co, V, Mn, Mo, B, and Cu at 2 at% or less. In the TiCuNi alloy, an alloy in which a part of the alloy composition is substituted with at least one member selected from the group consisting of Cr, Fe, Co, V, Mn, Mo, and B of 2 at% or less can be used. As the temperature condition when the shape memory heat treatment is performed in a state of being constrained to a mold made of a phosphate mold material, the heat shrinkage amount of the shape memory alloy is 300 to 650 ° C. It is better to carry out at a lower temperature.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
During the manufacturing process of the cast member, when the shape memory heat treatment is performed on the alloy, the cast member having a superelastic effect can be stably manufactured by performing the heat treatment while being restrained by the mold. The principle is not clear, but if a thermal change such as cooling or heat treatment occurs while the alloy is cast in the mold, the alloy in the mold will receive more stress than the mold due to the difference in thermal shrinkage between the alloy and the mold material. receive. It is estimated that the stress contributes to making the cast material exhibit superelasticity.
The shape memory heat treatment of the cast member may be performed after the alloy is cast into the mold and before the temperature is lowered to room temperature, and the heat treatment may be performed immediately after casting. When heat treatment is performed after the temperature has dropped to room temperature, the expression of superelasticity may become unstable or the superelasticity may not be expressed.
[0008]
The temperature condition when performing shape memory heat treatment while being constrained to the mold is 300 to 650 ° C., and the temperature satisfying that the amount of heat shrinkage of the shape memory alloy is smaller than the amount of heat shrinkage of the mold material To do. If it is less than 300 ° C., the strain that promotes the development of superelasticity cannot be given sufficiently, and if it exceeds 650 ° C., it does not exhibit superelasticity due to phenomena such as recrystallization of the alloy and excessive precipitation.
In the present invention, the amount of heat shrinkage is the amount of change of the length (l) of an object at a certain temperature with respect to the length (l 0 ) at room temperature, based on the length at room temperature. Therefore, the amount of heat shrinkage at a certain temperature can be expressed by ({(l−l 0 ) / l 0 } × 100 (%)).
[0009]
FIG. 3 shows the amount of thermal shrinkage of the TiNi alloy cast material when the temperature is changed and the 10 phosphoric acid-based mold material used as a mold. As shown in FIG. 3, when the temperature is changed from 1000 ° C. to room temperature, the phosphoric acid template material maintains a substantially constant shrinkage amount from 1000 to 500 ° C., whereas the TiNi alloy material has a temperature of The amount of shrinkage decreases almost uniformly with the decrease. The shape memory treatment is preferably performed at 300 to 650 ° C. at a temperature satisfying that the amount of heat shrinkage of the shape memory alloy is smaller than the amount of heat shrinkage of the mold material. With the TiNi alloy and the phosphoric acid template material, heat treatment can be performed at a temperature in the range of 300 to 650 ° C.
[0010]
The heat treatment time varies depending on the temperature, and is suitably 15 to 150 minutes at 300 ° C and about 0.25 to 60 minutes at 650 ° C. In this range, a processing condition that provides a desired stress level may be selected.
[0011]
Materials used as molds include silica, magnesia, alumina, zirconia, calcia, etc. in addition to phosphoric acid. The heat treatment temperature and time are set in consideration of the heat shrinkage of the alloy.
[0012]
Further, in the heat treatment performed in the production method of the present invention, a special processing atmosphere is not required, and a cast member having sufficiently necessary characteristics in the air can be obtained.
[0013]
In the method for producing a shape memory alloy cast member of the present invention, the composition of the shape memory alloy is preferably a TiNi alloy comprising Ti 48 to 52 at%, the balance Ni and unavoidable impurities.
When Ti is less than 48 at%, the stress of stress-induced martensitic transformation estimated to be caused by TiNi inclusions increases, and as a result, the alloy hardens and may break before martensitic transformation occurs. On the other hand, when Ti exceeds 52 at%, Ti-based oxide inclusions are likely to be produced, and the resulting cast member becomes brittle and the strength is lowered.
[0014]
In the TiNi alloy, a part of Ti and / or Ni is replaced with at least one element of the group consisting of Cr, Fe, Co, V, Mn, Mo, B, Cu, and Nb within a range of 2 at% or less. Thus, the martensitic transformation point can be controlled without impairing the superelastic characteristics. In particular, a cast member containing a small amount of Nb is preferable in that the temperature hysteresis can be increased, and therefore, temperature management at the time of storing the member is easy, and improvement in workability when using the member can be expected.
[0015]
Further, as a shape memory alloy composition, TiPdNi alloy composed of TiNi alloy with Pd added to Ti48-52at%, Pd3-30at%, balance Ni and inevitable impurities is more stable and has super elasticity. A precise cast member can be obtained. Shape memory alloys containing Pd are difficult to control the stress level and the allowable strain amount. However, according to the manufacturing method of the present invention, the stress level and the allowable strain can be reduced by reducing the stress hysteresis and enabling the operation at a high temperature. Easy to control the amount.
[0016]
The TiPdNi alloy can be obtained by substituting a part of the alloy composition with at least one element of the group consisting of Cr, Fe, Co, V, Mn, Mo, B, and Cu within a range of 2 at% or less. Control to the desired martensitic transformation point is possible without impairing the elastic properties.
[0017]
