[go: up one dir, main page]

JP3831812B2 - Radiation shielding performance monitoring method and equipment of concrete structure for radiation shielding after curing - Google Patents

Radiation shielding performance monitoring method and equipment of concrete structure for radiation shielding after curing Download PDF

Info

Publication number
JP3831812B2
JP3831812B2 JP17918799A JP17918799A JP3831812B2 JP 3831812 B2 JP3831812 B2 JP 3831812B2 JP 17918799 A JP17918799 A JP 17918799A JP 17918799 A JP17918799 A JP 17918799A JP 3831812 B2 JP3831812 B2 JP 3831812B2
Authority
JP
Japan
Prior art keywords
radiation
concrete structure
shielding
radiation source
radiation shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17918799A
Other languages
Japanese (ja)
Other versions
JP2001004747A (en
Inventor
繁喜 瀬古
敏男 米澤
雅朗 小田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP17918799A priority Critical patent/JP3831812B2/en
Publication of JP2001004747A publication Critical patent/JP2001004747A/en
Application granted granted Critical
Publication of JP3831812B2 publication Critical patent/JP3831812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硬化後の放射線遮へい用コンクリート構造体の放射線遮へい性能モニタリング法と装置に関する。
【0002】
【従来の技術】
原子力発電所の原子炉格納容器においては、原子炉運転時に発生する放射線が外部に漏えいするレベルを人体に影響のない程度まで減衰させるために、コンクリート構造体等による放射線遮へい壁が設けられている。放射線遮へい用コンクリート構造体の遮へい性設計は、計算により求めた原子炉運転時の放射線強度と、コンクリート中の水分が全て蒸発した絶乾状態の密度における遮へい性能とによって所定の断面寸法を安全代を付加して定めている。
【0003】
すなわち、一般的に放射線の種類は、アルファ線、ベータ線、ガンマ線、エックス線、中性子線とがあるが、このうち、アルファ線とベータ線は非常に短い距離で減衰するため、またエックス線については原子炉運転時における発生がないために、それらの遮へいについては大きな配慮を要しないが、ガンマ線と中性子線は透過性が大きいために、人体に影響を及ぼすことがないように遮へい壁によって外部に漏えいするレベルを非常に小さく減衰させなければならない。そして、ガンマ線の減衰は密度と関係しており、中性子線の減衰は水分と関係していることが知られている。
【0004】
しかして、コンクリート構造体による放射線の遮へい能力は、コンクリートの密度および含水率によって成り立っており、十分な厚さの構造体とすることにより透過率を小さくする設計がなされている。しかし、経年的にコンクリート構造体は放射線を受けることによる放射化、ならびに高い雰囲気温度によるコンクリートの乾燥などによる放射線遮へい性能の低下が起こることが考えられている。
【0005】
最近、叙上のコンクリート構造体の使用年数の長期化が検討されるようになった結果、稼動中のコンクリート構造体の放射線遮へい性能を経時的にモニタリングする必要が生じるようになった。コンクリート構造体の遮へい能力をモニタリングする方法としては、(1) エリアモニターにより遮へい壁外部雰囲気の放射線の強度を測定する方法、(2) 遮へい壁表面の放射線を測定する方法、(3) コンクリート構造体(安全代部)からコア試験体を抜き取り、試験体の密度と含水率を測定する方法などがある。
