JP3830030B2 - High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel - Google Patents
High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel Download PDFInfo
- Publication number
- JP3830030B2 JP3830030B2 JP2001331472A JP2001331472A JP3830030B2 JP 3830030 B2 JP3830030 B2 JP 3830030B2 JP 2001331472 A JP2001331472 A JP 2001331472A JP 2001331472 A JP2001331472 A JP 2001331472A JP 3830030 B2 JP3830030 B2 JP 3830030B2
- Authority
- JP
- Japan
- Prior art keywords
- steel
- hardness
- less
- machinability
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 63
- 239000010959 steel Substances 0.000 title claims description 63
- 229910000760 Hardened steel Inorganic materials 0.000 title claims description 25
- 238000005482 strain hardening Methods 0.000 title claims description 21
- 238000003754 machining Methods 0.000 title description 11
- 238000000034 method Methods 0.000 title description 5
- 238000005520 cutting process Methods 0.000 claims description 60
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052721 tungsten Inorganic materials 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 238000003672 processing method Methods 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052715 tantalum Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 25
- 238000004519 manufacturing process Methods 0.000 description 25
- 238000005496 tempering Methods 0.000 description 21
- 238000010791 quenching Methods 0.000 description 19
- 230000000171 quenching effect Effects 0.000 description 19
- 230000000694 effects Effects 0.000 description 18
- 229910001315 Tool steel Inorganic materials 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 238000004080 punching Methods 0.000 description 6
- 238000005553 drilling Methods 0.000 description 5
- 238000004381 surface treatment Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 150000003568 thioethers Chemical class 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005242 forging Methods 0.000 description 3
- 238000005121 nitriding Methods 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 229910010037 TiAlN Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910000943 NiAl Inorganic materials 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 238000007514 turning Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車、家庭電化製品、プリント基板、農機具等に使用される鋼板等の打抜き、曲げ、絞り、トリミング用の金型等に使用される冷間加工用高硬度プリハードン鋼ならびにそれを用いてなる金型、そしてこれら手段の達成に寄与する鋼の加工方法に関するものである。
【0002】
【従来の技術】
自動車や家庭電化製品等の部品製造には打抜き等の加工が用いられる。その金型に使用される金型材、特に冷間加工用金型材には、耐摩耗性付与のため炭化物を多量に含み、さらに焼入れ性に優れかつ靭性を確保するためにCr含有量が多い材料が求められており、例えばJISG4404規定の合金工具鋼鋼材であるSKD11等の高C−高Cr系鋼が使用されている。また、耐摩耗性を特に必要としない場合はSKS3といった低合金鋼も油焼入れ後300℃以下での焼戻しで調質し使用されている。
【0003】
【発明が解決しようとする課題】
ところが近年自動車メーカー等では、価格競争に打ち勝つためにこれまであらゆる分野でコスト低減を実施し、金型関連では型製作工数の削減も必要となった。一方、全体的な社会の流れとして多品種少量生産への移行があり、その点からも金型にも如何に早く作れるかが重要視されてきている。
【0004】
現在の一般的な金型の製作は、焼なまし状態の素材を主に切削加工により形状の粗加工を行い、焼入焼戻し処理を行い打抜き等製品の加工に必要な硬さに高められる。焼入焼戻しを行なうと熱処理による変寸、変形が生じるため切削、研削等の仕上加工を行い金型の製作が完了する。したがって金型の製作効率の向上には焼きなまし状態での被削性が良好であり、かつ熱処理変寸、変形が少ないことが望ましく、特開平11−92871号のような冷間工具鋼が提案されている。
【0005】
しかしながら、さらなる型製作工数およびコスト低減の要求が高まる現状において、焼入焼戻し状態から切削加工を行なうことで現在の一般的な工程である切削加工後の熱処理および仕上加工の省略の分、型製作効率が向上できる、いわゆるプリハードン鋼へのニーズが高まっている。
【0006】
現在プリハードン鋼を用いた型製作は一部のプラスチック型や熱間鍛造型等で行われているがその硬さは40HRC程度であり、冷間加工による打抜き等で必要とされる50HRC以上の硬さには達していない。これは高硬度になるにつれて切削加工時の工具への抵抗、衝撃が高くなり、工具の強度を越えるため早期に欠損が生じ工具寿命へと至るためである。
【0007】
一方、切削加工の分野では高速加工による切削効率の向上が進んでいるが、50HRCを超える高硬度材では高速加工を行なうと上述の工具への衝撃に加え、切削温度の過度な上昇により工具の軟化または工具への被加工材の溶着が進み、やはり早期に工具寿命に至る。既存の冷間加工用の工具鋼のJIS SKD11は、焼入焼戻し後の高硬度状態における切削加工では、以上の理由により型製作工数の短縮の観点からその効率、工具寿命の要求を満たせない場合が多い。
【0008】
また、JIS SKS3はSKD11に比べると焼入焼戻し状態での被削性は良好であるが、必ずしも型製作効率の低減要求を満たすものではなく、また油焼入れ、低温焼戻し鋼のため切削加工とともに型製作によく用いられる放電加工において歪の問題が生じる。
【0009】
以上、従来より金型等に適用されてきた工具鋼には50HRC以上の硬さでプリハードン状態での切削加工は実用上困難である。そこで本発明は50HRC以上の高硬度が得られ、プリハードンでの加工が可能となるよう焼入焼戻し後の被削性を向上した工具鋼およびそれを用いてなる金型、そしてこれら手段の達成に寄与する鋼の加工方法を提供するものである。
【0010】
【課題を解決するための手段】
したがって、本発明者らは50HRC以上の高硬度が得られ、その高硬度において被削性が良好となるような成分について検討を行ったところ、適正な成分バランスを見いだし、本発明に至った。
【0011】
すなわち、質量%で、C:0.3〜0.45%、Si:0.82〜2.0%、Mn:0.1〜2.0%、S:0.11〜0.25%、Cr:4.41〜6.0%、WまたはMoの1種あるいは2種を(Mo+1/2W)で1.3%以下、V:1.0%以下、N:0.15%以下、残部Feおよび不可避的不純物からなる冷間加工用鋼であって、50HRC以上、更には55HRC以上の硬さに調質された冷間加工用高硬度プリハードン鋼である。
【0014】
さらに上述の組成に加えて、Nb、Ta、Tiの1種または2種以上が合わせて0.4%以下、Ni:4.0%以下、Cu:2.0%以下、Co:5.0%以下、Zr:0.2%以下、Se:0.15%以下、あるいはAl:1.5%以下の冷間加工用高硬度プリハードン鋼である。
【0015】
さらには、上記調質された冷間加工用高硬度プリハードン鋼にて、その調質された状態より切削加工されて使用される冷間加工用高硬度プリハードン鋼であって、前記切削速度が50m/min以上である冷間加工用高硬度プリハードン鋼である。そして、これら本発明の冷間加工用高硬度プリハードン鋼を切削加工してなる冷間加工用金型である。
【0016】
本発明のプリハードン鋼、冷間加工用金型の達成は、高硬さに調質された鋼の切削加工において、その切削工具の高寿命化に最適な条件を確立できたところにも大きく依るものである。すなわち、本発明の鋼の加工方法は、50HRC以上の硬さに調質された鋼に対し、50m/min以上の切削加工速度を適用する鋼の加工方法であって、鋼の組成は質量%で、C:0.3〜0.45%、Si:0.82〜2.0%、Mn:0.1〜2.0%、S:0.11〜0.25%、Cr:4.41〜6.0%、WまたはMoの1種あるいは2種を(Mo+1/2W)で1.3%以下、V:1.0%以下、N:0.15%以下、残部Feおよび不可避的不純物からなる鋼とすることを特徴とする鋼の加工方法である。
【0017】
【発明の実施の形態】
本発明の特徴は50HRC以上、さらには55HRC以上の硬さが得られ、かつその焼入焼戻し後の高硬さ状態での被削性が良好となるよう成分、特にC、SiおよびS量の適正化を図ったところにある。以下、本発明での成分の限定理由について述べる。
【0018】
Cは本発明において重要な元素である。Cは焼入れ性を向上し、熱処理後の硬さを維持するために必要である。またCはCr,Mo,W,Vと結合して炭化物を形成し、耐摩耗性や焼戻し軟化抵抗を向上させる。さらに耐摩耗性付与のため行われる表面処理において十分な膜厚を有するMX型化合物(TiC,VC等)の生成に重要である。
【0019】
しかしながら、焼入焼戻し後の高硬度においては被削性を向上させるにはC量を少なくすることが重要である。50HRC以上の高硬度になると切削時に被加工材の温度が上昇し、工具が軟化して工具寿命に至る。また被加工材の工具への溶着が多くなり溶着物が剥離するときに工具も同時に剥離が生じ工具のチッピング、欠損から工具寿命に至る。
【0020】
被削性を向上させるにはSの添加またはTe等の添加による硫化物の形態制御による手法もとられるが、高硬度での切削温度上昇等による被削性低下を抑制するためには、やはりC量を低減することが重要であることを本発明者らは見いだした。C量を少なくすることで切削時の過度の切削温度上昇を抑えるため、被削性は向上する。しかしながら少なすぎると50HRC以上の高硬度が得られない。したがって、必要硬さが得られる範囲でC量を低くする、C量の適確な調整が本発明の重要なところであり、Cの含有量は0.3〜0.45%とした。
【0021】
Siは被削性向上のために重要な元素である。Si添加により切削中に酸化物が低融点化し、工具と被加工材間の溶着を防ぐのに有効な酸化皮膜が生じ、これが工具と被加工材との直接接触を防ぎ工具摩耗の低減、つまり被削性が向上する。この効果を得るためには、少なくとも0.82%以上の添加が必要である。またSiは、Si脱酸剤及び鋳造性改善の目的でも含有するが、過多の含有は基地の成分偏析も激しくし靭性が低下するのでSiの含有量は0.82〜2.0%とした。さらに望ましくは0.82〜1.7%である。
【0022】
Sは被削性を高める硫化物生成に重要な元素である。しかし、添加しすぎると靭性や溶接性の低下を招くので、0.11〜0.25%とした。好ましくは0.13〜0.25%である。
【0024】
Mnは焼入れ性向上のために含有し、0.1%未満では焼入れ硬さを安定して得るには不十分である。また被削性を向上させる硫化物であるMnSの生成に必要である。一方、多すぎるとSiと同様基地の成分偏析も激しくなるので0.1〜2.0%とした。好ましくは0.6〜1.5%である。
【0025】
CrはCと結合して炭化物を生成し耐摩耗性を向上するとともに、焼入れ性を増す効果、そしてCVD処理や塩浴法などによる複雑形状への表面処理後の冷却中に起こる一種の焼き割れ現象を防止する効果がある。しかし、多すぎるとCr炭化物の増加による靭性及び被削性低下の原因となる。さらに固液共存温度幅が大きくなり鋳造欠陥発生の危険度が増し、実質的に製造性に困難が生じる原因となる。よってCrの添加量は4.41〜6.0%とした。
【0026】
Mo及びWは焼入れ性を向上する。またCと結合して硬い炭化物を形成し、耐摩耗性を向上させる。MoとWの各特性に与える効果は同様のものが多く、その効果の程度は質量比でMoがWの2倍相当である。よって、その効果に寄与する含有量は(Mo+1/2W)量で表すことが可能である。本発明ではMo,Wの1種または2種を含有させることができ、つまりMoの全含有量を2倍のW含有量で置き換え使用してもよく、Moの一部をそれに相当するW量に置き換え使用してもよい。経済性からはMoの使用が好ましい。過多の添加量ではMo,W系炭化物の晶出量が多くなり被削性及び靭性を劣化させるので1.3%以下とした。0.2〜1.1%が好ましい。
【0027】
Vは工具鋼に必要な軟化抵抗を増大させる元素であるが、過多の含有では凝固時に巨大なV系炭化物を晶出し、被削性を低下させる原因となる。よって本発明では1.0%以下とした。0.1〜0.5%が好ましい。
【0028】
Nは基地や炭化物中に固溶して結晶粒を微細化し靭性を高める。また焼入れ焼戻し硬さを高める。本発明においては添加・含有の如何は問わないが、上記の効果を得るにおいても多量の添加は必要なく、固溶限の制約もあり0.15%以下とする。なお、上記効果を得る場合においては、0.02%以上で十分である。
【0029】
加えて、本発明の冷間加工用高硬度プリハードン鋼の場合、以下の元素の含有が可能である。
【0030】
Nb、Ta、Tiはいずれも焼入れ加熱保持中の結晶粒の成長を抑制し、結晶粒を微細化し、靭性を高める。しかし過多の添加は粗大な炭化物が生じ、かえって靭性を低下させるのでNb、Ta、Tiは合わせて0.4%以下とする。なお、上記効果を得る場合においては、0.008%以上が好ましい。
【0031】
Niは焼入れ性と衝撃遷移温度を上げることによる靭性向上が認められる元素であるが、本合金系では特に溶接性劣化を防止でき、実用上に操業可能な表面処理領域を広げる方向に作用する。しかし過多の添加は被削性を劣化させるため4.0%以下とする。上記効果を得る場合、好ましくは0.01%以上である。
【0032】
Cuは焼入焼戻し硬さを向上させる元素である。被削性向上のためにC量を低くしてもCu添加により硬さを確保できる。過多の含有は素材製造時の熱間加工性を損ねるので2.0%以下とする。上記効果を得る場合、好ましくは0.5%以上である。
【0033】
Coは焼戻しにおける微細析出炭化物の凝集を抑制する元素であり、高硬度が得られる。したがって、被削性向上のためにC量を低くしてもCo添加により硬さを確保できる。過多の含有は製造コストを高めるので5.0%以下とする。上記効果を得る場合、好ましくは1.0%以上である。
【0034】
Zrは硫化物に対して有効な接種作用を有するZrO2またはZrNとなり、硫化物が均一に分布し被削性が向上する。過多の含有ではZrO2またはZrN量が多くなり被削性を害するので0.2%以下とする。上記効果を得る場合、好ましくは0.005%以上である。
【0035】
Seは鍛造による硫化物の延伸を抑制し被削性を向上させる元素である。しかし過多の含有は機械的性質の低下を招くので0.15%以下とした。上記効果を得る場合、好ましくは0.03%以上である。
【0037】
また、本発明の工具鋼はその他求められる効果に則して、上記の成分組成にPb、Te、Bi、In、Be、Ceのうちの1種または2種以上を合わせて0.2%以下なら含有しても問題はない。
【0038】
その他、希土類は本発明の工具鋼における被削性を向上する目的で合わせて0.2%以下の含有が可能である。不可避的不純物の総量は0.5%以下が好ましい。また、耐摩耗性付与がさらに必要な場合、Alを1.5%以下添加して窒化硬さを上げることも可能である。この場合、窒化硬さの過剰な増加による欠け等を防止するため、好ましくは0.05%以上0.5%以下である。
【0039】
本発明においては、C量が低くても焼入焼戻し後の硬さが50HRC以上、さらには55HRC以上得られるようNiAlの析出硬化を利用することができる。このためには、Niを4.0%以下、Alを1.5%以下、Cuを1.5%以下添加することが有効である。
【0040】
次に焼戻し温度と硬さについて述べる。打抜き、曲げ等に用いられる冷間加工用の金型は耐摩耗性の観点から50HRC以上、さらには54HRC以上、望ましくは55HRC以上の硬さが必要である。よって本発明での硬さは50HRC以上、望ましくは55HRC以上としている。
【0041】
また、これら金型の加工は切削のほかに放電加工も広く用いられている。この場合焼戻し温度が低温であると材料中の焼入れ歪が残留しており、放電加工後に歪が開放され変形や割れが生じることがある。さらに耐摩耗性付与のために行われる窒化、PVD等の表面処理は一般には少なくとも400℃以上で行われるため、これを行なう場合の素材の焼戻し温度は表面処理温度以上が必要、そのため調質における焼戻しは500℃以上で行なうことが望ましい。
【0042】
次に切削速度ついて述べる。50HRC以上の高硬度材においても、例えばコーティング超硬エンドミルを用いて切削温度の過度の上昇を抑えるよう低速切削を行えば、ある程度の切削は可能である。しかしながら、これでは切削加工工数が増加し結果的に型製作効率の向上とはなり得ない。そこで本発明では、主にC量を低減することによって過度の切削温度の上昇を抑え、被削性を向上させているところに特徴を有する。
【0043】
つまり、本発明の高硬度プリハードン鋼であれば切削速度が増加してもあまり切削温度が上昇しないため、50HRC以上、さらには55HRC以上といった高硬度においても高速切削加工が可能であり、型加工効率の向上が達成できる。この場合、型加工効率を考えると切削速度は50m/min以上であることが、本発明の効果を発揮するにあたり、望ましい。本発明の切削速度での加工は特にエンドミル加工や正面フライス加工および旋削などで実施される。
【0044】
以上のように本発明の高硬度プリハードン鋼であれば50HRC以上、さらには55HRC以上といった高硬度においても効率良く型切削加工が可能であり、プレス金型といった金型の製作リードタイムが短縮できる。さらに本発明鋼は高硬度かつ高被削性により、ガラスを含むような耐摩耗性を必要とする樹脂型やゴム型、プラ型、熱間加工型のスペーサ、ホルダなどの補助工具にも使用できる。
【0045】
【実施例】
次に本発明の実施例について詳細に説明するが、本発明はこれらの実施例により何等限定されるものではない。
【0046】
(実施例1)
高周波炉により所定の合金を溶解し、表1に示す化学組成の鋼塊を製作した。比較鋼18はJIS SKD11相当成分である。これら鋼塊を鍛造比5にて鍛造して鋼材に仕上げ、焼なましを行った。次にこれら焼なまし材を大気炉において1030℃に加熱保持後、空気焼入れを行い、500〜600℃の焼戻しを行った。焼入焼戻し材は40×50×200mmの寸法に仕上げ、切削試験用の試料とした。表1に焼入焼戻し後の硬さを併せて示す。なお、比較鋼19はC量が低すぎるため50HRC以上の硬さが得られていない。
【0047】
【表1】
【0048】
50HRC以上の硬さが得られなかった比較鋼19を除き、これらの試料を用いてスクエアエンドミルによる切削試験を行った。試験条件は表2に示す。被削性は工具の逃げ面摩耗が0.1mmに達するまでの切削長を工具寿命として評価した。被削性の評価結果を表3に示す。
【0049】
【表2】
【0050】
【表3】
【0051】
切削速度30m/minの比較的低速での加工では、比較鋼もある程度切削可能なものもあるが、切削速度150m/minの高速加工では本発明鋼の工具寿命、つまり被削性は良好であるのに対し、比較鋼18はC量が高くSiが低いため、比較鋼20はC量が高いため、比較鋼21はSi量が低いため、比較鋼22はS量が低いため、比較鋼23はC量が高いため被削性は劣る。そして、比較鋼24は硬さが低めであるがC量が高いため、比較鋼25はC量が高くS量が低いため被削性が劣る。
【0052】
(実施例2)
表1の本発明鋼2および比較鋼18、24のプリハードン素材を用いて、エンドミル切削時の切削温度の測定を行った。プリハードン素材の寸法は40×50×200mmの板である。表4に本発明鋼2、比較鋼18、24のプリハードン素材の硬さ、炭化物量、固溶炭素量を、表5に切削条件および切削温度測定方法を示す。なお、同組成の鋼で比べた場合、硬さが低ければ切削温度が低くなることは当然である。そこで、今回の評価では本発明鋼2を比較鋼18、24より高硬度とすることで、本発明の加工方法による効果の顕著性をより明確にするものである。
【0053】
【表4】
【0054】
【表5】
【0055】
図1に切削温度測定結果を示す。切削速度が30m/minの場合、どの鋼種とも切削温度に大差はないものの、硬さの低い順番で比較鋼24が最も低く、次に比較鋼18で、本発明鋼2であった。次に、どの鋼種も切削速度の増加に伴って切削温度が上昇しているが、切削速度が50m/min付近を超えたところから切削温度の上昇傾向に差が生じ出した。これは素材の基地中に固溶している炭素濃度に依存するものであり、切削速度150m/minの場合では、固溶炭素量が約0.35%と最も少ない本発明鋼2の切削温度が最も低く、次に約0.60%である比較鋼18、そして約0.80%である比較鋼24が最も切削温度が高く、それぞれの温度差が約100℃にも及んでいる。
【0056】
また、高硬度鋼は一般にTiAlNでコーティングされた工具で切削されるが、このコーティング工具の寿命を左右する因子にコーティング皮膜の酸化開始温度があり、当然工具の高寿命化を達成するためにはこの温度以下の切削温度で鋼を切削することが有効である。工具に施されるTiAlNコーティング皮膜の酸化開始温度は一般に800℃近傍であるところ、本発明鋼2の場合、切削速度が200m/minに達した時でも800℃以下の切削温度を維持しており、優れた被削性を有していることがわかる。
【0057】
さらに、被削性を大きく左右する因子として、素材中の炭化物分布がある。比較鋼18の場合、上記に加えて、硬質な炭化物が多数析出しているためアブレッシブ摩耗が顕著に起こることも重畳して影響することから、実施例1の結果からもわかるように、その被削性に劣るものである。
【0058】
(実施例3)
表1の本発明鋼2および比較鋼18のプリハードン素材を用いて、プリント基板型を想定した型製作試験を行った。プリハードン素材の寸法は200×200×10mmの板であり、これにφ1mmの穴あけを100穴行なうものである。
【0059】
また比較鋼18については、合わせてその焼入焼戻し前、つまり焼なまし状態の素材からの型製作も行った。つまり、現在の一般的な型製作工程であって、焼なまし状態で穴あけ後、熱処理にて調質、仕上加工を経て作製するものである。焼なまし素材の寸法は上記プリハードン素材寸法に対し、仕上代として片肉0.5mmずつ大きくしたものである。焼なまし材の熱処理条件は焼入れが1030℃、真空加圧冷却で、焼戻しは540℃で行った。
【0060】
以上の型製作において、その穴切削条件(焼なまし状態から作製の比較鋼18は、その仕上げ加工条件)を表6に、そして、穴あけ加工からの型製作工数を表7に示す。
【0061】
【表6】
【0062】
【表7】
【0063】
比較鋼18のプリハードン素材からの穴あけ加工では30穴でドリルが折損し、型加工ができなかった。また、現在の一般的な型製作工程である焼なまし材からの型製作において、比較鋼18を素材にした場合は穴あけ後に熱処理および熱処理による変寸が生じるために仕上加工が必要となり、型製作工数が大きくなる。
【0064】
これに対し、本発明鋼2のプリハードン素材からの型製作の場合、その調質後の穴あけは可能であり、またその後の熱処理や仕上加工が不要なため、型製作コストが大幅に削減できる。仮に比較鋼18の焼なまし素材からの型製作において、穴あけに超硬ドリルを用いて切削効率を上げたとしても本発明鋼2のプリハードン素材からの加工の工数には及ばない。
【0065】
【発明の効果】
以上述べたように、本発明鋼であれば打抜き等の冷間加工用金型に必要な50HRC以上の硬さ、さらには55HRC以上の硬さが得られ、かつ焼入焼戻し後のいわゆるプリハードン状態においても高い硬さでの被削性が良好であるため、型製作効率の向上およびそれによるコスト低減が期待できる。本発明による工業的価値は高い。
【図面の簡単な説明】
【図1】切削速度の増加に伴う切削温度の上昇状況を示す図であり、本発明の効果の一例を説明するための図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is a high-hardness pre-hardened steel for cold working used for a die for punching, bending, drawing, trimming, etc. of steel plates used for automobiles, home appliances, printed circuit boards, agricultural machinery, and the like, and using the same. And a steel processing method that contributes to the achievement of these means.
[0002]
[Prior art]
Processing such as punching is used for manufacturing parts such as automobiles and home appliances. Mold material used for the mold, especially cold work mold material, contains a large amount of carbides for imparting wear resistance, and also has a high Cr content to ensure excellent hardenability and toughness. For example, high C-high Cr steel such as SKD11, which is an alloy tool steel according to JIS G4404, is used. In the case where wear resistance is not particularly required, a low alloy steel such as SKS3 is used after being tempered at 300 ° C. or lower after oil quenching.
[0003]
[Problems to be solved by the invention]
However, in recent years, automakers and others have cut costs in all fields to overcome price competition, and it has become necessary to reduce the number of mold production steps related to molds. On the other hand, there is a shift to high-mix, low-volume production as a general social trend, and from this point of view, it has been emphasized how quickly molds can be made.
[0004]
The current general mold production is performed by roughing the shape of the annealed material mainly by cutting, quenching and tempering, and increasing the hardness required for processing the product such as punching. When quenching and tempering, changes in size and deformation occur due to heat treatment, and finishing such as cutting and grinding is performed to complete the mold production. Therefore, it is desirable that the machinability in the annealed state is good and the heat treatment is not deformed or deformed in order to improve the manufacturing efficiency of the mold, and a cold tool steel such as that disclosed in Japanese Patent Application Laid-Open No. 11-92871 is proposed. ing.
[0005]
However, in the current situation where there are increasing demands for further mold production and cost reduction, the mold production can be performed by omitting heat treatment and finishing after cutting, which are the current general processes, by performing cutting from quenching and tempering. There is a growing need for so-called pre-hardened steel that can improve efficiency.
[0006]
Currently, mold production using pre-hardened steel is carried out with some plastic molds and hot forging molds, etc., but the hardness is about 40 HRC, and the hardness of 50 HRC or more required for punching by cold working or the like. Not reached. This is because as the hardness increases, the resistance and impact to the tool at the time of cutting increase, and the strength of the tool is exceeded.
[0007]
On the other hand, in the field of cutting, improvement of cutting efficiency by high-speed machining is progressing. However, in high-hardness materials exceeding 50 HRC, when high-speed machining is performed, in addition to the impact on the above-mentioned tool, the cutting temperature is excessively increased and the tool temperature is increased. The softening or welding of the workpiece to the tool proceeds, and the tool life is also reached early. JIS SKD11, which is a tool steel for existing cold working, cannot satisfy the requirements of efficiency and tool life from the viewpoint of shortening the number of man-hours required for die cutting in the high hardness state after quenching and tempering. There are many.
[0008]
In addition, JIS SKS3 has better machinability in the quenching and tempering state than SKD11, but does not necessarily meet the requirements for reducing the mold production efficiency. Distortion problems occur in electrical discharge machining that is often used for manufacturing.
[0009]
As described above, it is practically difficult to cut a tool steel that has been conventionally applied to a mold or the like in a pre-hardened state with a hardness of 50 HRC or more. Therefore, the present invention provides a tool steel having a high hardness of 50 HRC or more and improved machinability after quenching and tempering so that it can be processed with pre-hardening, a mold using the tool steel, and achievement of these means. It provides a method for processing steel that contributes.
[0010]
[Means for Solving the Problems]
Therefore, the present inventors have studied a component having a high hardness of 50 HRC or more and having good machinability at the high hardness, and found an appropriate balance of components, leading to the present invention.
[0011]
That is, in mass%, C: 0.3 to 0.45%, Si: 0.82 to 2.0%, Mn: 0.1 to 2.0%, S: 0.11 to 0.25%, Cr: 4.41 to 6.0%, 1 or 2 of W or Mo is (Mo + 1 / 2W) 1.3% or less, V: 1.0% or less, N: 0.15% or less, balance It is a steel for cold working consisting of Fe and inevitable impurities , and is a high-hardness pre-hardened steel for cold working that has been tempered to a hardness of 50 HRC or higher, and further 55 HRC or higher.
[0014]
Furthermore, in addition to the above composition, one or more of Nb, Ta, and Ti are combined to 0.4% or less, Ni: 4.0% or less, Cu: 2.0% or less, Co: 5.0 % or less, Zr: 0.2% or less, Se: 0.15% or less, Oh Rui Al: 1.5% or less of cold working for high hardness pre-hardened steel.
[0015]
Further, the tempered high-hardness pre-hardened steel for cold working is a high-hardness pre-hardened steel for cold working that is used after being cut from the tempered state, and the cutting speed is 50 m. It is a high-hardness pre-hardened steel for cold working that is at least / min. And it is a die for cold work formed by cutting these high hardness prehardened steel for cold work of the present invention.
[0016]
The achievement of the pre-hardened steel and cold working mold of the present invention depends largely on the fact that the optimum conditions for extending the life of the cutting tool can be established in the cutting of steel tempered to high hardness. Is. That is, the steel processing method of the present invention is a steel processing method in which a cutting speed of 50 m / min or more is applied to steel tempered to a hardness of 50 HRC or more, and the composition of the steel is mass%. C: 0.3-0.45%, Si: 0.82-2.0%, Mn: 0.1-2.0%, S: 0.11-0.25%, Cr: 4. 41-6.0%, 1 or 2 types of W or Mo (Mo + 1 / 2W) 1.3% or less, V: 1.0% or less, N: 0.15% or less, balance Fe and inevitable A steel processing method characterized in that the steel is made of impurities .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The feature of the present invention is that the components, particularly the amounts of C, Si and S, are obtained so that a hardness of 50 HRC or more, further 55 HRC or more is obtained, and the machinability in a high hardness state after quenching and tempering is improved. It is in the place where optimization was attempted. Hereinafter, the reasons for limiting the components in the present invention will be described.
[0018]
C is an important element in the present invention. C is necessary for improving the hardenability and maintaining the hardness after the heat treatment. C combines with Cr, Mo, W, and V to form carbides, and improves wear resistance and temper softening resistance. Furthermore, it is important for the generation of MX type compounds (TiC, VC, etc.) having a sufficient film thickness in the surface treatment performed for imparting abrasion resistance.
[0019]
However, in high hardness after quenching and tempering, it is important to reduce the amount of C in order to improve machinability. When the hardness becomes higher than 50 HRC, the temperature of the workpiece increases at the time of cutting, and the tool is softened to reach the tool life. Further, when the workpiece is welded to the tool and the welded material is peeled off, the tool is also peeled off at the same time, resulting in tool life from chipping and chipping of the tool.
[0020]
In order to improve the machinability, a method of controlling the form of sulfide by adding S or adding Te or the like is used. The inventors have found that it is important to reduce the amount of C. By reducing the amount of C, an excessive increase in cutting temperature during cutting is suppressed, so that machinability is improved. However, if the amount is too small, a high hardness of 50 HRC or higher cannot be obtained. Therefore, to reduce the C content to the extent that required hardness is obtained, proper exact adjustment of the C content is not more important at the present invention, the content of C is 0. It was set to 3 to 0.45%.
[0021]
Si is an important element for improving machinability. The addition of Si causes the oxide to have a low melting point during cutting, resulting in an effective oxide film that prevents welding between the tool and the workpiece, which prevents direct contact between the tool and the workpiece, reducing tool wear. Machinability is improved. In order to obtain this effect, addition of at least 0.82 % or more is necessary. Si is also included for the purpose of improving the Si deoxidizer and castability. However, if the content is excessive, the segregation of the base component is severe and the toughness is lowered, so the Si content is set to 0.82 to 2.0%. . More desirably, it is 0.82 to 1.7%.
[0022]
S is an important element for the formation of sulfides that enhance machinability. However, too much addition leads to a decrease in toughness and weldability, so 0.11 to 0.25%. Preferably 0 . 13 to 0.25%.
[0024]
Mn is contained for improving the hardenability, and if it is less than 0.1%, it is insufficient to stably obtain the quenching hardness. Moreover, it is required for the production | generation of MnS which is a sulfide which improves machinability. On the other hand, if it is too much, the component segregation at the base will be intense as in the case of Si. Preferably it is 0.6 to 1.5%.
[0025]
Cr combines with C to form carbides to improve wear resistance, increase the hardenability, and a type of cracking that occurs during cooling after surface treatment to complex shapes such as CVD and salt bath methods It has the effect of preventing the phenomenon. However, if the amount is too large, it causes toughness and machinability deterioration due to an increase in Cr carbide. Furthermore, the solid-liquid coexistence temperature range is increased, the risk of occurrence of casting defects is increased, and this causes substantial difficulty in manufacturability. Therefore, the addition amount of Cr is set to 4.41 to 6.0 % .
[0026]
Mo and W improve hardenability. Moreover, it combines with C to form a hard carbide and improve wear resistance. There are many similar effects on the characteristics of Mo and W, and the degree of the effect is that Mo is twice as large as W in terms of mass ratio. Therefore, the content that contributes to the effect can be expressed by (Mo + 1 / 2W). In the present invention, one or two of Mo and W can be contained, that is, the total content of Mo may be replaced with a double W content, and a part of Mo is equivalent to the W content. May be used instead. From the economical viewpoint, use of Mo is preferable. The amount of excess and Mo, 1.3% or less because degrading the crystallization amount is increased machinability and toughness of the W-based carbide. 0.2 to 1.1% is preferable.
[0027]
V is an element that increases the softening resistance necessary for the tool steel. However, when the V content is excessive, a huge V-based carbide is crystallized during solidification, which lowers the machinability. Therefore, in the present invention, 1 . 0% or less. 0.1 to 0.5% is preferable.
[0028]
N dissolves in the base and carbides to refine crystal grains and increase toughness. It also increases the quenching and tempering hardness. In the present invention, the addition / containment is not critical, but a large amount of addition is not required to obtain the above effect, and the content is limited to 0.15% or less due to the limitation of the solid solubility limit. When obtaining the above effect, 0.02% or more is sufficient.
[0029]
In addition, in the case of the high-hardness pre-hardened steel for cold working according to the present invention, the following elements can be contained.
[0030]
Nb, Ta, and Ti all suppress the growth of crystal grains during quenching and heating, refine the crystal grains, and increase toughness. However, excessive addition produces coarse carbides, which in turn reduces toughness, so Nb, Ta, and Ti are combined to 0.4% or less. In addition, when obtaining the said effect, 0.008% or more is preferable.
[0031]
Ni is an element that can be improved in toughness by increasing the hardenability and impact transition temperature. However, in this alloy system, deterioration of weldability can be particularly prevented, and it acts in the direction of expanding the practically operable surface treatment region. However, excessive addition degrades the machinability, so it is made 4.0% or less. When acquiring the said effect, Preferably it is 0.01% or more.
[0032]
Cu is an element that improves the quenching and tempering hardness. Even if the amount of C is lowered to improve machinability, hardness can be secured by adding Cu. The excessive content impairs hot workability at the time of manufacturing the material, so the content is made 2.0% or less. When acquiring the said effect, Preferably it is 0.5% or more.
[0033]
Co is an element that suppresses the aggregation of finely precipitated carbides during tempering, and provides high hardness. Therefore, hardness can be secured by adding Co even if the amount of C is lowered to improve machinability. Since excessive content raises manufacturing cost, it is made 5.0% or less. When obtaining the above effect, the content is preferably 1.0% or more.
[0034]
Zr becomes ZrO 2 or ZrN having an effective inoculating action on sulfides, and the sulfides are uniformly distributed and machinability is improved. If the content is excessive, the amount of ZrO 2 or ZrN increases and the machinability is impaired, so the content is made 0.2% or less. When acquiring the said effect, Preferably it is 0.005% or more.
[0035]
Se is an element that suppresses stretching of sulfides by forging and improves machinability. However, excessive content leads to deterioration of mechanical properties, so it was made 0.15% or less. When acquiring the said effect, Preferably it is 0.03% or more.
[0037]
The tool steel of the present invention is 0.2% or less in combination with one or more of Pb, Te, Bi, In, Be, and Ce in the above component composition in accordance with other required effects. If included, there is no problem.
[0038]
In addition, the rare earth can be contained in an amount of 0.2% or less in combination for the purpose of improving the machinability in the tool steel of the present invention. The total amount of inevitable impurities is preferably 0.5% or less. In addition, when it is necessary to further impart wear resistance, it is possible to increase the nitriding hardness by adding 1.5% or less of Al. In this case, it is preferably 0.05% or more and 0.5% or less in order to prevent chipping or the like due to excessive increase in nitriding hardness.
[0039]
In the present invention, precipitation hardening of NiAl can be used so that the hardness after quenching and tempering is 50 HRC or more, and even 55 HRC or more, even if the amount of C is low. For this purpose, it is effective to add 4.0% or less of Ni, 1.5% or less of Al, and 1.5% or less of Cu.
[0040]
Next, the tempering temperature and hardness will be described. From the viewpoint of wear resistance, a cold working die used for punching, bending or the like needs to have a hardness of 50 HRC or more, further 54 HRC or more, and preferably 55 HRC or more. Therefore, the hardness in the present invention is 50 HRC or more, preferably 55 HRC or more.
[0041]
In addition to cutting, these metal molds are widely used for electric discharge machining. In this case, when the tempering temperature is low, quenching strain in the material remains, and the strain is released after electric discharge machining, and deformation or cracking may occur. Furthermore, since surface treatment such as nitriding and PVD performed for imparting wear resistance is generally performed at least at 400 ° C. or higher, the tempering temperature of the raw material in this case needs to be higher than the surface treatment temperature. Tempering is preferably performed at 500 ° C. or higher.
[0042]
Next, the cutting speed will be described. Even with a high-hardness material of 50 HRC or higher, a certain degree of cutting is possible if low-speed cutting is performed to suppress an excessive increase in cutting temperature using, for example, a coated carbide end mill. However, this increases the number of man-hours for cutting and as a result cannot improve the die manufacturing efficiency. Therefore, the present invention is characterized in that the machinability is improved by suppressing an excessive increase in the cutting temperature mainly by reducing the amount of C.
[0043]
In other words, the high-hardness pre-hardened steel of the present invention does not increase the cutting temperature so much even if the cutting speed is increased, so that high-speed cutting can be performed even at a high hardness of 50 HRC or more, and even 55 HRC or more, and the die machining efficiency Improvement can be achieved. In this case, in view of the die machining efficiency, it is desirable that the cutting speed is 50 m / min or more in order to exert the effect of the present invention. The machining at the cutting speed according to the present invention is particularly carried out by end milling, face milling, and turning.
[0044]
As described above, the high-hardness pre-hardened steel of the present invention enables efficient die cutting even at a high hardness of 50 HRC or more, and even 55 HRC or more, and can shorten the lead time for producing a die such as a press die. Furthermore, the steel of the present invention is used for auxiliary tools such as resin molds, rubber molds, plastic molds, hot work type spacers and holders that require wear resistance such as glass due to its high hardness and high machinability. it can.
[0045]
【Example】
Next, examples of the present invention will be described in detail, but the present invention is not limited to these examples.
[0046]
Example 1
A predetermined alloy was melted in a high-frequency furnace to produce a steel ingot having the chemical composition shown in Table 1. The comparative steel 18 is a component corresponding to JIS SKD11. These steel ingots were forged at a forging ratio of 5, finished into steel, and annealed. Next, these annealed materials were heated and held at 1030 ° C. in an atmospheric furnace, then air-quenched, and tempered at 500 to 600 ° C. The quenched and tempered material was finished to a size of 40 × 50 × 200 mm and used as a sample for cutting test. Table 1 also shows the hardness after quenching and tempering. In addition, since the comparative steel 19 has too low C amount, the hardness of 50HRC or more is not obtained.
[0047]
[Table 1]
[0048]
A cutting test using a square end mill was performed using these samples except for the comparative steel 19 in which a hardness of 50 HRC or more was not obtained. The test conditions are shown in Table 2. Machinability was evaluated as the tool life by the cutting length until the flank wear of the tool reached 0.1 mm. Table 3 shows the results of machinability evaluation.
[0049]
[Table 2]
[0050]
[Table 3]
[0051]
When machining at a relatively low speed of 30 m / min, some comparative steels can be cut to some extent, but at high speed machining at a cutting speed of 150 m / min, the tool life of the steel of the present invention, that is, machinability is good. On the other hand, since the comparative steel 18 has a high C content and a low Si content, the comparative steel 20 has a high C content, the comparative steel 21 has a low Si content, and the comparative steel 22 has a low S content. Is inferior in machinability due to its high C content. Since the comparative steel 24 has a low hardness but a high C content, the comparative steel 25 has a high C content and a low S content, so that the machinability is inferior.
[0052]
(Example 2)
Using the pre-hardened material of the
[0053]
[Table 4]
[0054]
[Table 5]
[0055]
FIG. 1 shows the cutting temperature measurement results. When the cutting speed was 30 m / min, although there was no great difference in cutting temperature with any steel type, the comparative steel 24 was the lowest in the order of the hardness, and the comparative steel 18 was the
[0056]
In addition, high hardness steel is generally cut with a tool coated with TiAlN, and the oxidation start temperature of the coating film is a factor that affects the life of this coated tool. Naturally, in order to achieve a long tool life It is effective to cut steel at a cutting temperature below this temperature. The oxidation start temperature of the TiAlN coating film applied to the tool is generally around 800 ° C. In the case of the steel of the
[0057]
Furthermore, there is a carbide distribution in the material as a factor that greatly affects machinability. In the case of the comparative steel 18, in addition to the above, since a large amount of hard carbides are precipitated, it also has an influence that the abrasive wear is noticeably generated. It is inferior in machinability.
[0058]
Example 3
Using the pre-hardened material of the
[0059]
In addition, for the comparative steel 18, a mold was also made from the material before quenching and tempering, that is, the annealed state. In other words, it is a current general mold manufacturing process, in which holes are made in an annealed state, and then heat-treated and tempered and finished. The dimensions of the annealed material are larger than the pre-hardened material dimensions by 0.5 mm each as a finishing allowance. The heat treatment conditions for the annealed material were quenching at 1030 ° C., vacuum pressure cooling, and tempering at 540 ° C.
[0060]
Table 6 shows the hole cutting conditions (finishing conditions for the comparative steel 18 produced from the annealed state) in Table 6 and Table 7 shows the man-hours for die production after the drilling.
[0061]
[Table 6]
[0062]
[Table 7]
[0063]
In the drilling of the comparative steel 18 from the pre-hardened material, the drill broke at 30 holes and the die machining was not possible. Further, in the mold production from the annealed material, which is the current general mold production process, when the comparative steel 18 is used as a raw material, a heat treatment and a change in size due to the heat treatment occur after drilling, and thus a finishing process is required. Production man-hours increase.
[0064]
On the other hand, in the case of mold production from the pre-hardened material of the
[0065]
【The invention's effect】
As described above, the steel according to the present invention has a hardness of 50 HRC or more necessary for a die for cold working such as punching, and further a hardness of 55 HRC or more, and a so-called pre-hardened state after quenching and tempering. However, since the machinability at high hardness is good, it can be expected to improve the die manufacturing efficiency and thereby reduce the cost. The industrial value according to the present invention is high.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an increase in cutting temperature accompanying an increase in cutting speed, and is a diagram for explaining an example of the effect of the present invention.
Claims (12)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2001331472A JP3830030B2 (en) | 2000-12-13 | 2001-10-29 | High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000379222 | 2000-12-13 | ||
| JP2000-379222 | 2000-12-13 | ||
| JP2001331472A JP3830030B2 (en) | 2000-12-13 | 2001-10-29 | High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2002241894A JP2002241894A (en) | 2002-08-28 |
| JP3830030B2 true JP3830030B2 (en) | 2006-10-04 |
Family
ID=26605773
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2001331472A Expired - Lifetime JP3830030B2 (en) | 2000-12-13 | 2001-10-29 | High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3830030B2 (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100074792A1 (en) * | 2006-10-17 | 2010-03-25 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Cold work die steel, die, and method for production of cold work die steel |
| JP6032582B2 (en) * | 2013-03-29 | 2016-11-30 | 日立金属株式会社 | Manufacturing method of steel material for mold |
| JP6894166B2 (en) * | 2017-07-20 | 2021-06-23 | 山陽特殊製鋼株式会社 | Pre-hardened hot tool steel with excellent machinability |
-
2001
- 2001-10-29 JP JP2001331472A patent/JP3830030B2/en not_active Expired - Lifetime
Also Published As
| Publication number | Publication date |
|---|---|
| JP2002241894A (en) | 2002-08-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2012115025A1 (en) | Manufacturing method for cold-working die | |
| WO2009088027A1 (en) | Cold-work die steel and dies for cold pressing | |
| JP2013213255A (en) | Hot working die steel | |
| JP4403875B2 (en) | Cold work tool steel | |
| US6663726B2 (en) | High-hardness prehardened steel for cold working with excellent machinability, die made of the same for cold working, and method of working the same | |
| JP4860774B1 (en) | Cold work tool steel | |
| CN103403209B (en) | Hot work tool steel excellent in toughness and manufacturing method thereof | |
| JPH0949067A (en) | Steel for plastic molding dies | |
| KR20020001933A (en) | A low alloyed high speed tool steel for hot and warm working having good toughness and high strength and manufacture method thereof | |
| JP3830030B2 (en) | High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel | |
| JP3581028B2 (en) | Hot work tool steel and high temperature members made of the hot work tool steel | |
| JP2005336553A (en) | Hot work tool steel | |
| JP2001294974A (en) | Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method | |
| JPH09316601A (en) | Cold tool steel suitable for surface treatment, its mold and tool | |
| JP3846008B2 (en) | Cold tool steel with excellent toughness and wear resistance and manufacturing method thereof | |
| CN118142662A (en) | Bimetal crushing cutter tooth and manufacturing process thereof | |
| JP2866113B2 (en) | Corrosion resistant mold steel | |
| JP5345415B2 (en) | Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics | |
| JP4099742B2 (en) | Tool steel with excellent weldability and machinability and mold using the same | |
| JP2001123247A (en) | Cold work tool steel with excellent machinability | |
| JP4322239B2 (en) | Cold tool steel and manufacturing method thereof | |
| JP2003253383A (en) | Steel for plastic molding dies | |
| JP7608772B2 (en) | Die steel and dies | |
| CN112899559B (en) | Steel for mold and mold | |
| JP2001064754A (en) | Tool steel with excellent weldability and machinability and suppressed secular change, and die using the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040910 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051007 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051118 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051226 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060512 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060530 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060623 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060706 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 3830030 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090721 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100721 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100721 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110721 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120721 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130721 Year of fee payment: 7 |
|
| EXPY | Cancellation because of completion of term |