For example, the composition of the shape memory alloy may be a TiCuNi alloy composed of Ti 48 to 52 at%, Cu 3 to 15 at%, the balance Ni and inevitable impurities. When Cu is added, it is possible to suppress fatigue due to repeated phase transformation between the martensite phase and the matrix phase, and to reduce stress hysteresis.
[0018]
The TiCuNi alloy replaces at least one of Ti, Cu, and Ni with at least one element of the group consisting of Cr, Fe, Co, V, Mn, Mo, and B within a range of 2 at% or less. As a result, a precise cast member having superelasticity can be obtained more stably. According to the manufacturing method of the present invention, it is possible to control the martensitic transformation point without deteriorating superelastic characteristics, such as reducing stress hysteresis or enabling operation at high temperature.
[0019]
According to the production method of the present invention, a cast member of shape memory alloy having good superelasticity and shape memory characteristics can be produced stably. For example, if a clasp for a partial denture base of a dental medical member is manufactured by the method of the present invention, the obtained clasp can take a large undercut by its good recovery force. It is preferable that it can be set at a low position close to. Moreover, in the method of the present invention, it is easy to control the force for grasping and holding the teeth, so that a clasp having an appropriate holding force can be stably produced.
[0020]
【Example】
Examples of the present invention will be described below.
[0021]
In order to produce the tensile test piece shown in FIG. 2, a wax pattern is produced using a silica-phosphate-based template material, dried, dewaxed, and fired. A mold was prepared. As an alloy for casting,
(Alloy 1) Ti 49.15 at% -Ni alloy (Alloy 2) Ti 50.0 at% -Pd 7.5 at% -Ni alloy (Alloy 3) Ti 50.0 at% -Cu 10.0 at% -Ni alloy (Alloy 4) Ti 49.15 at % -Fe 0.4 at% -Ni alloy (alloy 5) Ti 49.2 at% -Nb 0.4 at% -Ni alloy (alloy 6) Ti 50.0 at% -Pd 6.0 at% -V 0.6 at% -Ni alloy (alloy 7) Ti 52.0 at% -Cu 7.5 at% -Cr 0.5 at% -Ni alloy (Alloy 8) A Ti 47.7% -Ni alloy was used.
[0022]
(Examples 1-7) (Comparative Examples 1-4)
The mold was set in a vacuum precision casting machine, 60 g of the button-shaped alloy raw material was placed on the molten copper hearth, evacuated to 1 × 10 −4 Torr, and then melted by arc. After the alloy material was completely melted, casting was performed by tilting the hearth and dropping the molten metal into the mold. Immediately after the completion of casting, the mold was taken out of the casting machine, placed in a heat treatment furnace set to the temperature shown in Table 1, and heat-treated under the conditions shown in Table 1. After completion of the heat treatment, the mold is removed by sand blasting, runners and burrs are removed with a diamond cutter, and the surface is polished with a grindstone and a buff, and the pulls of Examples 1 to 7 and Comparative Examples 1 to 4 having the shapes shown in FIG. A test cast member was prepared.
In Comparative Example 2, heat treatment was performed after the cast member was taken out of the mold.
[0023]
The obtained cast member for tensile test was stretched to a strain amount of 3%, then unloaded and measured to what extent the strain recovered. The test temperature was 37 ° C. and n = 10.
The recovery rate (%) was determined as (recovery strain / 3% strain) × 100. The results are shown in Table 1. Table 1 also shows the shape of the sample after the test.
[0024]
[Table 1]
Figure 0003824754
* Comparative Example 2 Heat treated after removing from mold
As is apparent from Table 1, the cast member according to the present invention exhibits a good recovery force. On the other hand, in Comparative Examples 1 and 2 in which heat treatment was not performed or heat treatment was performed after taking out from the mold, a good recovery force was not obtained, and in Comparative Example 2, the sample shape was distorted. Further, in Comparative Examples 3 and 4 where the heat treatment conditions were inappropriate, the sample broke during the test that gave distortion, or the recovery force decreased.
[0026]
(Examples 8 and 9)
(Alloy A) Ti50.3at% -Pd20.0at% -Niat% alloy, (Alloy B) Ti50.03at% -Ni alloy, except that the heat treatment conditions were 450 ° C. for 30 minutes. Cast members for tensile tests of Example 8 and Example 9 shown in FIG.
When the cast member of Example 8 was kept at 100 ° C. and given an elongation of 3% strain and then unloaded, about 2% strain remained. When the temperature was raised to 150 ° C., the remaining strain was completely recovered.
When the cast member of Example 9 was kept at 37 ° C. and given an elongation of 3% strain and then unloaded, a strain of about 2% remained. When the temperature was raised to 100 ° C., the remaining strain was completely recovered.
(Comparative Example 5)
The cast member for tensile test prepared without using heat treatment using (Alloy A) was similarly subjected to a test to give strain, and the strain was not completely recovered even when the temperature was raised.
[0027]
【The invention's effect】
According to the manufacturing method of the present invention, it is possible to stably manufacture a cast member having a superelasticity with a large allowable strain amount and an appropriate holding force. Moreover, the manufacturing method of this invention can be used suitably for manufacture of the shape memory alloy casting material of industrial equipment members, such as a member for dentistry, a sensor, a switch, a clip, and a socket. For example, when it is applied to a clasp for a partial denture base, an excellent product in which a decrease in holding force is extremely suppressed even when repeatedly attached and detached can be obtained.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram for explaining a use situation of a clasp for a partial denture base, (A) is a side view, and (B) is a top view.
FIG. 2 is an explanatory view of a cast member for a tensile test.
FIG. 3 is a graph showing changes in the amount of thermal shrinkage between a TiNi alloy and a phosphoric acid template material.
[Explanation of symbols]
1 Clasp for partial denture base 2 Teeth 3

Claims (7)

リン酸塩系鋳型材からなる鋳型に拘束されたままの状態で形状記憶熱処理を施す工程を含む、Ti48〜52at%、残部Niと不可避的不純物とからなるTiNi形状記憶合金鋳造部材の製造方法。 A method for producing a TiNi shape memory alloy cast member comprising 48 to 52 at% of Ti, the balance Ni and unavoidable impurities, including a step of performing shape memory heat treatment while being constrained by a mold made of a phosphate mold material . 前記TiNi合金において、TiおよびまたはNiの一部を、2at%以下の、Cr、Fe、Co、V、Mn、Mo、B、Cu、Nbからなる群の少なくとも1種で置換した請求項に記載の形状記憶合金鋳造部材の製造方法。In the TiNi alloy, a part of Ti and or Ni, the following 2at%, Cr, Fe, Co , V, Mn, Mo, B, Cu, in claim 1 which is substituted with at least one of the group consisting of Nb The manufacturing method of the shape memory alloy casting member of description. リン酸塩系鋳型材からなる鋳型に拘束されたままの状態で形状記憶熱処理を施す工程を含む、Ti48〜52at%、Pd3〜30at%、残部Niと不可避的不純物とからなるTiPdNi形状記憶合金鋳造部材の製造方法。 TiPdNi shape memory alloy casting comprising 48 to 52 at% Ti, 3 to 30 at% Pd, remaining Ni and inevitable impurities, including a step of performing shape memory heat treatment while being constrained to a mold made of a phosphate-based mold material Manufacturing method of member. 前記TiPdNi合金において、合金組成の一部を、2at%以下の、Cr、Fe、Co、V、Mn、Mo、B、Cuからなる群の少なくとも1種で置換した請求項に記載の形状記憶合金鋳造部材の製造方法。The shape memory according to claim 3 , wherein in the TiPdNi alloy, a part of the alloy composition is replaced with at least one member selected from the group consisting of Cr, Fe, Co, V, Mn, Mo, B, and Cu of 2 at% or less. A method for producing an alloy cast member. リン酸塩系鋳型材からなる鋳型に拘束されたままの状態で形状記憶熱処理を施す工程を含む、Ti48〜52at%、Cu3〜15at%、残部Niと不可避的不純物とからなるTiCuNi形状記憶合金鋳造部材の製造方法。 TiCuNi shape memory alloy casting consisting of Ti48-52at%, Cu3-15at%, balance Ni and inevitable impurities, including a step of performing shape memory heat treatment while being constrained to a mold made of phosphate-based mold material Manufacturing method of member. 前記TiCuNi合金において、合金組成の一部を、2at%以下の、Cr、Fe、Co、V、Mn、Mo、Bからなる群の少なくとも1種で置換した請求項に記載の形状記憶合金鋳造部材の製造方法。6. The shape memory alloy casting according to claim 5 , wherein in the TiCuNi alloy, a part of the alloy composition is replaced with at least one member selected from the group consisting of Cr, Fe, Co, V, Mn, Mo, and B of 2 at% or less. Manufacturing method of member. 前記形状記憶熱処理が、300〜650℃、かつ、形状記憶合金の熱収縮量が鋳型材の熱収縮量よりも小さいことを満足する温度で行われる請求項1乃至6のいずれか1項に記載の形状記憶合金鋳造部材の製造方法。 The shape memory heat treatment is performed at a temperature satisfying that the shape memory alloy is 300 to 650 ° C. and the amount of heat shrinkage of the shape memory alloy is smaller than the amount of heat shrinkage of the mold material. Of manufacturing a shape memory alloy cast member.
JP27106997A 1997-10-03 1997-10-03 Method for producing shape memory alloy cast member Expired - Fee Related JP3824754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27106997A JP3824754B2 (en) 1997-10-03 1997-10-03 Method for producing shape memory alloy cast member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27106997A JP3824754B2 (en) 1997-10-03 1997-10-03 Method for producing shape memory alloy cast member