【0006】
【発明が解決しようとする課題】
しかし、叙上(1)の手段にあっては、遮へい壁外部雰囲気の放射線強度の測定は、遮へい壁を通過してきた放射線のほかに、壁外の設備配管部分などを通過してきた放射線などの影響も含んでいることから、遮へい壁のみの遮へい性能を評価することは困難である。また、遮へい壁よりも内部の放射線の強度が不明であるために減衰の程度を定量的に求めることができないなどの根本的な問題がある。
【0007】
(2)の手段にあっては、人体が接触する可能性のある表面部分の放射線量を測定するものであるが、表面部分の放射線強度が1〜2m程度の厚さのあるコンクリート構造体のうち、どの程度の深さまでの影響度合を測定しているのかが不明であること、また、乾燥しやすい表面部分と乾燥しにくい構造体内部とでは放射線の遮へい性能が異なることは明らかであり、表面のみの測定は遮へい性能の過小評価となる根本的な問題点がある。
【0008】
(3)の手段にあっては、コンクリート構造体を大きく損傷させてしまうこと、コア供試体採取において、水冷却のコア抜き工法では、その工事用の水分の影響、あるいは乾式コア抜きの場合には、摩擦熱などによりコア供試体自体が、基の条件から変わってしまうなど問題点があり、また試験体が放射化して放射能を保持していた場合の取扱いは、放射化部分の処理など非常に煩雑なものとなる。さらにコア試験体を採取したあとの部分は補修を行っており、長期的なモニタリングを実施する場合には同一箇所における試験体採取は補修材料の影響を含む恐れがあり当初のコンクリート構造体の性能評価でなくなる可能性があること、また実際には複数本のコア試験体を採取すること自体が放射線取扱いの安全上からも煩雑になる等、継続的な繰り返しモニタリングは難しいという問題点を有している。
【0009】
本発明は、叙上の事情に鑑みなされたもので、その目的とするところは、定量的にコンクリート構造体の放射線遮へい性能を評価し得、異なる深さの位置のコンクリート構造体内部の遮へい性能の分布を測定し得、コンクリート構造体の軽微な損傷の程度で測定可能な非破壊測定であり、かつ、コンクリート構造体の同一箇所における継続的な繰り返しモニタリングを可能とする方法を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の硬化後の放射線遮へい用コンクリート構造体の放射線遮へい性能モニタリング法は、硬化したコンクリート構造体の安全代部に異なる深さの埋設孔を削孔し、当該埋設孔に線源強度が既知の放射線源を設置すると共に、埋設孔内を放射線遮へい能力の高い材料をもって閉塞し、該放射線源から放出されたガンマ線、中性子線をコンクリート構造体表面の該埋設孔より等距離の複数箇所に設置の壁外部雰囲気から遮断する遮へい材カバーで保護のガンマ線、中性子線の検出管により検出し、透過した当該放射線の減衰割合からコンクリート構造体の放射線遮へい性能をモニタリングするとしたものである。
【0011】
又、本発明のモニタリング装置は、線源の強度が既知の放射線源と、コンクリート構造体の所定の深さの埋設孔に当該線源を設置するためと共に検出管を該埋設孔から等距離に設置するための基準ピンとしての放射線遮へい能力の高い材料の埋設管と、コンクリート構造体表面におけるガンマ線、中性子線を測定する壁外部雰囲気から遮へいする遮へいカバーで保護のガンマ線、中性子線検出管と、当該検出管で検出した微弱電流を増幅する増幅装置と、放射線の減衰割合を演算する演算装置と、該埋設管と該検出管を一定位置関係に固定する位置決め治具とから構成されるとしたものである。
【0012】
【作用】
叙上の如き手段によれば、放射線源を埋設するだけの小さな削孔で済むので構造体には大きな損傷はなく、また繰り返し同一の埋設孔を用いることによって定量的に、継続的に所望の遮へい性能の正確なモニタリングが可能となる。さらに、コンクリート構造体に削孔した測定用線源の設置孔内を放射線遮へい能力の高い材料を用いて閉塞させることにより、削孔部分の影響を小さくして測定精度を確保できる。
【0013】
【発明の実施の形態】
本発明の実施の形態を図1に示す。
【0014】
硬化したコンクリート構造体1には埋設孔2が削孔されて、ガンマ線又は中性子線の放射線源3が設置される。当該放射線源3を設置の埋設孔2は埋設管4で閉塞される。当該埋設管4はコンクリート構造体1表面にピン状に突出させる。当該埋設管4に対して等距離が確保されるよう軸止めの位置決め治具5を介してガンマ線又は中性子線の壁外雰囲気から遮へいする遮へい材カバー7で保護の検出管6が壁面に取り付く。
【0015】
該放射線源3は、測定対象とする放射線の種類がガンマ線の場合には60Co(コバルト)を用いる。また測定対象が中性子線の場合には252Cf(カリホルニウム)を用いる。なお、ガンマ線の線源として、60Coのほかに192Irや137Csを用いることができる。また中性子線の線源としては252Cfのほかに241Am-Beを用いることができる。放射線源の強度は、60Co、252Cfともに100μCi(マイクロキュリー)以下が望ましい。これは、放射線障害防止法に基づく「放射性同位元素」にあたる「密封された放射性同位元素の1個当たり100μCi(マイクロキュリー)を超えるもの」よりも低レベルに設定することにより、放射線源を取扱いに資格を要する「放射性同位元素」とみなす必要がなく法的に拘束されないためである。
【0016】
ただし、原子力発電所運転時の透過放射線の強度が測定結果に影響を及ぼすほど大きい場合、あるいは構造体内部深くまで計測を行う場合には、測定精度を確保するために測定用放射線源の強度を大きくすることが望ましい。
【0017】
該埋設管4は、コンクリート構造体1にドリルなどで削孔した埋設孔2に設置するが、埋設管4の材質は鉄を用いる。なお埋設管4の材質は、測定結果に影響を及ぼさないようにコンクリートよりも放射線遮へい能力が高いものであれば鉄以外の、たとえば鉛などを用いることができる。つまり、放射線の減衰は、原子との衝突により起こるもので、ランダムな方向への反射を繰り返して減衰される。したがって埋設管の材質がコンクリートよりも遮へい能力が小さい場合には、埋設管4を透過して検出管に到達する放射線が増加する分だけ遮へい性能が小さく評価されることになるため、精度を確保するためには放射線遮へい能力が高い材料が望ましいのである。
【0018】
このように、埋設孔2内を放射線遮へい能力の高い材料を用いて閉塞させることにより、削孔部分の測定値への影響を小さくできる。
【0019】
埋設管2による測定用放射線源3の位置は表面から10cm〜50cmの位置とする。埋設深さが極端に深い場合にはコンクリートによる透過放射線の減衰が大きく検出管6に到達する放射線が計測不可能な程度まで小さくなることにより測定結果の信頼性がなくなるため、極端に深い位置は望ましくない。ただし、必要により深い位置に測定用放射線源3を設置する場合には、コンクリート構造体表面に測定可能な強度の放射線が到達するレベルまで線源強度を大きくすることにより測定は可能となる。埋設管4は、表面からの線源3の深さが測定値に影響を及ぼすため、位置決め治具5により正確に深さ方向の位置を保持することが重要である。
【0020】
放射線検出管6は、ガンマ線の場合GM検出管を、中性子線の場合3He検出管を用いる。なお、中性子線の検出のためにBF3を用いることができる。検出管6はコンクリート構造体の表面に設置して透過してくる放射線を検出する。なお、検出管6と線源3の位置関係は計測結果に大きな影響を及ぼすため、埋設管4とは位置決め治具5によって正確に設置する。検出管6の周りは、遮へい壁以外のたとえば設備配管などから漏えいしてくる放射線や自然界に存在する放射線の影響を受けないように遮へい材カバー7で守られている。
【0021】
当然ながら、日常的に放射線の存在する状況で、測定用放射線源3からのみ到達する放射線カウントを計測するために、あらかじめ日常状態の放射線カウントをイニシャル値として認識することにより、計測値への外部ノイズの影響を除去する。
【0022】
測定用放射線源3を設置するための埋設孔2を、繰り返して利用することにより、コンクリート構造体1の同一箇所における放射線遮へい性能の変化を継続的に繰り返してモニタリングできる。
【0023】
異なる深さの埋設孔2に線源強度が既知の放射線源3を設置し、計測した各々の深さの減衰割合と放射線源3の深さの関係を演算することにより、コンクリート構造体1内部の放射線遮へい性能の分布が精密に測定可能である。
【0024】
検出管6で検出した電圧は非常に微弱であるために、検出管6の出力は増幅装置8によりカウント可能な程度まで増幅され、演算装置9によって放射線がカウントされ、線源深さLにおける減衰割合が算出される。
【0025】
測定要領を以下説明する。
【0026】
放射線遮へい用コンクリート構造体1にドリルなどを用いて深さLの埋設孔2を削孔する。先ず埋設孔2には測定用放射線源3を取り外した状態の埋設管4を取り付け、そのときの構造体表面の放射線強度を、図2に示すような埋設管を中心として90度ずつ回転した4箇所計測し、これらの平均カウント数をイニシャル値(Im)とする。続いて測定対象とする放射線測定用の線源3を埋設管4に取りつけ、イニシャル値を計測した箇所と同一の4箇所で測定し、4箇所の平均カウント数を測定値(Nm)とする。測定用放射線源3の強度(Sm)は既知であるので、コンクリート1mあたりの遮へい性能(Sd)は、イニシャル値を測定値から除くことにより日常の原子力発電所運転状態で若干の透過が考えられる放射線の影響を除外して、数1により算出することができる。
【0027】
【数1】

Figure 0003831812
ここで、測定箇所は4箇所としたが、測定結果の信頼性を高めるためには45度ずつ回転させた8箇所、およびそれ以上の箇所数で測定するのが望ましいことは明らかである。
【0028】
また、図3に示す如く、ガンマ線の減衰割合はコンクリートの密度と関係があること、および中性子線の減衰割合はコンクリート中の含水率と関係があることが知られている。したがって、数1右辺の右側の項、つまり測定用放射線源の強度に対するコンクリート構造体表面における放射線強度の割合を用いて、数2、および数3によりコンクリート構造体の密度ならびに含水率を測定することが可能となる。
【0029】
【数2】
Figure 0003831812
【0030】
【数3】
Figure 0003831812
【発明の効果】
以上の如く本発明によるならば、損傷される構造体への影響の問題を小さくすることができる軽微な損傷の程度で放射線遮へい性能が測定可能となる。さらに、異なる深さの位置に測定用放射線源を設置して計測した結果を演算するので、コンクリート構造体内部の遮へい性能の分布を測定可能となること、またコンクリート構造体の同一箇所における継続的な繰り返しモニタリングが可能となることから、コンクリート構造体の放射線遮へい性能の定量的評価が可能なる。
【図面の簡単な説明】
【図1】本発明モニタリング法の概略説明図である。
【図2】本発明の測定ポイント要領説明図である。
【図3】密度および含水率と放射線透過割合の関係図である。
【符号の説明】
1 コンクリート構造体
2 埋設孔
3 放射線源
4 埋設管
5 位置決め治具
6 検出管
7 遮へい材カバー
8 増幅装置
9 演算装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radiation shielding performance monitoring method and apparatus for a concrete structure for radiation shielding after curing.
[0002]
[Prior art]
The nuclear reactor containment vessel is equipped with a radiation shielding wall such as a concrete structure in order to attenuate the level of radiation leaking to the outside to the extent that it does not affect the human body. . The shielding design of the concrete structure for radiation shielding is based on the calculated cross-sectional dimensions based on the calculated radiation intensity during reactor operation and the shielding performance at the density of the completely dry state where all the moisture in the concrete has evaporated. Is added.
[0003]
In other words, the types of radiation are generally alpha rays, beta rays, gamma rays, x-rays, and neutron rays. Of these, alpha rays and beta rays are attenuated at very short distances. Since there is no generation during the operation of the furnace, there is no need to consider these shields. However, since gamma rays and neutron rays are highly permeable, they are leaked to the outside by a shielding wall so that they do not affect the human body. The level to be played must be attenuated very small. It is known that the attenuation of gamma rays is related to density, and the attenuation of neutron rays is related to moisture.
[0004]
The radiation shielding ability of the concrete structure is based on the density and moisture content of the concrete, and the transmittance is reduced by making the structure sufficiently thick. However, over time, it is considered that the concrete structure is activated by receiving radiation and the radiation shielding performance is lowered due to drying of the concrete due to high ambient temperature.
[0005]
Recently, as the above-mentioned concrete structure has been used for a longer period of time, it has become necessary to monitor the radiation shielding performance of the concrete structure in operation over time. Methods for monitoring the shielding ability of concrete structures include (1) measuring the intensity of radiation outside the shielding wall using an area monitor, (2) measuring radiation on the shielding wall surface, and (3) concrete structure. There is a method of extracting a core specimen from a body (safety allowance) and measuring the density and moisture content of the specimen.
[0006]
[Problems to be solved by the invention]
However, in the method of (1) above, the radiation intensity of the atmosphere outside the shielding wall is measured in addition to the radiation that has passed through the shielding wall, as well as the radiation that has passed through the equipment piping part outside the wall, etc. Since the influence is included, it is difficult to evaluate the shielding performance of only the shielding wall. There is also a fundamental problem that the degree of attenuation cannot be determined quantitatively because the intensity of the radiation inside the shielding wall is unknown.
[0007]
The measure of (2) is to measure the radiation dose of the surface part that the human body may come into contact with. However, the radiation intensity of the surface part is about 1 to 2 m thick. Among them, it is clear that the degree of influence to which depth is measured is unknown, and it is clear that the radiation shielding performance differs between the surface part that is easy to dry and the inside of the structure that is difficult to dry, Measurement of the surface alone has the fundamental problem of underestimating the shielding performance.
[0008]
In the method of (3), the concrete structure is greatly damaged, and in the core sampling method, the water cooling core removal method is used in the case of the influence of moisture for the construction or in the case of dry core removal. However, there is a problem that the core specimen itself changes from the basic conditions due to frictional heat, etc. Also, if the specimen is activated and retains its radioactivity, handling of the activated part etc. It becomes very complicated. Furthermore, the part after the core specimen is sampled is repaired, and when long-term monitoring is performed, the specimen collection at the same location may include the effect of the repair material, and the performance of the original concrete structure There is a possibility that it may not be an evaluation, and in fact, it is difficult to continuously monitor repeatedly, such as the fact that collecting multiple core specimens itself becomes complicated from the safety of radiation handling. ing.
[0009]
The present invention has been made in view of the above circumstances, and the object is to quantitatively evaluate the radiation shielding performance of the concrete structure, and to shield the interior of the concrete structure at different depth positions. To provide a method capable of measuring the distribution of a non-destructive measurement capable of measuring the degree of minor damage to a concrete structure and enabling continuous repeated monitoring at the same location of the concrete structure. is there.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the radiation shielding performance monitoring method for a concrete structure for radiation shielding after curing according to the present invention comprises drilling buried holes of different depths in the safety margin of the cured concrete structure, A radiation source with a known radiation source intensity is installed in the buried hole, and the buried hole is closed with a material having a high radiation shielding capability, and the gamma rays and neutron rays emitted from the radiation source are blocked on the surface of the concrete structure. When the radiation shielding performance of a concrete structure is monitored from the attenuation rate of the permeated radiation detected by a protective gamma ray and neutron ray detection tube with a shielding material cover that shields from the atmosphere outside the walls installed at multiple equidistant locations. It is a thing.
[0011]
In addition, the monitoring device of the present invention provides a radiation source having a known intensity of a radiation source and a radiation source at a predetermined depth of a concrete structure and a detection tube at an equal distance from the buried hole. A buried tube of a material with high radiation shielding ability as a reference pin for installation, a gamma ray on a concrete structure surface, a gamma ray protected by a shielding cover that shields from the atmosphere outside the wall that measures neutron radiation, a neutron detector tube, An amplification device that amplifies the weak current detected by the detection tube, an arithmetic device that calculates the radiation attenuation rate, and a positioning jig that fixes the buried tube and the detection tube in a fixed positional relationship. Is.
[0012]
[Action]
According to the above-mentioned means, since a small hole for embedding a radiation source is sufficient, there is no great damage to the structure, and by repeatedly using the same embedding hole, a desired quantity can be continuously obtained. Accurate monitoring of shielding performance is possible. Furthermore, by blocking the installation hole of the measurement radiation source drilled in the concrete structure using a material having a high radiation shielding capability, the influence of the drilled portion can be reduced and the measurement accuracy can be ensured.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention is shown in FIG.
[0014]
A buried hole 2 is drilled in the hardened concrete structure 1 and a radiation source 3 of gamma rays or neutron rays is installed. The buried hole 2 where the radiation source 3 is installed is closed by a buried pipe 4. The buried pipe 4 is projected in a pin shape on the surface of the concrete structure 1. The protective detection tube 6 is attached to the wall surface by a shielding material cover 7 that shields the atmosphere outside the wall of gamma rays or neutron rays via a positioning jig 5 for stopping the shaft so as to ensure an equal distance from the buried tube 4.
[0015]
The radiation source 3 uses 60 Co (cobalt) when the type of radiation to be measured is gamma rays. When the measurement object is a neutron beam, 252 Cf (Californium) is used. In addition to 60 Co, 192 Ir and 137 Cs can be used as the source of gamma rays. In addition to 252 Cf, 241 Am-Be can be used as the neutron source. The intensity of the radiation source is preferably 100 μCi (microcurie) or less for both 60 Co and 252 Cf. This is because the radiation source is handled by setting it to a level lower than the “radioisotope” based on the Radiation Hazard Prevention Act, which is “more than 100 μCi (microcurie) per sealed radioisotope”. This is because they do not need to be regarded as “radioisotopes” that require qualification and are not legally bound.
[0016]
However, if the intensity of transmitted radiation during operation of the nuclear power plant is large enough to affect the measurement results, or if measurements are taken deep inside the structure, the intensity of the measurement radiation source should be set to ensure measurement accuracy. It is desirable to enlarge it.
[0017]
The buried pipe 4 is installed in the buried hole 2 drilled in the concrete structure 1 with a drill or the like, and the material of the buried pipe 4 is iron. The material of the buried pipe 4 may be other than iron, such as lead, as long as it has a higher radiation shielding ability than concrete so as not to affect the measurement result. In other words, radiation attenuation is caused by collisions with atoms and is attenuated by repeated reflections in random directions. Therefore, if the material of the buried pipe is less than that of concrete, the shielding performance will be evaluated as small as the amount of radiation that passes through the buried pipe 4 and reaches the detection pipe, thus ensuring accuracy. In order to do this, a material with a high radiation shielding ability is desirable.
[0018]
In this way, by closing the buried hole 2 using a material having a high radiation shielding ability, the influence on the measured value of the drilled portion can be reduced.
[0019]
The position of the measurement radiation source 3 by the buried tube 2 is 10 cm to 50 cm from the surface. When the embedment depth is extremely deep, the attenuation of transmitted radiation by the concrete is large, and the radiation reaching the detection tube 6 becomes so small that it cannot be measured. Not desirable. However, when the measurement radiation source 3 is installed at a deeper position as necessary, the measurement can be performed by increasing the radiation source intensity to a level at which the measurable radiation reaches the concrete structure surface. Since the depth of the radiation source 3 from the surface affects the measurement value, it is important that the buried pipe 4 is accurately held in the depth direction by the positioning jig 5.
[0020]
The radiation detector tube 6 uses a GM detector tube for gamma rays and a 3He detector tube for neutron rays. BF3 can be used for detecting neutron beams. The detection tube 6 is installed on the surface of the concrete structure to detect the transmitted radiation. In addition, since the positional relationship between the detection tube 6 and the radiation source 3 greatly affects the measurement result, the embedded tube 4 is accurately installed by the positioning jig 5. The surroundings of the detection tube 6 are protected by a shielding material cover 7 so as not to be affected by radiation leaking from, for example, equipment piping other than the shielding wall or radiation existing in nature.
[0021]
Of course, in order to measure the radiation count that arrives only from the measurement radiation source 3 in the situation where radiation is present on a daily basis, the radiation count in the daily state is recognized as an initial value in advance, so that Remove the effects of noise.
[0022]
By repeatedly using the buried hole 2 for installing the measurement radiation source 3, the change in the radiation shielding performance at the same location of the concrete structure 1 can be continuously and repeatedly monitored.
[0023]
By installing radiation sources 3 with known source strengths in the buried holes 2 of different depths, and calculating the relationship between the measured attenuation ratio of each depth and the depth of the radiation source 3, the inside of the concrete structure 1 The distribution of radiation shielding performance can be measured accurately.
[0024]
Since the voltage detected by the detection tube 6 is very weak, the output of the detection tube 6 is amplified to the extent that it can be counted by the amplification device 8, the radiation is counted by the arithmetic device 9, and the attenuation ratio at the source depth L Is calculated.
[0025]
The measurement procedure will be described below.
[0026]
The buried hole 2 having a depth L is drilled in the radiation shielding concrete structure 1 using a drill or the like. First, an embedded tube 4 with the measurement radiation source 3 removed is attached to the embedded hole 2, and the radiation intensity on the surface of the structure at that time is rotated 90 degrees about the embedded tube as shown in FIG. Measure the points, and use these average counts as the initial value (Im). Subsequently, the radiation measuring radiation source 3 to be measured is attached to the buried pipe 4 and measured at the same four locations where the initial values were measured, and the average count at the four locations is taken as the measured value (Nm). Since the intensity (Sm) of the radiation source 3 for measurement is known, the shielding performance (Sd) per 1 m of concrete can be considered to be slightly permeated in daily nuclear power plant operation conditions by removing the initial value from the measured value. Excluding the influence of radiation, it can be calculated by equation (1).
[0027]
[Expression 1]
Figure 0003831812
Here, the number of measurement points is four. However, in order to increase the reliability of the measurement result, it is clear that it is desirable to measure at eight points rotated by 45 degrees and at more points.
[0028]
Further, as shown in FIG. 3, it is known that the attenuation rate of gamma rays is related to the density of concrete, and the attenuation rate of neutron rays is related to the moisture content in the concrete. Therefore, measure the density and moisture content of the concrete structure according to Equations 2 and 3 using the right-hand side of the right side of Equation 1, that is, the ratio of the radiation intensity on the concrete structure surface to the intensity of the radiation source for measurement. Is possible.
[0029]
[Expression 2]
Figure 0003831812
[0030]
[Equation 3]
Figure 0003831812
【The invention's effect】
As described above, according to the present invention, the radiation shielding performance can be measured with a slight degree of damage that can reduce the problem of the influence on the damaged structure. In addition, since the measurement results are calculated by installing measurement radiation sources at different depths, it is possible to measure the distribution of shielding performance inside the concrete structure, and it is possible to continuously measure the same location in the concrete structure. As a result, it is possible to quantitatively evaluate the radiation shielding performance of a concrete structure.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of the monitoring method of the present invention.
FIG. 2 is an explanatory diagram of a measuring point procedure according to the present invention.
FIG. 3 is a relationship diagram of density and moisture content and radiation transmission rate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Concrete structure 2 Buried hole 3 Radiation source 4 Buried tube 5 Positioning jig 6 Detector tube 7 Shielding material cover 8 Amplifying device 9 Arithmetic unit

Claims (2)

硬化したコンクリート構造体の安全代部に異なる深さの埋設孔を削孔し、当該埋設孔に線源強度が既知の放射線源を設置すると共に、埋設孔内を放射線遮へい能力の高い材料をもって閉塞し、該放射線源から放出されたガンマ線、中性子線をコンクリート構造体表面の該埋設孔より等距離の複数箇所に設置の壁外部雰囲気から遮断する遮へい材カバーで保護のガンマ線、中性子線の検出管により検出し、透過した当該放射線の減衰割合からコンクリート構造体の放射線遮へい性能をモニタリングするとしたことを特徴とする硬化後の放射線遮へい用コンクリート構造体の放射線遮へい性能モニタリング法。Drill a buried hole of different depth in the safety margin of the hardened concrete structure, install a radiation source with a known radiation source strength in the buried hole, and close the buried hole with a material with high radiation shielding ability Protecting gamma rays and neutron rays with a shielding cover that shields the gamma rays and neutron rays emitted from the radiation source from the atmosphere outside the wall installed at a plurality of locations equidistant from the buried hole on the surface of the concrete structure. A radiation shielding performance monitoring method for a concrete structure for radiation shielding after curing, characterized in that the radiation shielding performance of the concrete structure is monitored from the attenuation rate of the radiation detected and transmitted by the method. 線源の強度が既知の放射線源と、コンクリート構造体の所定の深さの埋設孔に当該線源を設置するためと共に検出管を該埋設孔から等距離に設置するための基準ピンとしての放射線遮へい能力の高い材料の埋設管と、コンクリート構造体表面におけるガンマ線、中性子線を測定する壁外部雰囲気から遮へいする遮へいカバーで保護のガンマ線、中性子線検出管と、当該検出管で検出した微弱電流を増幅する増幅装置と、放射線の減衰割合を演算する演算装置と、該埋設管と該検出管を一定位置関係に固定する位置決め治具とからなる硬化後の放射線遮へい用コンクリート構造体の放射線遮へい性能モニタリング装置。Radiation as a reference pin for installing the radiation source in a buried hole of a predetermined depth in a concrete structure and installing the detection tube at an equal distance from the buried hole with a radiation source having a known intensity of the radiation source A gamma ray, a neutron detector tube, and a weak current detected by the detector tube are protected by a buried tube made of a material with high shielding ability, a gamma ray on the concrete structure surface, and a shielding cover that shields from the atmosphere outside the wall that measures the neutron beam. Radiation shielding performance of a concrete structure for radiation shielding after curing comprising an amplifying device for amplifying, a computing device for calculating a radiation attenuation ratio, and a positioning jig for fixing the buried tube and the detection tube in a fixed positional relationship Monitoring device.
JP17918799A 1999-06-25 1999-06-25 Radiation shielding performance monitoring method and equipment of concrete structure for radiation shielding after curing Expired - Fee Related JP3831812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17918799A JP3831812B2 (en) 1999-06-25 1999-06-25 Radiation shielding performance monitoring method and equipment of concrete structure for radiation shielding after curing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17918799A JP3831812B2 (en) 1999-06-25 1999-06-25 Radiation shielding performance monitoring method and equipment of concrete structure for radiation shielding after curing

Publications (2)

Publication Number Publication Date
JP2001004747A JP2001004747A (en) 2001-01-12
JP3831812B2 true JP3831812B2 (en) 2006-10-11

Family

ID=16061470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17918799A Expired - Fee Related JP3831812B2 (en) 1999-06-25 1999-06-25 Radiation shielding performance monitoring method and equipment of concrete structure for radiation shielding after curing

Country Status (1)

Country Link
JP (1) JP3831812B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1719812B1 (en) * 2004-02-09 2018-04-04 NTN Corporation Grease
JP5751602B1 (en) * 2014-07-09 2015-07-22 サンレイズ工業株式会社 Radiation leakage inspection method and inspection system
JP6443876B2 (en) * 2014-10-29 2018-12-26 鹿島建設株式会社 Radioactivity concentration measuring device
JP7374577B2 (en) * 2016-08-15 2023-11-07 株式会社大林組 Concrete measurement method and concrete evaluation method
CN108801183B (en) * 2018-03-27 2019-10-29 深圳市中核共创科技有限公司 A kind of concrete void detection system
JP7108530B2 (en) * 2018-12-26 2022-07-28 三菱造船株式会社 Shield inspection method
CN112557335B (en) * 2020-11-30 2024-02-02 四川中核艾瑞特工程检测有限公司 Method for detecting effective shielding element of anti-radiation concrete
CN116931043A (en) * 2023-07-26 2023-10-24 上海建工集团股份有限公司 An environmental concrete gamma ray shielding ability measurement device and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235799A (en) * 1985-04-12 1986-10-21 株式会社東芝 radiation shield
JPS62124494A (en) * 1985-11-26 1987-06-05 清水建設株式会社 Radiation shielding concrete wall inspection equipment
JPS6391598A (en) * 1986-10-06 1988-04-22 サノヤ産業株式会社 Material for shielding radiation
JPS6488288A (en) * 1987-09-30 1989-04-03 Nippon Atomic Ind Group Co Analyzing apparatus of activated reinforced concrete
JPH01147399A (en) * 1987-12-02 1989-06-09 Kuraray Co Ltd Fiber reinforced neutron shielding mortar concrete

Also Published As

Publication number Publication date
JP2001004747A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
JP4576368B2 (en) Neutron moderator, neutron irradiation method, and hazardous substance detection apparatus
JP5797265B2 (en) Neutron activation analysis to measure neutron flux using a standard sample vessel
JP3831812B2 (en) Radiation shielding performance monitoring method and equipment of concrete structure for radiation shielding after curing
US4243886A (en) Apparatus and method for the measurement of neutron moderating or absorbing properties of objects
JP2008139094A (en) Radioactivity measurement method and apparatus
KR101786949B1 (en) Method for deriving depth of buried radiation source using in-suit measurement technology, and method for deriving radioactivity of buried radiation source using the same
CA2303342A1 (en) Method for measurement of blast furnace liner thickness
Dąbrowski et al. Application of atmospheric dispersion modelling in finding optimal locations of early warning stations around a nuclear power plant
US3932758A (en) Method and apparatus for determining the dose value of neutrons
JPH08220029A (en) Nondestructive inspection device and inspection method for radioactive pollutants
JPH10123070A (en) Hydrogen content analyzer
Shaan-Li et al. Intensity Profile Measurement for Carbon Steel Pipe using Gamma-Ray Tomography
US2967937A (en) Method and apparatus for measuring thickness
US4510117A (en) Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond
Yokoyama et al. Development of clearance verification equipment for uranium-bearing waste
JP5329748B2 (en) Method and apparatus for measuring subcriticality of spent fuel
US20230081538A1 (en) Apparatus for detecting nuclear reactor coolant leaks and method of detecting nuclear reactor coolant leaks using the same
CN112764078B (en) Nuclear material measuring device
RU2694817C1 (en) Method of monitoring integrity of safety barriers during decommissioning of uranium-graphite nuclear reactor
CA1057425A (en) Inspection of nuclear fuel rods
RU2822538C1 (en) System for detecting nuclear fuel fragments in graphite units of nuclear reactor and determining their parameters
RU2200988C2 (en) Method for metering neutron flux in power reactor
RU2798506C1 (en) Method for detecting nuclear fuel fragments and determining their parameters in nuclear reactor graphite blocks
JP2010048752A (en) Radiation monitor
JPH0545467A (en) Radioactive contamination measuring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060630

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees