JP3835488B2 - Method for removing organic impurities in aqueous hydrogen peroxide solution - Google Patents
Method for removing organic impurities in aqueous hydrogen peroxide solution Download PDFInfo
- Publication number
- JP3835488B2 JP3835488B2 JP24175695A JP24175695A JP3835488B2 JP 3835488 B2 JP3835488 B2 JP 3835488B2 JP 24175695 A JP24175695 A JP 24175695A JP 24175695 A JP24175695 A JP 24175695A JP 3835488 B2 JP3835488 B2 JP 3835488B2
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen peroxide
- solid phase
- solution
- aqueous
- peroxide solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は過酸化水素水溶液中に存在する有機不純物の除去方法に関する。さらに詳しくは、少なくとも45重量%濃度の過酸化水素水溶液を特定の温度および特定の固相生成速度に冷却して固相を析出させ得られた固相を融解する方法である。本発明の方法により、有機不純物の量が3ppm以下である高純度過酸化水素水溶液を得ることができる。
【0002】
【従来の技術】
現在、過酸化水素水溶液の工業的製造法は、主としてアントラキノンの自動酸化法によっている(以下、アントラキノン法と記すことがある)。この方法は一般に、2−アルキルアントラキノンを有機溶媒中で水素化触媒の存在下で水素化して、対応するアントラヒドロキノンとし、触媒を濾別後、酸素または空気により酸化してアントラヒドロキノンを2−アルキルアントラキノンに再生するとともに過酸化水素を生成させ、生成した過酸化水素を水で抽出することによって粗過酸化水素水溶液を得る。得られた粗過酸化水素水溶液は減圧蒸留、精留することによって精製および濃縮される。その後、場合によっては水で所定濃度に希釈され、一般には約20〜70重量%の過酸化水素を含む水溶液とされる。
【0003】
このような方法で製造された過酸化水素水溶液は、通常不純物の含有量が少なく、漂白、化学研磨、反応試剤、汚水処理等、非常に多くの分野で使用することができる。しかしながら、アントラキノン法で製造された過酸化水素水溶液には、反応媒体である2−アルキルアントラキノン、それを溶解している有機溶媒もしくはそれらの変質物、および抽出水や希釈水に含まれている有機物質が混入し、全有機炭素量として数10〜数百ppm程度の有機不純物が含まれている。
そのため、電子材料の分野などの一部の分野においては過酸化水素水溶液中に含まれる有機物質が問題となり、そのままでは使用できない場合があり、過酸化水素水溶液中の有機物質を除去することが必要である。
【0004】
過酸化水素水溶液中の有機物質を除去する方法としては、一般に吸着剤を使用して吸着除去する方法が知られている。例えば、特開昭63−156004号公報には過酸化水素水溶液をハロゲン含有多孔性樹脂と接触させることによって、有機不純物を除去することが記載されている。また、米国特許第5268160号明細書には、過酸化水素水溶液をスチレン重合体のような疎水性の吸着樹脂と接触させることによって、有機不純物を除去する方法が記載されている。
【0005】
しかしながら、吸着剤を使用した有機不純物の除去法は、過酸化水素水溶液中の有機不純物濃度を全有機炭素量として3ppm程度まで低下させることがほぼ限界であり、それ以下まで低減することは困難である。また、吸着剤は使用に伴って劣化して有機物の除去効果が低下するので、そのような場合は再生処理を施して使用するか、もしくは新しいものと交換しなくてはならない。
【0006】
その他の方法としては、特公昭35−15221号公報に、少なくとも61.2重量%の過酸化水素を含む高濃度過酸化水素水溶液を−0.5〜−56.1℃に冷却して結晶を析出させ、その結晶を不純物含量の少ない過酸化水素水溶液の洗浄液で洗浄して精製する方法が記載されている。
【0007】
【発明が解決しようとする課題】
本発明は過酸化水素水溶液中の有機不純物を高い除去効率で除去する方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、過酸化水素水溶液を精製するに際し、原料過酸化水素水溶液を特定の条件下で固相の析出操作を行うことにより、従来から知られている吸着剤を用いた方法よりも有機物含量の少ない過酸化水素水溶液を得ることができることを見い出した。
【0009】
すなわち、本発明は、通常得られる過酸化水素水溶液をそのまま、または希釈、あるいは濃縮して調製された少なくとも45重量%の過酸化水素を含有する過酸化水素水溶液を、−0.5℃〜−56.1℃の温度で冷却して固相を析出させ、得られた固相を融解することによる過酸化水素水溶液中の有機不純物の除去方法である。
【0010】
【発明の実施態様】
本発明において、好適な実施態様は、上記温度範囲で固相の生成速度を18〜150g/リットル−原料過酸化水素水溶液・hrとすることにより、有機不純物が3ppm以下まで除去された高純度の過酸化水素水溶液を得ることができるものである。
【0011】
本発明の方法において、原料過酸化水素水溶液は少なくとも45重量%の過酸化水素を含有する水溶液が用いるられる。特に好ましくは45〜61重量%の過酸化水素を含有する水溶液であり、このような濃度の過酸化水素を原料として使用することにより、析出する固相は、過酸化水素の水和物として得られ、取り扱い上安全であり好ましい。原料過酸化水素水溶液として45重量%よりも濃度の低い過酸化水素水溶液を使用すると、水が固相として析出するので、過酸化水素水溶液の精製には効果がない。
【0012】
一方、61重量%を超える濃度の高濃度過酸化水素水溶液を用いると過酸化水素が固相として析出する。この場合でも過酸化水素水溶液の精製には有効ではあるが、析出する固相は100重量%の過酸化水素であるため安全性の面から取り扱いが困難となり好ましくない。
【0013】
本発明において原料として使用する過酸化水素水溶液は、アントラキノン法により製造されたものが好適であるが、アントラキノン法による過酸化水素水溶液に限らず、その他の方法で製造されたものでもよい。
【0014】
本発明の方法においては、必要により冷却、固相の回収、固相の融解操作を2回以上繰り返しても構わない。
【0015】
本発明の方法を実施するに当たり、固相を析出する際に、析出する固相と同じ過酸化水素濃度を有する固相を種結晶として添加することが好ましい。種結晶の添加量はごく少量でよく、1リットルの原料過酸化水素水溶液に対して0.5〜1g程度でよい。種結晶を添加する際の温度は、原料過酸化水素水溶液濃度における凝固点温度よりも低い温度で、かつその温度差は小さいことが好ましい。有機物をより効果的に除去するためには、その温度差を5℃以下とすることがより好ましい。
【0016】
本発明の方法を実施するに際して、固相を析出させる際の固相の生成速度は、小さくすることが好ましい。固相の生成速度を小さくするほど、固相に含まれる有機不純物の量が少なくなり、精製効果は高くなる。しかし、固相の生成速度がある一定量以下になると有機不純物の除去効果はほぼ一定となり精製効果自体は変わらない。一方、固相の生成速度をある一定量以下に小さくすると、有機不純物以外の不純物、例えばFe,Crなどの金属不純物などが固相に含まれ易くなり、その濃度が増加する傾向が見られる。また、製造設備の容量が同じである場合、固相の生成速度を小さくすると単位時間当たりの生産量が少なくなり、工業的観点から好ましくない。
他方、固相の生成速度が大きくなると単位時間当たりの生産量は上がるが、有機不純物の除去効率が低下し好ましくない。
これらのことから固相の生成速度は18〜150g/リットル−原料過酸化水素水溶液・hrとすることが好ましく、より好ましくは60〜150g/リットル−原料過酸化水素水溶液・hrである。
【0017】
生成した固相は液相と分離される。生成した固相を液相から分離する方法は、いかなる方法を用いても構わないが、液相には不純物が濃縮されているので、これが固相に付着するような方法は好ましくない。一般的には遠心分離機による分離方法が好適である。
【0018】
また、生成した固相を液相から分離して得られる固相を、高純度の過酸化水素水溶液で洗浄することにより、固相に付着した母液をできるだけ完全に除去することが好ましい。
【0019】
【実施例】
以下に本発明の実施例を示すが、本発明はこれらの実施例により限定されるものではない。なお、有機不純物の測定は全有機体炭素計TOC−5000((株)島津製作所製)を用いて行った。
【0020】
実施例1
内容積1リットルのガラス製容器に、55重量%の過酸化水素を含有する過酸化水素水溶液を原料として入れ、攪拌しながら水溶液を−53℃まで冷却した後、過酸化水素水和物の結晶を種結晶として0.5g添加し、過酸化水素水和物結晶を一部析出させた後、固相の生成速度が150g/リットル−原料過酸化水素水溶液・hrになるように冷却温度を調整し、水溶液の温度が−54.3℃に達するまでこの操作を継続した。次いで、遠心脱水器により生成した固相と液相とを分離して固相を回収し、融解して濃度48.7重量%の過酸化水素水溶液を得た。
この過酸化水素水溶液中の全有機炭素量を測定した結果、下記の通りであった。
【0021】
実施例2
固相の生成速度を18g/リットル−原料過酸化水素水溶液・hrとした他は実施例1と同様の操作で精製を行った。その結果を以下に示す。
【0022】
実施例3
固相の生成速度を60g/リットル−原料過酸化水素水溶液・hrとした他は実施例1と同様の操作で精製を行った。その結果を以下に示す。
【0023】
実施例4
固相の生成速度を40g/リットル−原料過酸化水素水溶液・hrとした他は実施例1と同様の操作で精製を行った。その結果を以下に示す。
【0024】
実施例5
固相の生成速度を100g/リットル−原料過酸化水素水溶液・hrとした他は実施例1と同様の操作で精製を行った。その結果を以下に示す。
【0025】
実施例6
原料過酸化水素水溶液として57重量%の過酸化水素を含有する過酸化水素水溶液を用いて、−54℃で種結晶を添加し、−55.8℃まで冷却した他は実施例3と同様の操作で精製を行った。その結果を以下に示す。
【0026】
実施例7
実施例1で使用した原料過酸化水素水溶液を−55℃まで冷却した後、過酸化水素水和物の結晶を種結晶として添加した他は実施例1と同様の操作で精製を行った。その結果を以下に示す。
【0029】
比較例1
固相の生成速度を300g/リットル−原料過酸化水素水溶液・hrとした他は実施例1と同様の操作で精製を行った。その結果を以下に示す。
【0030】
比較例2
固相の生成速度を200g/リットル−原料過酸化水素水溶液・hrとした他は実施例1と同様の操作で精製を行った。その結果を以下に示す。
【0031】
比較例3
原料過酸化水素水溶液を−59℃まで冷却した後、過酸化水素水和物の結晶を種結晶として添加した他は実施例1と同様に操作により精製した。その結果を下記に記す。
【0032】
比較例4
60重量%の濃度を有する過酸化水素水溶液を、内径10mmφのフッ素樹脂製カラム管に吸着剤を10ml充填した吸着樹脂充填カラムに80ml/hrで吸着樹脂充填カラムに通液し吸着剤を用いて有機物を吸着除去を行った。
ここに使用した吸着剤はブロム化スチレン−ジビニルベンゼン共重合体の多孔製樹脂、商品名セパビーズSP207(三菱化学(株)製)を使用した。24時間通液し、その間適宜通液後の過酸化水素水溶液に含まれる全有機炭素量を測定した。精製結果を以下に示す。
【0033】
【0034】
比較例5
使用する吸着剤として芳香族径多孔製樹脂である商品名セパビーズSP825(三菱化学(株)製)を使用した他は比較例4と同様に操作し過酸化水素水溶液を精製した。精製結果を以下に示す。
【0035】
【0036】
【発明の効果】
本発明の方法によると、過酸化水素水溶液中の有機不純物を高い除去効率で、かつ安全に除去することができる工業的に意義ある有利な方法である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing organic impurities present in an aqueous hydrogen peroxide solution. More specifically, it is a method of melting a solid phase obtained by precipitating a solid phase by cooling an aqueous hydrogen peroxide solution having a concentration of at least 45% by weight to a specific temperature and a specific solid phase generation rate. By the method of the present invention, a high-purity hydrogen peroxide aqueous solution having an organic impurity amount of 3 ppm or less can be obtained.
[0002]
[Prior art]
At present, the industrial production method of aqueous hydrogen peroxide is mainly based on an anthraquinone auto-oxidation method (hereinafter sometimes referred to as anthraquinone method). This method generally involves hydrogenating a 2-alkylanthraquinone in an organic solvent in the presence of a hydrogenation catalyst to the corresponding anthrahydroquinone, filtering the catalyst and oxidizing with oxygen or air to convert the anthrahydroquinone to the 2-alkyl By regenerating to anthraquinone and generating hydrogen peroxide, the generated hydrogen peroxide is extracted with water to obtain a crude hydrogen peroxide aqueous solution. The obtained crude hydrogen peroxide aqueous solution is purified and concentrated by distillation under reduced pressure and rectification. Thereafter, it is diluted with water to a predetermined concentration in some cases, and is generally an aqueous solution containing about 20 to 70% by weight of hydrogen peroxide.
[0003]
The aqueous hydrogen peroxide solution produced by such a method usually has a low impurity content, and can be used in many fields such as bleaching, chemical polishing, reaction reagent, and sewage treatment. However, the hydrogen peroxide aqueous solution produced by the anthraquinone method includes 2-alkylanthraquinone as a reaction medium, an organic solvent in which it is dissolved or a modified product thereof, and an organic contained in extracted water or diluted water. Substances are mixed and organic impurities of about several tens to several hundred ppm are contained as the total amount of organic carbon.
Therefore, in some fields such as the field of electronic materials, the organic substances contained in the hydrogen peroxide aqueous solution become a problem and may not be used as it is, and it is necessary to remove the organic substances in the hydrogen peroxide aqueous solution. It is.
[0004]
As a method for removing organic substances in an aqueous hydrogen peroxide solution, a method for removing by adsorption using an adsorbent is generally known. For example, Japanese Patent Application Laid-Open No. 63-156004 describes removing organic impurities by bringing an aqueous hydrogen peroxide solution into contact with a halogen-containing porous resin. U.S. Pat. No. 5,268,160 describes a method for removing organic impurities by bringing an aqueous hydrogen peroxide solution into contact with a hydrophobic adsorption resin such as a styrene polymer.
[0005]
However, the organic impurity removal method using an adsorbent is almost limitative to reduce the concentration of organic impurities in the aqueous hydrogen peroxide solution to about 3 ppm as the total amount of organic carbon, and it is difficult to reduce it below that level. is there. In addition, since the adsorbent deteriorates with use and the effect of removing organic substances decreases, in such a case, it must be used after being regenerated or replaced with a new one.
[0006]
As another method, Japanese Patent Publication No. 35-15221 discloses a high-concentration hydrogen peroxide aqueous solution containing at least 61.2% by weight of hydrogen peroxide to −0.5 to −56.1 ° C. A method is described in which it is precipitated and the crystal is purified by washing with a washing solution of a hydrogen peroxide solution having a low impurity content.
[0007]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method for removing organic impurities in an aqueous hydrogen peroxide solution with high removal efficiency.
[0008]
[Means for Solving the Problems]
In the present invention, when purifying an aqueous hydrogen peroxide solution, the raw material aqueous hydrogen peroxide solution is subjected to a solid phase precipitation operation under specific conditions, so that the organic matter content can be improved as compared with a conventionally known method using an adsorbent. It has been found that an aqueous hydrogen peroxide solution with a small amount can be obtained.
[0009]
That is, the present invention provides a hydrogen peroxide aqueous solution containing at least 45% by weight of hydrogen peroxide prepared by diluting or concentrating a normally obtained hydrogen peroxide aqueous solution as it is at -0.5 ° C to- This is a method for removing organic impurities in an aqueous hydrogen peroxide solution by cooling at a temperature of 56.1 ° C. to precipitate a solid phase and melting the obtained solid phase.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a preferred embodiment has a high purity in which organic impurities are removed to 3 ppm or less by setting the solid phase generation rate to 18 to 150 g / liter-raw aqueous hydrogen peroxide solution · hr in the above temperature range. An aqueous hydrogen peroxide solution can be obtained.
[0011]
In the method of the present invention, an aqueous solution containing at least 45% by weight of hydrogen peroxide is used as the raw hydrogen peroxide solution. Particularly preferred is an aqueous solution containing 45 to 61% by weight of hydrogen peroxide. By using hydrogen peroxide having such a concentration as a raw material, the solid phase to be precipitated is obtained as a hydrate of hydrogen peroxide. It is safe and preferable in handling. When a hydrogen peroxide aqueous solution having a concentration lower than 45% by weight is used as the raw material hydrogen peroxide aqueous solution, water precipitates as a solid phase, which is ineffective for purification of the hydrogen peroxide aqueous solution.
[0012]
On the other hand, when a high concentration aqueous hydrogen peroxide solution having a concentration exceeding 61% by weight is used, hydrogen peroxide is precipitated as a solid phase. Even in this case, it is effective for purification of the aqueous hydrogen peroxide solution, but since the precipitated solid phase is 100% by weight of hydrogen peroxide, it is not preferable because it is difficult to handle from the viewpoint of safety.
[0013]
The aqueous hydrogen peroxide solution used as a raw material in the present invention is preferably produced by an anthraquinone method, but is not limited to an aqueous hydrogen peroxide solution by an anthraquinone method, and may be produced by other methods.
[0014]
In the method of the present invention, cooling, solid phase recovery, and solid phase melting operations may be repeated twice or more as necessary.
[0015]
In carrying out the method of the present invention, when depositing the solid phase, it is preferable to add a solid phase having the same hydrogen peroxide concentration as the precipitated solid phase as a seed crystal. The addition amount of the seed crystal may be very small, and may be about 0.5 to 1 g with respect to 1 liter of the raw material aqueous hydrogen peroxide solution. The temperature at which the seed crystal is added is preferably lower than the freezing point temperature in the raw hydrogen peroxide solution concentration, and the temperature difference is preferably small. In order to remove organic substances more effectively, the temperature difference is more preferably 5 ° C. or less.
[0016]
In carrying out the method of the present invention, it is preferable to reduce the generation rate of the solid phase when the solid phase is precipitated. The smaller the generation rate of the solid phase, the smaller the amount of organic impurities contained in the solid phase and the higher the purification effect. However, when the solid phase generation rate is below a certain amount, the removal effect of organic impurities is almost constant and the purification effect itself does not change. On the other hand, if the solid phase generation rate is reduced below a certain amount, impurities other than organic impurities, such as metal impurities such as Fe and Cr, tend to be included in the solid phase, and the concentration tends to increase. Moreover, when the capacity of the manufacturing equipment is the same, if the production rate of the solid phase is decreased, the production amount per unit time is decreased, which is not preferable from an industrial viewpoint.
On the other hand, when the production rate of the solid phase increases, the production amount per unit time increases, but the removal efficiency of organic impurities decreases, which is not preferable.
From these facts, the solid phase production rate is preferably 18 to 150 g / liter-raw material hydrogen peroxide aqueous solution · hr, more preferably 60 to 150 g / liter—raw material hydrogen peroxide aqueous solution · hr.
[0017]
The produced solid phase is separated from the liquid phase. Any method may be used for separating the produced solid phase from the liquid phase. However, since impurities are concentrated in the liquid phase, a method in which the solid phase adheres to the solid phase is not preferable. In general, a separation method using a centrifuge is preferred.
[0018]
In addition, it is preferable to remove the mother liquid adhering to the solid phase as completely as possible by washing the solid phase obtained by separating the generated solid phase from the liquid phase with a high-purity aqueous hydrogen peroxide solution.
[0019]
【Example】
Examples of the present invention are shown below, but the present invention is not limited to these examples. The organic impurities were measured using a total organic carbon meter TOC-5000 (manufactured by Shimadzu Corporation).
[0020]
Example 1
An aqueous hydrogen peroxide solution containing 55% by weight of hydrogen peroxide is placed as a raw material in a glass container having an internal volume of 1 liter, and the aqueous solution is cooled to −53 ° C. with stirring. After adding 0.5 g of seed crystals as a seed crystal and precipitating part of the hydrogen peroxide hydrate crystals, the cooling temperature is adjusted so that the solid phase formation rate is 150 g / liter-raw hydrogen peroxide aqueous solution · hr. This operation was continued until the temperature of the aqueous solution reached -54.3 ° C. Subsequently, the solid phase and the liquid phase generated by the centrifugal dehydrator were separated, and the solid phase was recovered and melted to obtain a hydrogen peroxide aqueous solution having a concentration of 48.7% by weight.
As a result of measuring the total amount of organic carbon in the hydrogen peroxide solution, it was as follows.
[0021]
Example 2
Purification was carried out in the same manner as in Example 1 except that the solid phase production rate was 18 g / liter-raw material hydrogen peroxide aqueous solution · hr. The results are shown below.
[0022]
Example 3
Purification was carried out in the same manner as in Example 1 except that the solid phase generation rate was 60 g / liter-raw material hydrogen peroxide aqueous solution · hr. The results are shown below.
[0023]
Example 4
Purification was carried out in the same manner as in Example 1 except that the solid phase generation rate was 40 g / liter-raw material hydrogen peroxide aqueous solution · hr. The results are shown below.
[0024]
Example 5
Purification was performed in the same manner as in Example 1 except that the solid phase generation rate was 100 g / liter-raw raw hydrogen peroxide aqueous solution · hr. The results are shown below.
[0025]
Example 6
Example 3 The same as Example 3 except that a hydrogen peroxide aqueous solution containing 57% by weight of hydrogen peroxide was used as a raw material hydrogen peroxide aqueous solution, a seed crystal was added at −54 ° C., and the mixture was cooled to −55.8 ° C. Purification was performed by operation. The results are shown below.
[0026]
Example 7
Purification was performed in the same manner as in Example 1 except that the aqueous hydrogen peroxide solution used in Example 1 was cooled to −55 ° C., and then hydrogen peroxide hydrate crystals were added as seed crystals. The results are shown below.
[0029]
Comparative Example 1
Purification was carried out in the same manner as in Example 1 except that the solid phase production rate was 300 g / liter-raw aqueous hydrogen peroxide solution · hr. The results are shown below.
[0030]
Comparative Example 2
Purification was carried out in the same manner as in Example 1 except that the solid phase generation rate was 200 g / liter-raw material hydrogen peroxide aqueous solution · hr. The results are shown below.
[0031]
Comparative Example 3
The raw material aqueous hydrogen peroxide solution was cooled to −59 ° C., and purified by the same operation as in Example 1 except that a crystal of hydrogen peroxide hydrate was added as a seed crystal. The results are described below.
[0032]
Comparative Example 4
An aqueous hydrogen peroxide solution having a concentration of 60% by weight was passed through an adsorption resin packed column at 80 ml / hr through an adsorption resin packed column in which 10 mL of a fluororesin column tube having an inner diameter of 10 mmφ was packed, and the adsorbent was used. The organic matter was removed by adsorption.
The adsorbent used here was a porous resin of brominated styrene-divinylbenzene copolymer, and trade name Sepa beads SP207 (manufactured by Mitsubishi Chemical Corporation). The solution was passed through for 24 hours, and during that time, the total amount of organic carbon contained in the hydrogen peroxide solution after passing through was measured. The purification results are shown below.
[0033]
[0034]
Comparative Example 5
An aqueous hydrogen peroxide solution was purified in the same manner as in Comparative Example 4 except that the trade name Sepabead SP825 (manufactured by Mitsubishi Chemical Corporation), which is an aromatic porous resin, was used as the adsorbent. The purification results are shown below.
[0035]
[0036]
【The invention's effect】
According to the method of the present invention, it is an industrially significant and advantageous method that can remove organic impurities in an aqueous hydrogen peroxide solution with high removal efficiency and safely.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24175695A JP3835488B2 (en) | 1995-09-20 | 1995-09-20 | Method for removing organic impurities in aqueous hydrogen peroxide solution |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP24175695A JP3835488B2 (en) | 1995-09-20 | 1995-09-20 | Method for removing organic impurities in aqueous hydrogen peroxide solution |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPH0975605A JPH0975605A (en) | 1997-03-25 |
| JP3835488B2 true JP3835488B2 (en) | 2006-10-18 |
Family
ID=17079070
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP24175695A Expired - Fee Related JP3835488B2 (en) | 1995-09-20 | 1995-09-20 | Method for removing organic impurities in aqueous hydrogen peroxide solution |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3835488B2 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19817794A1 (en) * | 1998-04-21 | 1999-10-28 | Basf Ag | High purity aqueous hydrogen peroxide solution useful for electronic component substrate cleaning |
| EP1213262A1 (en) * | 2000-12-02 | 2002-06-12 | Degussa AG | Process for preparing high concentrated hydrogen peroxide and at least 99,9% hydrogen peroxide obtained by this process |
-
1995
- 1995-09-20 JP JP24175695A patent/JP3835488B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0975605A (en) | 1997-03-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4228307A (en) | Removal of bromine from acetic acid | |
| JP2003514666A (en) | Method and apparatus for producing polycarbonate by recycling brine | |
| KR100371759B1 (en) | Process for producing (meth)acrylic acid | |
| US3039865A (en) | Recovery of mercury from aqueous solutions | |
| US8987511B2 (en) | Process for producing adipic acid crystals | |
| US5766565A (en) | Purification of hydrochloric acid | |
| JP3874036B2 (en) | Method for producing purified aqueous hydrogen peroxide solution | |
| JP3835488B2 (en) | Method for removing organic impurities in aqueous hydrogen peroxide solution | |
| US4824609A (en) | Process for purifying a working compound | |
| JPH09278417A (en) | Method for producing high-purity hydrogen peroxide solution | |
| JPH09278416A (en) | Method for producing high-purity hydrogen peroxide solution | |
| JPS60106532A (en) | Regeneration of adsorbent for boron trichloride | |
| JP5102491B2 (en) | Caprolactam purification method | |
| JP4013646B2 (en) | Anion exchange resin, method for producing the same, and method for producing purified hydrogen peroxide water using the same | |
| JPH1135305A (en) | Method for producing purified hydrogen peroxide aqueous solution | |
| JP2833677B2 (en) | Method for deactivating catalyst for producing cyclododecatriene-1,5,9 | |
| US4227971A (en) | Bromine removal from acetic acid | |
| CN118973953B (en) | Method for purifying hydrogen peroxide | |
| US3523009A (en) | Recovery of aluminum chloride from spent aluminum chloride alkylation catalyst sludge | |
| JPH1045680A (en) | Recovery of catalytic system from reactoinal solution containing diaryl carbonate by suspension crystallization | |
| US4256668A (en) | Removing aqueous ammonium sulfate from oxime product | |
| TW201107036A (en) | Method for regenerating Co-Mn alloy from mother liquor of purified terephthalic acid and the system thereof | |
| JP4065714B2 (en) | Method for purifying 1,2-dichloroethane | |
| JPH08245204A (en) | Purification method of hydrogen peroxide solution | |
| JPH0469357A (en) | Method for purifying benzoic acid |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060308 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060427 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060705 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060718 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100804 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110804 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120804 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130804 Year of fee payment: 7 |
|
| LAPS | Cancellation because of no payment of annual fees |