Publications (2)

Publication Number Publication Date
JPH11106880A JPH11106880A (en) 1999-04-20
JP3824754B2 true JP3824754B2 (en) 2006-09-20

Family

ID=17494964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27106997A Expired - Fee Related JP3824754B2 (en) 1997-10-03 1997-10-03 Method for producing shape memory alloy cast member

Country Status (1)

Country Link
JP (1) JP3824754B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010058382A (en) * 1999-12-27 2001-07-05 한기석 Ti―Ni―Mo system memory alloy
JP4870324B2 (en) 2003-05-23 2012-02-08 株式会社吉見製作所 Shape memory alloy cast member and method of manufacturing the same
US8801875B2 (en) * 2007-12-21 2014-08-12 Cook Medical Technologies Llc Radiopaque alloy and medical device made of this alloy
JP5171336B2 (en) * 2008-03-25 2013-03-27 学校法人 関西大学 Dental medical materials
US8152941B2 (en) * 2009-11-02 2012-04-10 Saes Smart Materials Ni-Ti semi-finished products and related methods
CN104388754A (en) * 2014-12-15 2015-03-04 苏州宽温电子科技有限公司 Shape memory alloy
CN106191624A (en) * 2016-07-08 2016-12-07 江苏科技大学 A kind of marmem and its preparation method and application

Also Published As

Publication number Publication date
JPH11106880A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP2016172078A (en) Shape setting of shape memory alloy dental arch
Lee et al. Microstructure, mechanical properties, and retentive forces of cobalt-chromium removable partial denture frameworks fabricated by selective laser melting followed by heat treatment
US6786984B1 (en) Ternary alloy and apparatus thereof
JPH0525933B2 (en)
JP5476696B2 (en) Biomaterials and medical equipment
JP2007510064A (en) Nitinol with long service life
JP5155668B2 (en) Titanium alloy casting method
JP3824754B2 (en) Method for producing shape memory alloy cast member
CN106435271A (en) A kind of low modulus medical titanium alloy and preparation method thereof
JP5355896B2 (en) Method for producing medical implants made of beta-titanium molybdenum alloy and related implants
CN112159907B (en) 3D printing cobalt-chromium alloy for dental porcelain restoration and preparation method thereof
WO2004012620A2 (en) Metallic dental prostheses made of bulk-solidifying amorphous alloys and method of making such articles
JPH09170016A (en) Production of high-temperature-stable object made of in706 type iron/nickel super alloy
JPH09316572A (en) Heat treatment for titanium alloy casting
CN117947522A (en) A method for preparing a Ni3Al single crystal high temperature alloy with high wear resistance
Kim Martensitic transformation behavior and mechanical properties of highly porous Ti-Ni-Mo scaffolds
TAKAHASHI et al. Dental casting of superelastic Ni-Ti alloy
YONEYAMA et al. Influence of composition and purity on tensile properties of Ni-Ti alloy castings
WO2005005676A1 (en) Titanium alloy
Takahashi et al. Casting properties of Ni–Ti shape memory alloy
JP2014074227A (en) Co-Cr-W-BASED ALLOY HOT PROCESSED MATERIAL, ANNEALED MATERIAL, CAST MATERIAL, HOMOGENIZING HEAT TREATED MATERIAL, AND MANUFACTURING METHOD OF Co-Cr-W-BASED ALLOY HOT PROCESSED MATERIAL, MANUFACTURING METHOD OF ANNEALED MATERIAL
JPH10130757A (en) Ti alloy implant material
Li et al. Microstructure and superelastic behavior of rapidly solidified Ti-18Zr-12.5 Nb-2Sn (at.%) alloy fibers
高橋純造 et al. Dental Casting of Superelastic Ni-Ti Alloy
CN116790938B (en) A titanium alloy with low elastic modulus and high superelasticity and its preparation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060628

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees