[go: up one dir, main page]

JP3838008B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP3838008B2
JP3838008B2 JP2000269807A JP2000269807A JP3838008B2 JP 3838008 B2 JP3838008 B2 JP 3838008B2 JP 2000269807 A JP2000269807 A JP 2000269807A JP 2000269807 A JP2000269807 A JP 2000269807A JP 3838008 B2 JP3838008 B2 JP 3838008B2
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
temperature
radiator
decompressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000269807A
Other languages
Japanese (ja)
Other versions
JP2002081766A (en
Inventor
典穂 岡座
正三 船倉
文俊 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000269807A priority Critical patent/JP3838008B2/en
Publication of JP2002081766A publication Critical patent/JP2002081766A/en
Application granted granted Critical
Publication of JP3838008B2 publication Critical patent/JP3838008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/063Feed forward expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/191Pressures near an expansion valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷媒として二酸化炭素(CO2)やエタン等の冷凍サイクルの放熱側で超臨界状態となりうる冷媒を用いた冷凍サイクル装置に関するものである。
【0002】
【従来の技術】
従来、電気(冷凍)冷蔵庫、空調機、カーエアコン、冷蔵または冷凍倉庫、ショーケース等には、圧縮機、放熱器、減圧器、吸熱器等を接続してなる冷凍サイクル装置が応用され、封入される冷媒としてはフッ素原子を含有する炭化水素類(フロン類)が用いられてきた。
【0003】
しかし、フロン類は、オゾン層を破壊する性質を有していたり、大気中での寿命が長いために温室効果が大きいので地球温暖化に影響を与えたりと、必ずしも満足な冷媒とはいえない。
【0004】
そこでフロン類の代わりに、オゾン破壊係数がゼロでありかつ地球温暖化係数もフロン類に比べれば格段に小さい、二酸化炭素(CO2)やエタンなどを冷媒として用いる冷凍サイクル装置の可能性が検討されつつある。
【0005】
CO2を使用した冷凍サイクル装置としては、例えば、特公平7−18602号公報に提案されている。
【0006】
この冷凍サイクル装置の動作は、原理的には、フロン類を使用した従来の蒸気圧縮式の冷凍サイクル装置の動作と同じであり、図6にCO2を冷媒として用いる冷凍サイクルのモリエル線図を示す。すなわち、図中のA−B−C−D−Aで示されるように、圧縮機で気相状態のCO2を圧縮する圧縮行程(A−B)、高温高圧の超臨界状態となったCO2を放熱器(ガスクーラ)にて冷却する冷却行程(B−C)、さらに、減圧器により減圧する減圧行程(C−D)、気液二相状態となったCO2を蒸発させる蒸発行程(D−A)により、蒸発潜熱で空気等の外部流体から熱を奪って外部流体を冷却する。
【0007】
図6において、蒸発行程(D−A)における飽和蒸気領域(気液二相領域)から加熱蒸気領域への移行は、フロン類の場合と同様に行われるが、冷却行程(B−C)は、臨界点CPより高圧側に位置していて、飽和液線及び飽和蒸気線に交差することはない。すなわち、臨界点CPを越える領域(超臨界領域)においては、フロン類の場合のような凝縮行程が存在せず、CO2が液化することなく冷却されるものである。
【0008】
また、放熱器出口側(点C)の状態は、高圧側圧力(圧縮機の吐出側から減圧器の入口側までの圧力)と放熱器出口側の冷媒の温度(以下、放熱器出口側温度)によって決定され、放熱器出口側温度は、放熱器の放熱能力と、放熱器で熱交換する空気や水などの外部流体の温度とによって決定される。そして、この空気や水などの外部流体の温度は制御することができないので、放熱器出口側温度は、実質的に制御することができず、放熱器出口側(C点)の状態は、高圧側圧力を制御することによって制御可能となる。
【0009】
そこで、圧縮過程(A−B)のエンタルピ差ΔLで表される圧縮機の圧縮仕事と、蒸発行程(D−A)のエンタルピ差ΔHで表される冷凍効果により算出される冷凍サイクルの成績係数(COP=ΔH/ΔL)が最大となるように、放熱器出口側温度に基づいて、高圧側圧力を制御する圧力制御手段が特開平9−264622号公報に提案されている。すなわち、特開平9−264622号公報には、放熱器出口側温度(または、減圧器入口側温度)と高圧側圧力とが図6中の実線aような最適制御線上にのるように高圧側圧力を制御することにより、効率の良い運転が可能となることが示されている。
【0010】
一方、特公平7−18602号公報などには、放熱器の冷媒出口側から減圧器の入口側までの冷媒と吸熱器の冷媒出口側から圧縮機の吸入側までの冷媒とで熱交換を行う補助熱交換器を備えた冷凍サイクルも提案されている。
【0011】
このような冷凍サイクルでは、図7のA’−B’−C−C’−D’−A−A’で示されるように放熱器を出て減圧器に向かう比較的高温の冷媒と、吸熱器を出て圧縮機に向かう比較的低温の冷媒とで熱交換が行われるために、すなわち、行程(C−C’)と行程(A−A’)とで熱交換が行われるために、放熱器を出た冷媒がさらに冷却されるため、蒸発過程(D’−A)のエンタルピ差ΔHが行程(D’−D)分だけ増大するために、吸熱能力(冷凍効果)や成績係数を向上させることができる。
【0012】
このような補助熱交換器の熱交換量は、一定ではなく、圧縮機の回転数の変化による冷媒流量の変化や外気温、蒸発温度等により変化する。
【0013】
また、本発明者の一部は、特願平11−39278号として、圧縮機の吐出温度の過上昇を防止するために、補助熱交換器を流れる冷媒流量を調整し、補助熱交換器の熱交換量を可変にする冷凍サイクルを提案している。
【0014】
【発明が解決しようとする課題】
放熱器で超臨界状態となりうる冷媒が封入され、補助熱交換器を有し、放熱器出口側温度、または、減圧器入口側温度のいずれか一方に基づいて選定した高圧側圧力を目標値とし、高圧側圧力を制御する冷凍サイクル装置の評価を行ったところ、以下に述べる課題が生じることが判明した。
【0015】
すなわち、図7は一例として、蒸発温度を0℃、放熱器出口側温度を40℃、吸熱器出口過熱度を0℃として、補助熱交換器の熱交換量(横軸)を変化させた場合の、放熱器出口側温度、または、減圧器入口側温度のいずれか一方に基づいて選定された高圧側圧力の目標値、および、実際にCOPが最大となる高圧側圧力(以下、最適高圧側圧力と呼ぶ。)の変化を示した図である。ただし、縦軸の高圧側圧力は、補助熱交換器の熱交換量が零であるときの高圧側圧力を基準とした差で示している。また、横軸は左端が補助熱交換器の熱交換量が零の場合であり、右側にいくほど熱交換量が増加していることを示している。
【0016】
図7に示すように、補助熱交換器での熱交換量が変化すると、最適高圧側圧力は変化し、放熱器出口側温度のみを検出して、その温度に基づいて選定した高圧側圧力の目標値(図7中の四角プロット)は、実際の最適高圧側圧力(図7中の三角プロット)より高い値となる。
【0017】
これは、放熱器出口側温度は放熱器の放熱能力と、放熱器で熱交換する空気や水などの外部流体の温度とによって決定されるために、補助熱交換器での熱交換量が変化しても放熱器出口側温度は略一定(この場合には40℃)であるために、放熱器出口側温度のみに基づいて選定した高圧側圧力(図7中の四角プロット)は補助熱交換器での熱交換量によらず一定値となるのに対し、実際にCOPが最大となる高圧側圧力(図7中の三角プロット)は、補助熱交換器での熱交換量に応じて、若干、低下していくためである。
【0018】
したがって、放熱器出口側温度のみに基づいて選定した高圧側圧力(図7中の四角プロット)を目標値とし、高圧側圧力を制御すると、実際にCOPが最高となる高圧側圧力(図7中の三角プロット)を目標値とした場合より、冷凍サイクル装置の効率が悪くなる。
【0019】
また、減圧器入口側温度のみを検出して、その温度に基づいて選定した高圧側圧力の目標値(図7中の菱形プロット)は、実際の最適高圧側圧力(図7中の三角プロット)より低い値となる。
【0020】
これは、減圧器入口側温度のみに基づいて選定した高圧側圧力の目標値は、放熱器で熱交換する空気や水などの外部流体の温度が低下して減圧器入口温度が低下した場合でも、外部流体の温度は一定で補助熱交換器の熱交換量が変化して減圧器入口温度が低下した場合でも、どちらの場合でも同じように、高圧側圧力が選定されるために、減圧器入口側温度のみに基づいて選定した高圧側圧力(図7中の菱形プロット)は、補助熱交換器での熱交換量に応じる低下量以上に大幅に低下していくのに対し、実際にCOPが最大となる高圧側圧力(図7中の三角プロット)は、補助熱交換器での熱交換量に応じて、若干、低下していくためである。
【0021】
したがって、減圧器入口側温度のみに基づいて選定した高圧側圧力(図7中の菱形プロット)を目標値とし、高圧側圧力を制御すると、実際にCOPが最高となる高圧側圧力(図7中の三角プロット)を目標値とした場合より、冷凍サイクル装置の効率が悪くなる。
【0022】
以上述べたように、放熱器出口側温度、または、減圧器入口側温度のいずれか一方に基づいて選定した高圧側圧力を目標値とし、高圧側圧力を制御すると、最も効率の良い状態で冷凍サイクル装置を運転できないといった課題が生じる。
【0023】
本発明は、このような放熱側で超臨界状態となりうる冷媒が封入され、補助熱交換器を備えた冷凍サイクル装置における高圧側圧力の制御方法に着目し、効率のよい冷凍サイクル装置を提供することを目的とする。
【0024】
【課題を解決するための手段】
以上のような課題を解決するため、本発明は圧縮機の吐出側から減圧器の入口側までの冷媒圧力を検知する高圧側圧力検知器と、放熱器の冷媒出口側の冷媒温度を検出する放熱器出口側温度検知器と、減圧器の入口側の冷媒温度を検出する減圧器入口側温度検知器とを備え、前記高圧側圧力検知器で検出した圧力が、前記放熱器出口側温度検知器より検知された冷媒温度に基づいてCOPが最大になるように選定された目標圧力より低く、かつ、前記減圧器入口側温度検知器より検知された冷媒温度に基づいてCOPが最大になるように選定された目標圧力より高くなるように、前記減圧器を制御する制御器とを備えた冷凍サイクル装置である。
【0025】
また、本発明は放熱器の冷媒出口側の冷媒を分岐し、その一部を補助減圧器により減圧して、前記放熱器の冷媒出口側の冷媒を冷却する第2補助熱交換器を介して、圧縮機の吸入側もしくは中間圧部に導くバイパス回路を設け、前記圧縮機の吐出側から減圧器の入口側までの冷媒圧力を検知する高圧側圧力検知器と、前記放熱器の冷媒出口側の冷媒温度を検出する放熱器出口側温度検知器と、前記減圧器の入口側の冷媒温度を検出する減圧器入口側温度検知器とを備え、前記高圧側圧力検知器で検出した圧力が、前記放熱器出口側温度検知器より検知された冷媒温度に基づいてCOPが最大になるように選定された目標圧力より低く、かつ、前記減圧器入口側温度検知器より検知された冷媒温度に基づいてCOPが最大になるように選定された目標圧力より高くなるように、前記減圧器を制御する制御器とを備えた冷凍サイクル装置である。
【0026】
また、本発明は前記放熱器出口側温度検知器を、放熱器の外部流体入口側の流体温度を検出する温度検知器で代用することを特徴とする冷凍サイクル装置である。
【0027】
さらに、本発明は冷媒として二酸化炭素を用いる冷凍サイクル装置である。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を用いて説明する。
【0029】
(実施の形態1)
図1は本発明の実施の形態1における冷凍サイクル装置の概略構成図であり、同図において、1は圧縮機、2は放熱器、3は減圧器、4は吸熱器であり、これらを配管接続することにより、図中矢印の方向に冷媒が循環する冷凍サイクルを構成し、冷媒として放熱側となる経路(圧縮機1の吐出側〜放熱器2〜減圧器3入口側までの流路)で超臨界状態となり得る冷媒である二酸化炭素(CO2)が封入されている。また、放熱器2の冷媒出口側から減圧器3の入口側までの冷媒流路である放熱側冷媒流路を流れる冷媒と、吸熱器4の冷媒出口側から圧縮機1の吸入側までの冷媒流路である吸熱側冷媒流路を流れる冷媒とを熱交換する補助熱交換器5を備えている。
【0030】
さらに、前記吸熱側冷媒流路には、補助熱交換器5をバイパスするバイパス回路6が設けられている。すなわち、このバイパス回路6は、吸熱器4と補助熱交換器5との間に一端を接続し、他端を補助熱交換器5と圧縮機1との間に接続されており、吸熱器4出口側の冷媒を直接圧縮機1へ送ることができるようになっている。
【0031】
また、前記バイパス回路6には、ここを流れる冷媒流量を調節する流量調整弁7が設けられており、この流量調整弁7は、図示しない流量制御器によって開度が制御され、圧縮機1の吸入過熱度や吐出温度に応じて補助熱交換器5での熱交換量を調節するようになっている。
【0032】
また、11は前記圧縮機1の吐出側から減圧器3の入口側までの高圧側冷媒流路の冷媒圧力を検知する高圧側圧力検知器であり、本実施例では減圧器3の入口側に設けられている。
【0033】
また、12は補助熱交換器5出口側から減圧器3入口側までの冷媒温度あるいは冷媒が流れる配管温度を検知する減圧器入口側温度検知器、13は放熱器2出口側から補助熱交換器5入口側までの冷媒温度あるいは冷媒が流れる配管温度を検知する放熱器出口側温度検知器である。
【0034】
さらに、14は圧力制御器であり、減圧器入口側温度検知器12や放熱器出口側温度検知器13からの出力信号に基づき減圧器3の開度の調節を行うよう構成されている。
【0035】
前記圧力制御器14は図示されていないCPU、RAM、ROM等によって構成されており、ROM等には、放熱器出口側温度と減圧器入口側温度と、COPが最大となる圧力(最適高圧側圧力)の関係を予め記憶している。
【0036】
ここで、ROM等に記憶する放熱器出口側温度と減圧器入口側温度と最適高圧側圧力の関係は、
【0037】
【表1】

Figure 0003838008
【0038】
(表1)に示すような放熱器出口側温度と減圧器入口側温度に応じた最適高圧側圧力を示すデータテーブルを記憶させても良いし、最適高圧側圧力を放熱器出口側温度と減圧器入口側温度の関数として示す近似関数を記憶させて算出するようにしても良い。
【0039】
なお、厳密には、COPが最大となる放熱器出口側温度と減圧器入口側温度と最適高圧側圧力の関係は、放熱器出口側温度や減圧器入口側温度のみで決定されるものでなく、吸熱器側の圧力(低圧側圧力)の変動によっても変動する。しかし、冷房運転のみ行う単純なCO2サイクルでは、吸熱器側の圧力変動を無視することができる。また、圧力制御器に予め、圧縮機吸入過熱度や低圧側圧力に応じた複数の放熱器出口側温度と減圧器入口側温度と、最適高圧側圧力の関係を記憶させて、検出された低圧側圧力に応じて、それらのいずれかの関係を用いるようにしても良い。
【0040】
以上のように構成された冷凍サイクル装置について、以下、その動作を説明する。
【0041】
圧縮機1で圧縮されたCO2は高温高圧状態となり、放熱器2へ導入される。放熱器2では、CO2は超臨界状態であるので、気液二相状態とはならずに、空気や水などの外部流体に放熱して、補助熱交換器5の放熱側冷媒流路においてさらに冷却される。減圧器3では減圧されて、低圧の気液二相状態となり吸熱器4へ導入される。吸熱器4では、空気や水などの外部流体から吸熱して、補助熱交換器5の吸熱側冷媒流路においてガス状態となり、再び圧縮機1に吸入される。
【0042】
このようなサイクルを繰り返すことにより、放熱器2で放熱による加熱作用、吸熱器4で吸熱による冷却作用を行う。
【0043】
ここで、補助熱交換器5で、放熱器2を出たCO2がさらに冷却されて減圧器3で減圧されるため、吸熱器4の入口エンタルピが減少して、吸熱器4の入口と出口でのエンタルピ差が大きくなり、吸熱能力(冷凍効果)やCOPが増大する。
【0044】
次に、本実施の形態の特徴である減圧器3の制御について、図2に示すフローチャートに基づいて説明する。
【0045】
冷凍サイクル装置の運転時には、放熱器出口側温度検出器13からの検出値(放熱器出口側温度)(100)、および、減圧器入口側温度検出器12からの検出値(減圧器入口側温度)(110)が取り込まれ、その取り込んだ放熱器出口側温度と減圧器入口側温度に対応する最適高圧側圧力が、予めROMに記憶されている温度と圧力との関係から選定され、その選定された圧力(以下、目標高圧側圧力と呼ぶ。)はRAM等のメモリで記憶される(120)。
【0046】
次に、高圧側圧力検知器11からの検出値(高圧側圧力)が取り込まれ(130)、目標高圧側圧力と(130)で取り込んだ高圧側圧力とが比較される(140)。そして、目標高圧側圧力が高圧側圧力を上回った場合には、減圧器3の開度を小さくし(150)、目標高圧側圧力が高圧側圧力以下の場合には、減圧器3の開度を大きくする(160)。そして、ステップ100に戻り、以後ステップ100から160まで繰り返す。
【0047】
これにより、補助熱交換器5での熱交換量が変化しても、高圧側圧力は放熱器出口側温度と減圧器入口側温度の両者に基づいて選定された高圧側圧力となるように制御されるので、従来の制御方法のように放熱器出口側温度、または、減圧器入口側温度のいずれかに基づいて選定された高圧側圧力で運転される冷凍サイクル装置よりも、効率良く冷凍サイクル装置を運転することができる。
【0048】
さらに、圧縮機1の吸入過熱度や吐出温度に応じて、図示していない流量制御器により流量調節弁7の開度を調節することで、補助熱交換器での熱交換量が、調整されているため、圧縮機1内の潤滑油や絶縁材料等の劣化を防止することができ、圧縮機の信頼性を向上させることができる。
【0049】
このような場合には、補助熱交換器での熱交換量の変化が大きいために、本実施の形態のように、高圧側圧力を放熱器出口側温度と減圧器入口側温度の両者に基づいて選定された高圧側圧力となるように制御することにより、従来の制御方法に比較して冷凍サイクル装置の効率を大きく向上させることができる。
【0050】
なお、本実施の形態では、バイパス回路6や流量調節弁7により、補助熱交換器での熱交換量が変化するものとして説明しているが、バイパス回路6や流量調節弁7を廃止しても、本発明の冷凍サイクルを実施することができる。
【0051】
この場合には、補助熱交換器5での熱交換量を調節することができないが、圧縮機1の運転周波数の変化等により、補助熱交換器での熱交換量が変化するものである。
【0052】
なお、補助熱交換器5をバイパスするバイパス回路6は、補助熱交換器5の放熱側冷媒流路をバイパスするように設けても良い。すなわち、放熱器2と補助熱交換器5との間に一端を接続し、他端を補助熱交換器5と減圧器3との間に接続するものとしてもよい。
【0053】
また、本発明は、四方弁等を追加して、放熱器と吸熱器を切り替えられるようにしたヒートポンプサイクルにも適応できることは明らかである。
【0054】
さらに、冷媒はCO2に限定されるものではなく、例えば、エタン等の超臨界域で使用する冷媒を用いてもよい。
【0055】
また、アキュームレータを吸熱器4と補助熱交換器5の間や、補助熱交換器5と圧縮機1の間に追加しても、本発明の冷凍サイクルを実施することができる。この場合には、余剰冷媒を蓄積したり、圧縮機1に液冷媒を吸入することを防止したりすることが可能となり、さらに、余剰冷媒を蓄えることができるために、高圧側圧力を選定した最適高圧側圧力とすることが容易となる。
【0056】
なお、本実施例においては、高圧側圧力検知器11は減圧器3の入口側の冷媒圧力を検知するものとしているが、放熱側となる経路(圧縮機1の吐出側〜放熱器2〜減圧器3入口側までの流路)のいずれかにあっても良い。さらに、そのような場合には、高圧側圧力検知器11での検出圧力から減圧器3入口側に至るまでの圧力損失分を差し引く補正を行ってもよい。
【0057】
(実施の形態2)
図3は本発明の実施の形態2における冷凍サイクル装置の概略構成図であり、同図においては、図1と同じ構成要素については同一の符号を付し、説明を省略する。
【0058】
なお、以下の説明では、簡単のために、冷房装置や冷蔵装置のように、吸熱器を利用側熱交換器とみなし、放熱器を熱源側熱交換器とみなす冷凍サイクルについて説明するが、暖房装置や給湯装置などのように、放熱器を利用側熱交換器とみなし、吸熱器を熱源側熱交換器とみなす冷凍サイクルについても、本発明は適用できる。さらに、四方弁等を追加して、放熱器と吸熱器を切り替えられる場合にも、同様に適用できる。
【0059】
図3において、15は吸熱器4の空気や水などの外部流体の出口側(吹出側)の温度(以下、簡単のために吸熱器を利用側熱交換器とみなし、利用側熱交換器吹出温度と呼ぶ)を検知する利用側熱交換器吹出温度検知器、16は吸熱器4の空気や水などの外部流体の入口側(吸込側)の温度(以下、簡単のために吸熱器を利用側熱交換器とみなし、利用側熱交換器吸込温度と呼ぶ)を検知する利用側熱交換器吸込温度検知器である。
【0060】
また、17は放熱器2の空気や水などの外部流体の入口側(吸込側)の温度(以下、簡単のために放熱器を熱源側熱交換器とみなし、熱源側熱交換器吸込温度と呼ぶ)を検知する熱源側熱交換器吸込温度検知器である。さらに、18は制御器であり、減圧器入口側温度検知器12、放熱器出口側温度検知器13、利用側熱交換器吹出温度検知器15、利用側熱交換器吸込温度検知器16、熱源側熱交換器吸込温度検知器17からの出力信号に基づき減圧器3の開度や、圧縮機1の回転数の調節を行う。
【0061】
また、21は吸熱器4と補助熱交換器5との間に設けられた、液相冷媒と気相冷媒を分離して冷媒を蓄えるタンク手段であるアキュームレータである。
【0062】
制御器18は図示されていないCPU、RAM、ROM等によって構成されており、ROM等には、(実施の形態1)で説明したような、放熱器出口側温度と減圧器入口側温度とCOPが最大となる圧力(最適高圧側圧力)の関係を予め記憶している。
【0063】
以上のような構成を有する、本実施の形態による冷凍サイクル装置の基本的な動作については、(実施の形態1)と同様であるので説明を省略し、本実施の形態の特徴である圧縮機1と減圧器3の制御について、図4に示すフローチャートに基づいて説明する。
【0064】
冷凍サイクル装置の運転時には、図示していない温度設定手段からの出力信号や、利用側熱交換器吸込温度検知器16で検知される利用側熱交換器吸込温度(たとえば、冷房装置の場合には室内熱交換器の吸込空気温度、すなわち、室内空気温度)や、熱源側熱交換器吸込温度検知器17で検知される熱源側熱交換器吸込温度(たとえば、冷房装置の場合には室外熱交換器の吸込空気温度、すなわち、外気温度)などに基づいて、利用側熱交換器吹出温度(たとえば、冷房装置の場合には室内熱交換器の吹出空気温度)の目標値である目標吹出温度を演算し記憶する(200)。
【0065】
次に、利用側熱交換器吹出温度検知器15により、実際の利用側熱交換器吹出温度(たとえば、冷房装置の場合には室内熱交換器の吹出空気温度)を検出し一時的に記憶する(210)。そして、ステップ210で記憶した利用側熱交換器吹出温度と目標吹出温度とを比較し(220)、目標吹出温度の方が利用側熱交換器吹出温度より小さい場合は、圧縮機1の回転数を増加させて冷凍能力の増大を図り(230)、一方、目標吹出温度が利用側熱交換器吹出温度以上の場合は、圧縮機1の回転数を減少させて冷凍能力の減少を図る(240)。
【0066】
そして、放熱器出口側温度検出器13からの検出値(放熱器出口側温度)(250)、および、減圧器入口側温度検出器12からの検出値(減圧器入口側温度)(260)が取り込まれ、その取り込んだ放熱器出口側温度と減圧器入口側温度に対応する最適高圧側圧力が、予めROMに記憶されている温度と圧力との関係から選定され、その選定された圧力(以下、目標高圧側圧力と呼ぶ。)はRAM等のメモリで記憶される(270)。
【0067】
次に、高圧側圧力検知器11からの検出値(高圧側圧力)が取り込まれ(280)、目標高圧側圧力とステップ280で取り込んだ高圧側圧力とが比較される(290)。そして、目標高圧側圧力が高圧側圧力を上回った場合には、減圧器3の開度を小さくし(300)、目標高圧側圧力が高圧側圧力以下の場合には、減圧器3の開度を大きくする(310)。そして、ステップ210に戻り、以後ステップ210から310まで繰り返す。
【0068】
これにより、補助熱交換器5での熱交換量が変化しても、高圧側圧力は放熱器出口側温度と減圧器入口側温度の両者に基づいて選定された高圧側圧力となるように制御されるので、従来のように放熱器出口側温度、または、減圧器入口側温度のいずれかに基づいて選定された高圧側圧力で運転される冷凍サイクル装置よりも、効率良く冷凍サイクル装置を運転することができる。
【0069】
さらに、減圧器3のみを制御する場合には、高圧側圧力が変化することにより、余剰な冷凍能力を生じる場合があったが、同時に圧縮機1の回転数も制御することにより、余剰な冷凍能力を生じさせることなく、その分、圧縮機1への入力を低減することができるために、さらに、効率良く冷凍サイクル装置を運転することができる。
【0070】
また、アキュームレータ21を備えていることにより、余剰冷媒を蓄えることができるために、アキュームレータ21を備えていない場合に比べて、高圧側圧力の調整可能な範囲が拡大することから、高圧側圧力を選定した最適高圧側圧力とすることが容易となり、さらに、効率良く冷凍サイクル装置を運転することができる。
【0071】
なお、冷媒はCO2に限定されるものではなく、例えば、エタン等の超臨界域で使用する冷媒を用いてもよい。
【0072】
さらに、高圧側圧力検知器11は減圧器3入口側の冷媒圧力を検知するものとしているが、放熱側となる経路(圧縮機1の吐出側〜放熱器2〜減圧器3入口側までの流路)のいずれかにあっても良い。さらに、そのような場合には、高圧側圧力検知器11での検出圧力から減圧器3入口側に至るまでの圧力損失分を差し引く補正を行ってもよい。
【0073】
また、放熱器出口側温度は、放熱器の放熱能力と、放熱器で熱交換する空気や水などの外部流体の温度とによって推定できることから、冷房装置や冷蔵装置のように、吸熱器を利用側熱交換器とみなし、放熱器を熱源側熱交換器とみなす冷凍サイクルの場合には、放熱器出口側温度検出器13を、熱源側熱交換器吸込温度検知器17で代用し、放熱器出口側温度は、熱源側熱交換器吸込温度検知器17の検出値から推定することができる。暖房装置や給湯装置などのように、放熱器を利用側熱交換器とみなし、吸熱器を熱源側熱交換器とみなす冷凍サイクルの場合には、放熱器出口側温度検出器13を、利用側熱交換器吸込温度検知器16で代用し、放熱器出口側温度は、利用側熱交換器吸込温度検知器16の検出値から推定することができる。
【0074】
さらに、四方弁等を追加して、放熱器と吸熱器を切り替えられる場合にも、利用側熱交換器吸込温度検知器16の検出値と熱源側熱交換器吸込温度検知器17の検出値を選択して推定することができる。
【0075】
したがって、この放熱器出口側温度の推定値を用い、(実施の形態1)や本実施の形態に述べた減圧器3の開度の制御を行っても、効率良く冷凍サイクル装置を運転することができ、さらに、放熱器出口側温度検知器13を、熱源側熱交換器吸込温度検知器17あるいは利用側熱交換器吸込温度検知器16で代用することで、放熱器出口側温度検出器13を省略できるために、コストを削減することができる。
【0076】
(実施の形態3)
図5は本発明の実施の形態3における冷凍サイクル装置の概略構成図であり、同図においては、図3と同じ構成要素については同一の符号を付し、説明を省略する。
【0077】
図5において、31は放熱器2の冷媒出口側から減圧器3の入口側の間に設けられた補助熱交換器であり、放熱器2の冷媒出口側から減圧器3の入口側の間の冷媒の一部を、補助減圧器32で減圧して、補助熱交換器31を経て圧縮機1の吸入側あるいは中間圧部へ導くようなバイパス回路33が構成されている。
【0078】
また、補助減圧器32は、図示しない補助減圧器制御器によって開度が制御され、圧縮機1の吸入過熱度や吐出温度に応じて補助熱交換器31での熱交換量を調節するようになっている。
【0079】
以上のように構成された冷凍サイクル装置について、以下、その動作を説明する。
【0080】
圧縮機1で圧縮されたCO2は高温高圧状態となり、放熱器2へ導入される。放熱器2では、CO2は超臨界状態であるので気液2相状態とはならずに放熱して、補助熱交換器31を経て、減圧器3で減圧されて気液二相状態となり吸熱器4へ導入される。吸熱器4では、空気や水などの外部流体から吸熱してガス状態となり、再び圧縮機1に吸入される。
【0081】
また、放熱器2の冷媒出口側から減圧器3の入口側の間の冷媒の一部は、補助減圧器32で減圧されて低温となり、補助熱交換器31で放熱器2を出て減圧器3に向かう比較的高温の冷媒と熱交換して加熱され、圧縮機1の吸入側あるいは中間圧部へ導入される。
【0082】
一方、放熱器2を出た冷媒は補助熱交換器31で冷却されたのち減圧器3で減圧されるため、吸熱器4の入口でのエンタルピが減少して、吸熱器4の入口と出口でのエンタルピ差が大きくなり、一部の冷媒が補助減圧器32の側に流れるため吸熱器4の冷媒流量が減少しても同等の吸熱能力(冷却能力)を維持しながら、吸熱器4の冷媒流量減少により、吸熱器4の冷媒出口側から圧縮機1の吸入側、あるいは、中間圧部の間の圧力損失が低減できCOPを向上できる。
【0083】
また、圧縮機1と減圧器3の制御については(実施の形態2)と同様であるので、説明を省略するが、高圧側圧力は放熱器出口側温度と減圧器入口側温度の両者に基づいて選定された高圧側圧力となるように制御されるので、従来の制御方法のように放熱器出口側温度、または、減圧器入口側温度のいずれかに基づいて選定された高圧側圧力で運転される冷凍サイクル装置よりも、効率良く冷凍サイクル装置を運転することができる。
【0084】
さらに、圧縮機1の吸入過熱度や吐出温度に応じて、図示していない補助減圧器制御器により補助減圧器32の開度を調節することで、補助熱交換器での熱交換量が、調整されているため、圧縮機1内の潤滑油や絶縁材料等の劣化を防止することができ、圧縮機の信頼性を向上させることができる。
【0085】
このような場合には、補助熱交換器での熱交換量の変化が大きいために、本実施の形態のように、高圧側圧力を放熱器出口側温度と減圧器入口側温度の両者に基づいて選定された高圧側圧力となるように制御することにより、従来の制御方法に比較して冷凍サイクル装置の効率を大きく向上させることができる。
【0086】
さらに、減圧器3のみを制御する場合には、高圧側圧力が変化することにより、余剰な冷凍能力を生じる場合があったが、同時に圧縮機1の回転数も制御することにより、余剰な冷凍能力を生じさせることなく、その分、圧縮機1への入力を低減することができるために、さらに、効率良く冷凍サイクル装置を運転することができる。
【0087】
また、アキュームレータ21を備えていることにより、余剰冷媒を蓄えることができるために、アキュームレータ21を備えていない場合に比べて、高圧側圧力の調整可能な範囲が拡大することから、高圧側圧力を選定した最適高圧側圧力とすることが容易となり、さらに、効率良く冷凍サイクル装置を運転することができる。
【0088】
なお、冷媒はCO2 に限定されるものではなく、例えば、エタン等の超臨界域で使用する冷媒を用いてもよい。
【0089】
さらに、高圧側圧力検知器11は減圧器3入口側の冷媒圧力を検知するものとしているが、放熱側となる経路(圧縮機1の吐出側〜放熱器2〜減圧器3入口側までの流路)のいずれかにあっても良い。さらに、そのような場合には、高圧側圧力検知器11での検出圧力から減圧器3入口側に至るまでの圧力損失分を差し引く補正を行ってもよい。
【0090】
【発明の効果】
以上述べたことから明らかなように、補助熱交換器5での熱交換量が変化しても、高圧側圧力は放熱器出口側温度と減圧器入口側温度の両者に基づいて選定された高圧側圧力となるように制御されるので、従来のように放熱器出口側温度、または、減圧器入口側温度のいずれかに基づいて選定された高圧側圧力で運転される冷凍サイクル装置よりも、効率良く冷凍サイクル装置を運転することができる。
【0091】
特に、圧縮機1内の潤滑油や絶縁材料等の劣化を防止し、圧縮機の信頼性を向上させるために、補助熱交換器での熱交換量を、圧縮機1の吸入過熱度や吐出温度に応じて流量制御器により調節する場合には、補助熱交換器での熱交換量の変化が大きいために、高圧側圧力は放熱器出口側温度と減圧器入口側温度の両者に基づいて選定された高圧側圧力となるように制御することにより、従来の制御方法に比較して冷凍サイクル装置の効率を大きく向上させることができる。
【0092】
さらに、この放熱器出口側温度検知器13を、熱源側熱交換器吸込温度検知器17あるいは利用側熱交換器吸込温度検知器16で代用することで、放熱器出口側温度検出器13を省略できるために、コストを削減することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における冷凍サイクル装置の概略構成図
【図2】本発明の実施の形態1における制御器動作を示すフローチャート
【図3】本発明の実施の形態2における冷凍サイクル装置の概略構成図
【図4】本発明の実施の形態2における制御動作を示すフローチャート
【図5】本発明の実施の形態3における冷凍サイクル装置の概略構成図
【図6】CO2を冷媒とした冷凍サイクルのモリエル線図
【図7】補助熱交換器での熱交換量と最適高圧側圧力の関係図
【符号の説明】
1 圧縮機
2 放熱器
3 減圧器
4 吸熱器
5 補助熱交換器
6 バイパス流路
7 流量調整弁
11 高圧側圧力検知器
12 減圧器入口側温度検知器
13 放熱器出口側温度検知器
14 圧力制御器
15 利用側熱交換器吹出温度検知器
16 利用側熱交換器吸込温度検知器
17 熱源側熱交換器吸込温度検知器
18 制御器
21 アキュームレータ
31 補助熱交換器
32 補助減圧器
33 バイパス流路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration cycle apparatus using a refrigerant that can be in a supercritical state on the heat radiation side of a refrigeration cycle, such as carbon dioxide (CO2) or ethane, as a refrigerant.
[0002]
[Prior art]
Conventionally, refrigeration cycle devices connected to compressors, radiators, decompressors, heat absorbers, etc. are applied and enclosed in electric (refrigeration) refrigerators, air conditioners, car air conditioners, refrigerated or frozen warehouses, showcases, etc. As the refrigerant used, hydrocarbons (fluorocarbons) containing fluorine atoms have been used.
[0003]
However, chlorofluorocarbons are not always satisfactory refrigerants because they have the property of destroying the ozone layer, and because they have a long life in the atmosphere and have a large greenhouse effect, they affect global warming. .
[0004]
Therefore, instead of chlorofluorocarbons, the possibility of a refrigeration cycle apparatus that uses carbon dioxide (CO2) or ethane as a refrigerant, which has a zero ozone depletion coefficient and a much lower global warming coefficient than chlorofluorocarbons, has been studied. It's getting on.
[0005]
As a refrigeration cycle apparatus using CO2, for example, Japanese Patent Publication No. 7-18602 has been proposed.
[0006]
The operation of this refrigeration cycle apparatus is in principle the same as that of a conventional vapor compression refrigeration cycle apparatus using chlorofluorocarbons, and FIG. 6 shows a Mollier diagram of the refrigeration cycle using CO 2 as a refrigerant. . That is, as shown by A-B-C-D-A in the figure, the compression process (A-B) in which CO2 in the gas phase is compressed by the compressor, the CO2 in the supercritical state at high temperature and high pressure Cooling process (BC) for cooling with a radiator (gas cooler), further decompressing process (CD) for reducing pressure with a decompressor, and evaporation process (DA) for evaporating CO2 in a gas-liquid two-phase state ) To remove heat from the external fluid such as air by the latent heat of vaporization and cool the external fluid.
[0007]
In FIG. 6, the transition from the saturated steam region (gas-liquid two-phase region) to the heating steam region in the evaporation step (DA) is performed in the same manner as in the case of chlorofluorocarbons, but the cooling step (B-C) is It is located on the high pressure side from the critical point CP and does not cross the saturated liquid line and the saturated vapor line. That is, in the region beyond the critical point CP (supercritical region), there is no condensation process as in the case of chlorofluorocarbons, and the CO2 is cooled without being liquefied.
[0008]
The state of the radiator outlet side (point C) includes the high pressure side pressure (pressure from the discharge side of the compressor to the inlet side of the decompressor) and the refrigerant temperature on the radiator outlet side (hereinafter referred to as the radiator outlet side temperature). The temperature at the outlet side of the radiator is determined by the heat dissipation capability of the radiator and the temperature of an external fluid such as air or water that exchanges heat with the radiator. Since the temperature of the external fluid such as air or water cannot be controlled, the radiator outlet side temperature cannot be substantially controlled, and the radiator outlet side (point C) is in a high pressure state. Control is possible by controlling the side pressure.
[0009]
Therefore, the coefficient of performance of the refrigeration cycle calculated by the compression work of the compressor represented by the enthalpy difference ΔL of the compression process (AB) and the refrigeration effect represented by the enthalpy difference ΔH of the evaporation process (DA). Japanese Patent Application Laid-Open No. 9-264622 proposes a pressure control means for controlling the high pressure side pressure based on the radiator outlet side temperature so that (COP = ΔH / ΔL) is maximized. That is, Japanese Patent Application Laid-Open No. 9-264622 discloses that the radiator outlet side temperature (or the decompressor inlet side temperature) and the high pressure side pressure are on the optimum control line as shown by the solid line a in FIG. It has been shown that efficient operation is possible by controlling the pressure.
[0010]
On the other hand, in Japanese Patent Publication No. 7-18602, heat exchange is performed between the refrigerant from the refrigerant outlet side of the radiator to the inlet side of the decompressor and the refrigerant from the refrigerant outlet side of the heat absorber to the suction side of the compressor. A refrigeration cycle with an auxiliary heat exchanger has also been proposed.
[0011]
In such a refrigeration cycle, as shown by A′-B′-CC′-D′-AA ′ in FIG. Because heat exchange is performed with a relatively low-temperature refrigerant that exits the compressor and goes to the compressor, that is, heat exchange is performed between the stroke (CC ′) and the stroke (AA ′). Since the refrigerant exiting the radiator is further cooled, the enthalpy difference ΔH of the evaporation process (D′−A) is increased by the stroke (D′−D), so the heat absorption capacity (refrigeration effect) and coefficient of performance are increased. Can be improved.
[0012]
The heat exchange amount of such an auxiliary heat exchanger is not constant, but varies depending on the change in the refrigerant flow rate due to the change in the rotation speed of the compressor, the outside air temperature, the evaporation temperature, and the like.
[0013]
In addition, as part of Japanese Patent Application No. 11-39278, a part of the present inventors adjusts the flow rate of refrigerant flowing through the auxiliary heat exchanger in order to prevent an excessive increase in the discharge temperature of the compressor. A refrigeration cycle with variable heat exchange is proposed.
[0014]
[Problems to be solved by the invention]
Refrigerant that can be in a supercritical state is enclosed, has an auxiliary heat exchanger, and the high pressure side pressure selected based on either the radiator outlet side temperature or the decompressor inlet side temperature is the target value. The evaluation of the refrigeration cycle apparatus that controls the high-pressure side pressure revealed that the following problems occur.
[0015]
That is, FIG. 7 shows an example in which the evaporation temperature is 0 ° C., the radiator outlet side temperature is 40 ° C., the heat sink outlet superheat degree is 0 ° C., and the heat exchange amount (horizontal axis) of the auxiliary heat exchanger is changed. The target value of the high pressure side pressure selected based on either the radiator outlet side temperature or the decompressor inlet side temperature, and the high pressure side pressure at which the COP is actually maximized (hereinafter referred to as the optimum high pressure side) It is a figure showing a change of pressure. However, the high-pressure side pressure on the vertical axis is indicated by a difference based on the high-pressure side pressure when the heat exchange amount of the auxiliary heat exchanger is zero. The horizontal axis shows the case where the heat exchange amount of the auxiliary heat exchanger is zero on the left end, and the heat exchange amount increases toward the right side.
[0016]
As shown in FIG. 7, when the amount of heat exchange in the auxiliary heat exchanger changes, the optimum high pressure side pressure changes, and only the radiator outlet side temperature is detected, and the high pressure side pressure selected based on that temperature is detected. The target value (square plot in FIG. 7) is higher than the actual optimum high pressure side pressure (triangular plot in FIG. 7).
[0017]
This is because the temperature at the outlet side of the radiator is determined by the heat dissipation capability of the radiator and the temperature of the external fluid such as air or water that exchanges heat with the radiator, so the amount of heat exchange in the auxiliary heat exchanger changes. Even so, the temperature at the outlet side of the radiator is almost constant (in this case, 40 ° C), so the high-pressure side pressure selected based on the temperature at the outlet side of the radiator (square plot in Fig. 7) is auxiliary heat exchange. The high pressure side pressure (triangular plot in FIG. 7) at which COP is actually maximum is a constant value regardless of the heat exchange amount in the heat exchanger, depending on the heat exchange amount in the auxiliary heat exchanger, This is because it slightly decreases.
[0018]
Therefore, when the high pressure side pressure (square plot in FIG. 7) selected based only on the radiator outlet side temperature is set as the target value and the high pressure is controlled, the high pressure side pressure (in FIG. The efficiency of the refrigeration cycle apparatus is worse than when the target value is the triangular plot).
[0019]
Further, only the pressure at the inlet side of the decompressor is detected, and the target value of the high pressure side pressure selected based on the temperature (diamond plot in FIG. 7) is the actual optimum high pressure side pressure (triangular plot in FIG. 7). Lower value.
[0020]
This is because the target value of the high-pressure side pressure selected based only on the pressure-reducer inlet-side temperature is low even if the temperature of the external fluid such as air or water that is heat-exchanged by the radiator is lowered and the pressure-reducer inlet temperature is lowered. Even when the temperature of the external fluid is constant and the heat exchange amount of the auxiliary heat exchanger changes and the pressure at the inlet of the pressure reducer decreases, the pressure on the high pressure side is selected in the same way in either case. The high pressure side pressure selected based only on the inlet side temperature (diamond plot in FIG. 7) is significantly lower than the reduction amount corresponding to the heat exchange amount in the auxiliary heat exchanger, whereas it is actually COP. This is because the high-pressure side pressure (triangular plot in FIG. 7) at which the maximum value becomes slightly decreases according to the heat exchange amount in the auxiliary heat exchanger.
[0021]
Therefore, when the high pressure side pressure selected based only on the pressure at the inlet side of the decompressor (diamond plot in FIG. 7) is set as the target value and the high pressure side pressure is controlled, the high pressure side pressure (in FIG. The efficiency of the refrigeration cycle apparatus is worse than when the target value is the triangular plot).
[0022]
As described above, when the high pressure side pressure selected based on either the radiator outlet side temperature or the decompressor inlet side temperature is set as the target value and the high pressure side pressure is controlled, the refrigeration is performed in the most efficient state. There arises a problem that the cycle device cannot be operated.
[0023]
The present invention provides an efficient refrigeration cycle apparatus by paying attention to a method for controlling a high-pressure side pressure in a refrigeration cycle apparatus including an auxiliary heat exchanger in which a refrigerant that can be in a supercritical state is enclosed on the heat dissipation side. For the purpose.
[0024]
[Means for Solving the Problems]
In order to solve the above problems, the present invention detects a refrigerant pressure on the refrigerant outlet side of the radiator and a high pressure side pressure detector that detects refrigerant pressure from the discharge side of the compressor to the inlet side of the decompressor. A radiator outlet side temperature detector and a pressure reducer inlet side temperature detector for detecting the refrigerant temperature on the inlet side of the pressure reducer, and the pressure detected by the high pressure side pressure detector, Based on the refrigerant temperature detected by the pressure reducer inlet side temperature detector which is lower than the target pressure selected so as to maximize the COP based on the refrigerant temperature detected by the radiator outlet side temperature detector. So that the COP is higher than the target pressure selected to maximize. A refrigeration cycle apparatus comprising a controller for controlling the decompressor.
[0025]
In the present invention, the refrigerant on the refrigerant outlet side of the radiator is branched, and a part of the refrigerant is decompressed by the auxiliary decompressor, and the second auxiliary heat exchanger cools the refrigerant on the refrigerant outlet side of the radiator. A high-pressure side pressure detector that detects a refrigerant pressure from the discharge side of the compressor to the inlet side of the pressure reducer, and a refrigerant outlet side of the radiator A radiator outlet side temperature detector for detecting the refrigerant temperature of the refrigerant, and a pressure reducer inlet side temperature detector for detecting the refrigerant temperature on the inlet side of the pressure reducer, and the pressure detected by the high pressure side pressure detector is Based on the refrigerant temperature detected by the pressure reducer inlet side temperature detector which is lower than the target pressure selected so as to maximize the COP based on the refrigerant temperature detected by the radiator outlet side temperature detector. So that the COP is higher than the target pressure selected to maximize. A refrigeration cycle apparatus comprising a controller for controlling the decompressor.
[0026]
Further, the present invention is the refrigeration cycle apparatus in which the radiator outlet side temperature detector is replaced with a temperature detector for detecting a fluid temperature on the external fluid inlet side of the radiator.
[0027]
Furthermore, the present invention is a refrigeration cycle apparatus using carbon dioxide as a refrigerant.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0029]
(Embodiment 1)
FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention, in which 1 is a compressor, 2 is a radiator, 3 is a decompressor, and 4 is a heat absorber. By connecting, a refrigeration cycle in which the refrigerant circulates in the direction of the arrow in the figure is configured, and a path on the heat dissipation side as the refrigerant (flow path from the discharge side of the compressor 1 to the radiator 2 to the inlet side of the decompressor 3) Carbon dioxide (CO2), which is a refrigerant that can be in a supercritical state, is enclosed. Further, the refrigerant flowing through the heat radiation side refrigerant flow path, which is the refrigerant flow path from the refrigerant outlet side of the radiator 2 to the inlet side of the decompressor 3, and the refrigerant from the refrigerant outlet side of the heat absorber 4 to the suction side of the compressor 1 An auxiliary heat exchanger 5 for exchanging heat with the refrigerant flowing through the heat absorption side refrigerant flow path, which is a flow path, is provided.
[0030]
Further, a bypass circuit 6 that bypasses the auxiliary heat exchanger 5 is provided in the heat absorption side refrigerant flow path. That is, the bypass circuit 6 has one end connected between the heat absorber 4 and the auxiliary heat exchanger 5 and the other end connected between the auxiliary heat exchanger 5 and the compressor 1. The refrigerant on the outlet side can be directly sent to the compressor 1.
[0031]
Further, the bypass circuit 6 is provided with a flow rate adjusting valve 7 for adjusting the flow rate of the refrigerant flowing therethrough. The flow rate adjusting valve 7 is controlled in opening degree by a flow rate controller (not shown) so that the compressor 1 The amount of heat exchange in the auxiliary heat exchanger 5 is adjusted according to the suction superheat degree and the discharge temperature.
[0032]
Reference numeral 11 denotes a high-pressure side pressure detector that detects the refrigerant pressure in the high-pressure side refrigerant flow path from the discharge side of the compressor 1 to the inlet side of the decompressor 3. Is provided.
[0033]
Further, 12 is a pressure detector inlet side temperature detector for detecting the refrigerant temperature from the auxiliary heat exchanger 5 outlet side to the pressure reducer 3 inlet side or the pipe temperature through which the refrigerant flows, and 13 is an auxiliary heat exchanger from the radiator 2 outlet side. 5 is a radiator outlet side temperature detector for detecting the refrigerant temperature up to the inlet side or the pipe temperature through which the refrigerant flows.
[0034]
Furthermore, 14 is a pressure controller, and is configured to adjust the opening degree of the decompressor 3 based on output signals from the decompressor inlet side temperature detector 12 and the radiator outlet side temperature detector 13.
[0035]
The pressure controller 14 is composed of a CPU, RAM, ROM, etc. (not shown). The ROM, etc. includes a radiator outlet side temperature, a decompressor inlet side temperature, and a pressure at which COP is maximized (optimum high pressure side). Pressure) relationship is stored in advance.
[0036]
Here, the relationship between the radiator outlet side temperature stored in the ROM and the like, the decompressor inlet side temperature, and the optimum high pressure side pressure is:
[0037]
[Table 1]
Figure 0003838008
[0038]
A data table indicating the optimum high pressure side pressure corresponding to the radiator outlet side temperature and the pressure reducer inlet side temperature as shown in (Table 1) may be stored. An approximate function shown as a function of the vessel inlet side temperature may be stored and calculated.
[0039]
Strictly speaking, the relationship between the radiator outlet side temperature at which the COP is maximum, the pressure reducer inlet side temperature, and the optimum high pressure side pressure is not determined only by the radiator outlet side temperature or the pressure reducer inlet side temperature. It also fluctuates due to fluctuations in the pressure on the heat absorber side (low pressure side pressure). However, in a simple CO2 cycle in which only the cooling operation is performed, the pressure fluctuation on the heat absorber side can be ignored. In addition, the pressure controller stores in advance the relationship between a plurality of radiator outlet side temperatures and decompressor inlet side temperatures corresponding to the compressor suction superheat degree and low pressure side pressure, and the optimum high pressure side pressure, and the detected low pressure Any one of these relationships may be used according to the side pressure.
[0040]
The operation of the refrigeration cycle apparatus configured as described above will be described below.
[0041]
The CO 2 compressed by the compressor 1 becomes a high temperature and high pressure state and is introduced into the radiator 2. In the radiator 2, since CO2 is in a supercritical state, it does not enter a gas-liquid two-phase state, but dissipates heat to an external fluid such as air or water, and further in the heat dissipation side refrigerant flow path of the auxiliary heat exchanger 5. To be cooled. In the pressure reducer 3, the pressure is reduced, and a low pressure gas-liquid two-phase state is obtained and introduced into the heat absorber 4. The heat absorber 4 absorbs heat from an external fluid such as air or water, enters a gas state in the heat absorption side refrigerant flow path of the auxiliary heat exchanger 5, and is sucked into the compressor 1 again.
[0042]
By repeating such a cycle, the radiator 2 performs a heating action by heat radiation and the heat absorber 4 performs a cooling action by heat absorption.
[0043]
Here, in the auxiliary heat exchanger 5, the CO 2 exiting the radiator 2 is further cooled and depressurized by the decompressor 3, so that the inlet enthalpy of the heat absorber 4 is reduced, and the inlet and outlet of the heat absorber 4 are reduced. The difference in enthalpy increases and the heat absorption capacity (refrigeration effect) and COP increase.
[0044]
Next, control of the decompressor 3 that is a feature of the present embodiment will be described based on a flowchart shown in FIG.
[0045]
During operation of the refrigeration cycle apparatus, the detected value from the radiator outlet side temperature detector 13 (heat radiator outlet side temperature) (100) and the detected value from the decompressor inlet side temperature detector 12 (decompressor inlet side temperature) ) (110) is taken in, and the optimum high-pressure side pressure corresponding to the taken-in radiator outlet side temperature and decompressor inlet side temperature is selected from the relationship between the temperature and pressure stored in the ROM in advance, and the selection is made. The applied pressure (hereinafter referred to as the target high pressure side pressure) is stored in a memory such as a RAM (120).
[0046]
Next, the detection value (high pressure side pressure) from the high pressure side pressure detector 11 is captured (130), and the target high pressure side pressure is compared with the high pressure side pressure captured at (130) (140). When the target high-pressure side pressure exceeds the high-pressure side pressure, the opening degree of the decompressor 3 is reduced (150). When the target high-pressure side pressure is equal to or lower than the high-pressure side pressure, the opening degree of the decompressor 3 Is increased (160). Then, the process returns to step 100, and thereafter steps 100 to 160 are repeated.
[0047]
Thereby, even if the heat exchange amount in the auxiliary heat exchanger 5 changes, the high pressure side pressure is controlled to be the high pressure side pressure selected based on both the radiator outlet side temperature and the decompressor inlet side temperature. Therefore, the refrigeration cycle is more efficient than the refrigeration cycle apparatus operated at the high pressure side pressure selected based on either the radiator outlet side temperature or the decompressor inlet side temperature as in the conventional control method. The device can be operated.
[0048]
Furthermore, the amount of heat exchange in the auxiliary heat exchanger is adjusted by adjusting the opening degree of the flow rate control valve 7 by a flow rate controller (not shown) according to the suction superheat degree and discharge temperature of the compressor 1. Therefore, deterioration of the lubricating oil, insulating material, etc. in the compressor 1 can be prevented, and the reliability of the compressor can be improved.
[0049]
In such a case, since the change in the amount of heat exchange in the auxiliary heat exchanger is large, the high pressure side pressure is based on both the radiator outlet side temperature and the decompressor inlet side temperature as in the present embodiment. Thus, the efficiency of the refrigeration cycle apparatus can be greatly improved as compared with the conventional control method.
[0050]
In the present embodiment, the heat exchange amount in the auxiliary heat exchanger is changed by the bypass circuit 6 and the flow rate control valve 7, but the bypass circuit 6 and the flow rate control valve 7 are abolished. Also, the refrigeration cycle of the present invention can be implemented.
[0051]
In this case, the amount of heat exchange in the auxiliary heat exchanger 5 cannot be adjusted, but the amount of heat exchange in the auxiliary heat exchanger changes due to a change in the operating frequency of the compressor 1 or the like.
[0052]
Note that the bypass circuit 6 that bypasses the auxiliary heat exchanger 5 may be provided so as to bypass the heat radiation side refrigerant flow path of the auxiliary heat exchanger 5. That is, one end may be connected between the radiator 2 and the auxiliary heat exchanger 5, and the other end may be connected between the auxiliary heat exchanger 5 and the decompressor 3.
[0053]
In addition, it is apparent that the present invention can be applied to a heat pump cycle in which a four-way valve or the like is added so that a heat radiator and a heat absorber can be switched.
[0054]
Furthermore, the refrigerant is not limited to CO2, and for example, a refrigerant used in a supercritical region such as ethane may be used.
[0055]
Moreover, even if an accumulator is added between the heat absorber 4 and the auxiliary heat exchanger 5, or between the auxiliary heat exchanger 5 and the compressor 1, the refrigeration cycle of the present invention can be carried out. In this case, it is possible to accumulate surplus refrigerant or prevent liquid refrigerant from being sucked into the compressor 1, and further, the surplus refrigerant can be accumulated, so the high pressure side pressure is selected. It becomes easy to set the optimum high pressure side pressure.
[0056]
In the present embodiment, the high-pressure side pressure detector 11 detects the refrigerant pressure on the inlet side of the decompressor 3, but the path on the heat radiation side (discharge side of the compressor 1-radiator 2-decompression). Any of the flow paths up to the inlet side of the vessel 3). Further, in such a case, correction may be performed by subtracting the pressure loss from the detected pressure at the high-pressure side pressure detector 11 to the inlet side of the decompressor 3.
[0057]
(Embodiment 2)
FIG. 3 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention. In FIG. 3, the same components as those in FIG.
[0058]
In the following description, for the sake of simplicity, a refrigeration cycle will be described in which a heat absorber is regarded as a use side heat exchanger and a radiator is regarded as a heat source side heat exchanger, such as a cooling device or a refrigeration device. The present invention can also be applied to a refrigeration cycle in which a radiator is regarded as a use side heat exchanger and a heat absorber is regarded as a heat source side heat exchanger, such as a device or a hot water supply device. Furthermore, the present invention can be similarly applied to a case where a heat radiator and a heat absorber can be switched by adding a four-way valve or the like.
[0059]
In FIG. 3, reference numeral 15 denotes an outlet side (outlet side) temperature of the external fluid such as air or water of the heat absorber 4 (hereinafter, for the sake of simplicity, the heat absorber is regarded as a use side heat exchanger, and the use side heat exchanger blows out. Use side heat exchanger blowing temperature detector that detects temperature), 16 is the temperature on the inlet side (suction side) of the external fluid such as air or water of the heat absorber 4 (hereinafter, the heat absorber is used for simplicity) This is a use side heat exchanger suction temperature detector that detects a side heat exchanger and is referred to as a use side heat exchanger suction temperature).
[0060]
Reference numeral 17 denotes a temperature at the inlet side (suction side) of the external fluid such as air or water of the radiator 2 (hereinafter, for the sake of simplicity, the radiator is regarded as a heat source side heat exchanger, and the heat source side heat exchanger suction temperature It is a heat source side heat exchanger suction temperature detector. Further, reference numeral 18 denotes a controller, which is a decompressor inlet side temperature detector 12, a radiator outlet side temperature detector 13, a use side heat exchanger outlet temperature detector 15, a use side heat exchanger suction temperature detector 16, a heat source. Based on the output signal from the side heat exchanger suction temperature detector 17, the opening degree of the decompressor 3 and the rotation speed of the compressor 1 are adjusted.
[0061]
Reference numeral 21 denotes an accumulator provided between the heat absorber 4 and the auxiliary heat exchanger 5 as tank means for separating the liquid phase refrigerant and the gas phase refrigerant and storing the refrigerant.
[0062]
The controller 18 is composed of a CPU, RAM, ROM, etc. (not shown). The ROM, etc. includes the radiator outlet side temperature, the decompressor inlet side temperature, and the COP as described in the first embodiment. The relationship of the pressure (optimum high-pressure side pressure) that maximizes is stored in advance.
[0063]
Since the basic operation of the refrigeration cycle apparatus according to the present embodiment having the above-described configuration is the same as that of (Embodiment 1), the description thereof will be omitted, and the compressor that is a feature of the present embodiment will be described. 1 and the control of the decompressor 3 will be described based on the flowchart shown in FIG.
[0064]
During operation of the refrigeration cycle apparatus, an output signal from a temperature setting means (not shown) or a use side heat exchanger suction temperature detected by the use side heat exchanger suction temperature detector 16 (for example, in the case of a cooling device) The intake air temperature of the indoor heat exchanger, that is, the indoor air temperature, and the heat source side heat exchanger suction temperature detected by the heat source side heat exchanger suction temperature detector 17 (for example, outdoor heat exchange in the case of a cooling device) Based on the intake air temperature of the cooler, that is, the outside air temperature), the target blowout temperature that is the target value of the use side heat exchanger blowout temperature (for example, in the case of a cooling device, the blowout air temperature of the indoor heat exchanger) Calculate and store (200).
[0065]
Next, the actual use side heat exchanger blown temperature (for example, in the case of a cooling device, the blown air temperature of the indoor heat exchanger) is detected and temporarily stored by the use side heat exchanger blown temperature detector 15. (210). And the utilization side heat exchanger blowing temperature memorize | stored in step 210 and the target blowing temperature are compared (220), and when the target blowing temperature is smaller than the utilization side heat exchanger blowing temperature, the rotation speed of the compressor 1 is compared. Is increased to increase the refrigeration capacity (230). On the other hand, when the target blowing temperature is equal to or higher than the use side heat exchanger blowing temperature, the rotation speed of the compressor 1 is decreased to reduce the refrigeration capacity (240). ).
[0066]
And the detected value (heat radiator outlet side temperature) (250) from the radiator outlet side temperature detector 13 and the detected value (decompressor inlet side temperature) (260) from the decompressor inlet side temperature detector 12 are obtained. The optimum high-pressure side pressure corresponding to the taken-in radiator outlet side temperature and decompressor inlet side temperature is selected from the relationship between the temperature and pressure stored in advance in the ROM, and the selected pressure (hereinafter referred to as the pressure) The target high pressure side pressure is stored in a memory such as a RAM (270).
[0067]
Next, the detected value (high pressure side pressure) from the high pressure side pressure detector 11 is captured (280), and the target high pressure side pressure is compared with the high pressure side pressure captured in step 280 (290). When the target high-pressure side pressure exceeds the high-pressure side pressure, the opening degree of the decompressor 3 is reduced (300), and when the target high-pressure side pressure is equal to or lower than the high-pressure side pressure, the opening degree of the decompressor 3 Is increased (310). Then, the process returns to step 210, and thereafter steps 210 to 310 are repeated.
[0068]
Thereby, even if the heat exchange amount in the auxiliary heat exchanger 5 changes, the high pressure side pressure is controlled to be the high pressure side pressure selected based on both the radiator outlet side temperature and the decompressor inlet side temperature. Therefore, the refrigeration cycle apparatus can be operated more efficiently than the conventional refrigeration cycle apparatus operated at the high pressure side pressure selected based on either the radiator outlet side temperature or the decompressor inlet side temperature. can do.
[0069]
Furthermore, when controlling only the pressure reducer 3, there is a case where an excessive refrigeration capacity is generated due to a change in the high-pressure side pressure. At the same time, an excessive refrigeration is controlled by controlling the rotation speed of the compressor 1 as well. Since the input to the compressor 1 can be reduced by that amount without generating capacity, the refrigeration cycle apparatus can be operated more efficiently.
[0070]
Moreover, since the surplus refrigerant can be stored by providing the accumulator 21, the adjustable range of the high pressure side pressure is expanded compared to the case where the accumulator 21 is not provided. It becomes easy to achieve the selected optimum high-pressure side pressure, and the refrigeration cycle apparatus can be operated efficiently.
[0071]
The refrigerant is not limited to CO2, and for example, a refrigerant used in a supercritical region such as ethane may be used.
[0072]
Further, the high pressure side pressure detector 11 detects the refrigerant pressure on the inlet side of the decompressor 3, but the path on the heat radiating side (flow from the discharge side of the compressor 1 to the radiator 2 to the inlet side of the decompressor 3). Road). Further, in such a case, correction may be performed by subtracting the pressure loss from the detected pressure at the high-pressure side pressure detector 11 to the inlet side of the decompressor 3.
[0073]
In addition, since the temperature at the outlet side of the radiator can be estimated by the heat dissipation capability of the radiator and the temperature of the external fluid such as air or water that exchanges heat with the radiator, a heat absorber is used like a cooling device or a refrigerator. In the case of a refrigeration cycle that is regarded as a side heat exchanger and the radiator is regarded as a heat source side heat exchanger, the radiator outlet side temperature detector 13 is replaced with the heat source side heat exchanger suction temperature detector 17, and the radiator The outlet side temperature can be estimated from the detection value of the heat source side heat exchanger suction temperature detector 17. In the case of a refrigeration cycle in which a radiator is regarded as a use side heat exchanger and a heat absorber is regarded as a heat source side heat exchanger, such as a heating device or a hot water supply device, the radiator outlet side temperature detector 13 is connected to the use side. The heat exchanger suction temperature detector 16 can be substituted, and the radiator outlet side temperature can be estimated from the detected value of the use side heat exchanger suction temperature detector 16.
[0074]
Furthermore, even when a four-way valve or the like is added to switch between the radiator and the heat sink, the detection value of the use side heat exchanger suction temperature detector 16 and the detection value of the heat source side heat exchanger suction temperature detector 17 are set. It can be selected and estimated.
[0075]
Therefore, even if the estimated value of the radiator outlet side temperature is used to control the opening of the decompressor 3 described in (Embodiment 1) or in the present embodiment, the refrigeration cycle apparatus can be operated efficiently. Furthermore, the radiator outlet side temperature detector 13 can be replaced by the heat source side heat exchanger suction temperature detector 17 or the use side heat exchanger suction temperature detector 16, so that the radiator outlet side temperature detector 13 can be used. The cost can be reduced.
[0076]
(Embodiment 3)
FIG. 5 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention. In FIG. 5, the same components as those in FIG.
[0077]
In FIG. 5, 31 is an auxiliary heat exchanger provided between the refrigerant outlet side of the radiator 2 and the inlet side of the decompressor 3, and between the refrigerant outlet side of the radiator 2 and the inlet side of the decompressor 3. A bypass circuit 33 is configured such that a part of the refrigerant is decompressed by the auxiliary decompressor 32 and led to the suction side or the intermediate pressure part of the compressor 1 through the auxiliary heat exchanger 31.
[0078]
Further, the opening of the auxiliary pressure reducer 32 is controlled by an auxiliary pressure reducer controller (not shown) so as to adjust the amount of heat exchange in the auxiliary heat exchanger 31 according to the suction superheat degree and the discharge temperature of the compressor 1. It has become.
[0079]
The operation of the refrigeration cycle apparatus configured as described above will be described below.
[0080]
The CO 2 compressed by the compressor 1 becomes a high temperature and high pressure state and is introduced into the radiator 2. In the radiator 2, since CO2 is in a supercritical state, it dissipates heat without going into the gas-liquid two-phase state, and is depressurized by the decompressor 3 through the auxiliary heat exchanger 31 to become a gas-liquid two-phase state. 4 is introduced. In the heat absorber 4, heat is absorbed from an external fluid such as air or water to form a gas state, and is sucked into the compressor 1 again.
[0081]
In addition, a part of the refrigerant between the refrigerant outlet side of the radiator 2 and the inlet side of the decompressor 3 is decompressed by the auxiliary decompressor 32 to become a low temperature, exits the radiator 2 by the auxiliary heat exchanger 31, and is decompressed. 3 is heated by exchanging heat with a relatively high-temperature refrigerant directed to 3 and introduced into the suction side or the intermediate pressure portion of the compressor 1.
[0082]
On the other hand, since the refrigerant exiting the radiator 2 is cooled by the auxiliary heat exchanger 31 and then depressurized by the decompressor 3, the enthalpy at the inlet of the heat absorber 4 is reduced and is reduced at the inlet and outlet of the heat absorber 4. The enthalpy difference of the refrigerant increases, and a part of the refrigerant flows toward the auxiliary pressure reducer 32. Therefore, even if the refrigerant flow rate of the heat absorber 4 decreases, the refrigerant of the heat absorber 4 maintains the same heat absorption capability (cooling capability). By reducing the flow rate, the pressure loss between the refrigerant outlet side of the heat absorber 4 and the suction side of the compressor 1 or between the intermediate pressure portions can be reduced and COP can be improved.
[0083]
The control of the compressor 1 and the pressure reducer 3 is the same as in (Embodiment 2), and the description thereof will be omitted. However, the high pressure side pressure is based on both the radiator outlet side temperature and the pressure reducer inlet side temperature. Therefore, operation is performed at the high-pressure side pressure selected based on either the radiator outlet-side temperature or the decompressor inlet-side temperature as in the conventional control method. Thus, the refrigeration cycle apparatus can be operated more efficiently than the refrigeration cycle apparatus.
[0084]
Furthermore, the amount of heat exchange in the auxiliary heat exchanger is adjusted by adjusting the opening of the auxiliary pressure reducer 32 by an auxiliary pressure reducer controller (not shown) according to the suction superheat degree and discharge temperature of the compressor 1. Since it is adjusted, deterioration of the lubricating oil, insulating material, etc. in the compressor 1 can be prevented, and the reliability of the compressor can be improved.
[0085]
In such a case, since the change in the amount of heat exchange in the auxiliary heat exchanger is large, the high pressure side pressure is based on both the radiator outlet side temperature and the decompressor inlet side temperature as in the present embodiment. Thus, the efficiency of the refrigeration cycle apparatus can be greatly improved as compared with the conventional control method.
[0086]
Further, when controlling only the decompressor 3, there is a case where an excessive refrigeration capacity is generated due to a change in the high-pressure side pressure. Since the input to the compressor 1 can be reduced by that amount without generating capacity, the refrigeration cycle apparatus can be operated more efficiently.
[0087]
Moreover, since the surplus refrigerant can be stored by providing the accumulator 21, the adjustable range of the high pressure side pressure is expanded compared to the case where the accumulator 21 is not provided. It becomes easy to achieve the selected optimum high-pressure side pressure, and the refrigeration cycle apparatus can be operated efficiently.
[0088]
The refrigerant is not limited to CO 2, and for example, a refrigerant used in a supercritical region such as ethane may be used.
[0089]
Further, the high pressure side pressure detector 11 detects the refrigerant pressure on the inlet side of the decompressor 3, but the path on the heat radiating side (flow from the discharge side of the compressor 1 to the radiator 2 to the inlet side of the decompressor 3). Road). Further, in such a case, correction may be performed by subtracting the pressure loss from the detected pressure at the high-pressure side pressure detector 11 to the inlet side of the decompressor 3.
[0090]
【The invention's effect】
As is apparent from the above, even if the heat exchange amount in the auxiliary heat exchanger 5 changes, the high pressure side pressure is selected based on both the radiator outlet side temperature and the decompressor inlet side temperature. Since it is controlled so as to be the side pressure, as compared with the conventional refrigeration cycle apparatus operated at the high pressure side pressure selected based on either the radiator outlet side temperature or the decompressor inlet side temperature, The refrigeration cycle apparatus can be operated efficiently.
[0091]
In particular, in order to prevent deterioration of the lubricating oil, insulating material, etc. in the compressor 1 and improve the reliability of the compressor, the heat exchange amount in the auxiliary heat exchanger is determined by the suction superheat degree and discharge of the compressor 1. When adjusting by the flow rate controller according to the temperature, the change in the heat exchange amount in the auxiliary heat exchanger is large, so the high pressure side pressure is based on both the radiator outlet side temperature and the decompressor inlet side temperature. By controlling so that the selected high-pressure side pressure is obtained, the efficiency of the refrigeration cycle apparatus can be greatly improved as compared with the conventional control method.
[0092]
Further, the radiator outlet side temperature detector 13 is replaced by the heat source side heat exchanger suction temperature detector 17 or the use side heat exchanger suction temperature detector 16, thereby omitting the radiator outlet side temperature detector 13. This can reduce costs.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a flowchart showing a controller operation according to the first embodiment of the present invention.
FIG. 3 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
FIG. 4 is a flowchart showing a control operation in Embodiment 2 of the present invention.
FIG. 5 is a schematic configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
FIG. 6 is a Mollier diagram of a refrigeration cycle using CO 2 as a refrigerant.
FIG. 7 is a diagram showing the relationship between the amount of heat exchange in the auxiliary heat exchanger and the optimum high-pressure side pressure.
[Explanation of symbols]
1 Compressor
2 radiators
3 Pressure reducer
4 Heat absorber
5 Auxiliary heat exchanger
6 Bypass channel
7 Flow control valve
11 High pressure side pressure detector
12 Pressure detector inlet side temperature detector
13 Radiator outlet temperature detector
14 Pressure controller
15 Use side heat exchanger air temperature detector
16 Use side heat exchanger suction temperature detector
17 Heat source side heat exchanger suction temperature detector
18 Controller
21 Accumulator
31 Auxiliary heat exchanger
32 Auxiliary decompressor
33 Bypass channel

Claims (7)

少なくとも圧縮機と、放熱器と、減圧器と、吸熱器とから冷凍サイクルを構成するとともに、前記放熱器で超臨界状態となりうる冷媒を封入し、前記放熱器の冷媒出口側から前記減圧器の入口側までの冷媒と、前記吸熱器の冷媒出口側から前記圧縮機の吸入側までの冷媒とを熱交換する第1補助熱交換器と、前記圧縮機の吐出側から前記減圧器の入口側までの冷媒圧力を検知する高圧側圧力検知器と、前記放熱器の冷媒出口側の冷媒温度を検出する放熱器出口側温度検知器と、前記減圧器の入口側の冷媒温度を検出する減圧器入口側温度検知器とを備え、前記高圧側圧力検知器で検出した圧力が、前記放熱器出口側温度検知器より検知された冷媒温度に基づいてCOPが最大になるように選定された目標圧力より低く、かつ、前記減圧器入口側温度検知器より検知された冷媒温度に基づいてCOPが最大になるように選定された目標圧力より高くなるように、前記減圧器を制御する制御器とを備えたことを特徴とする冷凍サイクル装置。At least a compressor, a radiator, a decompressor, and a heat absorber constitute a refrigeration cycle, and a refrigerant that can be in a supercritical state is enclosed in the radiator, and the decompressor is disposed from the refrigerant outlet side of the radiator. A first auxiliary heat exchanger for exchanging heat between the refrigerant up to the inlet side and the refrigerant from the refrigerant outlet side of the heat absorber to the suction side of the compressor; and from the discharge side of the compressor to the inlet side of the decompressor A high pressure side pressure detector that detects the refrigerant pressure up to, a radiator outlet side temperature detector that detects a refrigerant temperature on the refrigerant outlet side of the radiator, and a decompressor that detects a refrigerant temperature on the inlet side of the decompressor An inlet side temperature detector, and a target pressure selected such that the pressure detected by the high pressure side pressure detector is maximized based on the refrigerant temperature detected by the radiator outlet side temperature detector Lower and the pressure reducer inlet As COP based on the refrigerant temperature detected from the temperature detector is higher than the selected target pressure to maximize the refrigeration cycle apparatus characterized by comprising a controller for controlling the pressure reducer . 前記放熱器の冷媒出口側と前記減圧器の入口側、あるいは前記吸熱器の冷媒出口側と前記圧縮機の吸入側とを接続する第1補助熱交換器バイパス回路を備え、前記第1補助熱交換器バイパス回路に流量調整弁を設けたことを特徴とする請求項1記載の冷凍サイクル装置。  A first auxiliary heat exchanger bypass circuit connecting the refrigerant outlet side of the radiator and the inlet side of the decompressor, or the refrigerant outlet side of the heat absorber and the suction side of the compressor; 2. The refrigeration cycle apparatus according to claim 1, wherein a flow rate adjusting valve is provided in the exchanger bypass circuit. 前記圧縮機の吐出温度に応じて、前記第1補助熱交換器バイパス回路の流量調整弁を流れる冷媒流量を調整することを特徴とする請求項2記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to claim 2, wherein the flow rate of refrigerant flowing through the flow rate adjustment valve of the first auxiliary heat exchanger bypass circuit is adjusted according to the discharge temperature of the compressor. 少なくとも圧縮機と、放熱器と、減圧器と、吸熱器とから冷凍サイクルを構成するとともに、前記放熱器で超臨界状態となりうる冷媒を封入し、前記放熱器の冷媒出口側の冷媒を分岐し、その一部を補助減圧器により減圧して、前記放熱器の冷媒出口側の冷媒を冷却する第2補助熱交換器を介して、前記圧縮機の吸入側もしくは中間圧部に導くバイパス回路を設け、前記圧縮機の吐出側から前記減圧器の入口側までの冷媒圧力を検知する高圧側圧力検知器と、前記放熱器の冷媒出口側の冷媒温度を検出する放熱器出口側温度検知器と、前記減圧器の入口側の冷媒温度を検出する減圧器入口側温度検知器とを備え、前記高圧側圧力検知器で検出した圧力が、前記放熱器出口側温度検知器より検知された冷媒温度に基づいてCOPが最大になるように選定された目標圧力より低く、かつ、前記減圧器入口側温度検知器より検知された冷媒温度に基づいてCOPが最大になるように選定された目標圧力より高くなるように、前記減圧器を制御する制御器とを備えたことを特徴とする冷凍サイクル装置。At least a compressor, a radiator, a decompressor, and a heat absorber constitute a refrigeration cycle, and a refrigerant that can be in a supercritical state is enclosed by the radiator, and the refrigerant on the refrigerant outlet side of the radiator is branched. A bypass circuit that decompresses a part of the refrigerant by an auxiliary pressure reducer and leads to the suction side or intermediate pressure portion of the compressor via a second auxiliary heat exchanger that cools the refrigerant on the refrigerant outlet side of the radiator. A high pressure side pressure detector that detects a refrigerant pressure from a discharge side of the compressor to an inlet side of the decompressor, and a radiator outlet side temperature detector that detects a refrigerant temperature on a refrigerant outlet side of the radiator. A pressure reducer inlet side temperature detector that detects a refrigerant temperature on the inlet side of the pressure reducer, and the pressure detected by the high pressure side pressure detector is detected by the radiator outlet side temperature detector. COP will be maximized based on Lower than the selected target pressure, and such that said vacuum inlet side temperature detectors COP on the basis of the detected refrigerant temperature than is higher than the selected target pressure to maximize, the decompressor A refrigeration cycle apparatus comprising a controller for controlling. 前記圧縮機の吐出温度に応じて、前記補助減圧器の開度を調整する補助減圧器制御器を設けたことを特徴とする請求項4に記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to claim 4, further comprising an auxiliary pressure reducer controller that adjusts an opening degree of the auxiliary pressure reducer according to a discharge temperature of the compressor. 前記放熱器出口側温度検知器を、前記放熱器の外部流体入口側の流体温度を検出する温度検知器で代用することを特徴とする請求項1から5のいずれかに記載の冷凍サイクル装置。  6. The refrigeration cycle apparatus according to claim 1, wherein the radiator outlet side temperature detector is replaced with a temperature detector that detects a fluid temperature on an external fluid inlet side of the radiator. 前記冷媒は二酸化炭素であることを特徴とする請求項1から6のいずれかに記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the refrigerant is carbon dioxide.
JP2000269807A 2000-09-06 2000-09-06 Refrigeration cycle equipment Expired - Fee Related JP3838008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000269807A JP3838008B2 (en) 2000-09-06 2000-09-06 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000269807A JP3838008B2 (en) 2000-09-06 2000-09-06 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2002081766A JP2002081766A (en) 2002-03-22
JP3838008B2 true JP3838008B2 (en) 2006-10-25

Family

ID=18756350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000269807A Expired - Fee Related JP3838008B2 (en) 2000-09-06 2000-09-06 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP3838008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342930B1 (en) 2007-04-25 2013-12-18 한라비스테온공조 주식회사 Air conditioner utilizing carbon dioxide refrigerant

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6694763B2 (en) * 2002-05-30 2004-02-24 Praxair Technology, Inc. Method for operating a transcritical refrigeration system
GB0215249D0 (en) * 2002-07-02 2002-08-14 Delphi Tech Inc Air conditioning system
JP4731806B2 (en) * 2003-12-01 2011-07-27 パナソニック株式会社 Refrigeration cycle apparatus and control method thereof
KR101034204B1 (en) * 2004-01-13 2011-05-12 삼성전자주식회사 Air conditioning system
JP2006071177A (en) * 2004-09-01 2006-03-16 Denso Corp Ejector type heat pump cycle
JP4595546B2 (en) * 2005-01-14 2010-12-08 パナソニック株式会社 Heat pump equipment
EA200800686A1 (en) * 2005-10-04 2008-10-30 АС-САН ХОЛДИНГ АпС COOLING SYSTEM FOR AIR CONDITIONING SYSTEM AND HEAT PUMPS
EP1953337A4 (en) 2005-10-31 2011-03-30 Panasonic Corp EXPANDER AND HEAT PUMP USING THE SAME
WO2007052510A1 (en) 2005-10-31 2007-05-10 Matsushita Electric Industrial Co., Ltd. Expander and heat pump using the same
JP2007155229A (en) * 2005-12-06 2007-06-21 Sanden Corp Vapor compression type refrigerating cycle
JP2008008523A (en) * 2006-06-28 2008-01-17 Hitachi Appliances Inc Refrigeration cycle and water heater
FR2913102B1 (en) * 2007-02-28 2012-11-16 Valeo Systemes Thermiques AIR CONDITIONING INSTALLATION EQUIPPED WITH AN ELECTRICAL RELIEF VALVE
JP4715852B2 (en) * 2008-02-11 2011-07-06 株式会社デンソー Heat pump water heater
JP5318099B2 (en) * 2008-06-13 2013-10-16 三菱電機株式会社 Refrigeration cycle apparatus and control method thereof
JP4901916B2 (en) * 2009-06-18 2012-03-21 三菱電機株式会社 Refrigeration air conditioner
JP2010043861A (en) * 2009-11-25 2010-02-25 Denso Corp Refrigerating cycle
JP2010101621A (en) * 2010-02-12 2010-05-06 Panasonic Corp Refrigerating cycle device and method of controlling the same
JP6037637B2 (en) * 2012-03-29 2016-12-07 三菱重工業株式会社 Heat pump control device, heat pump, and heat pump control method
JP6355901B2 (en) * 2013-07-30 2018-07-11 三菱重工サーマルシステムズ株式会社 Supercritical heat pump cycle and control method thereof
KR102313304B1 (en) * 2017-06-21 2021-10-14 엘지전자 주식회사 Air conditioner for carbon dioxide
CN109945326A (en) * 2019-04-16 2019-06-28 珠海格力电器股份有限公司 Outdoor unit, heat exchange system, control method of heat exchange system and air conditioner
CN112325494B (en) * 2019-08-05 2025-06-27 青岛海信日立空调系统有限公司 A refrigerant circulation system and a control method thereof
WO2022013975A1 (en) * 2020-07-15 2022-01-20 三菱電機株式会社 Cold heat source unit and refrigeration cycle device
WO2023175653A1 (en) * 2022-03-14 2023-09-21 三菱電機株式会社 Abnormality detecting device, refrigeration cycle device, and abnormality detecting system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102255A (en) * 1987-10-14 1989-04-19 Technol Res Assoc Super Heat Pump Energ Accum Syst Heat pump
DE69118924T2 (en) * 1991-09-16 1996-11-21 Sinvent A/S, Trondheim HIGH PRESSURE CONTROL IN A TRANSCRITICAL VAPOR COMPRESSION CIRCUIT
JP2816789B2 (en) * 1992-12-01 1998-10-27 株式会社日立製作所 Cold water supply device
JP3467989B2 (en) * 1996-09-13 2003-11-17 株式会社日本自動車部品総合研究所 Vapor compression refrigeration cycle
JP4207235B2 (en) * 1997-01-09 2009-01-14 株式会社日本自動車部品総合研究所 Vapor compression refrigeration cycle
JPH11193967A (en) * 1997-12-26 1999-07-21 Zexel:Kk Refrigerating cycle
JP4045654B2 (en) * 1998-07-15 2008-02-13 株式会社日本自動車部品総合研究所 Supercritical refrigeration cycle
JP2000088364A (en) * 1998-09-11 2000-03-31 Nippon Soken Inc Supercritical refrigerating cycle
JP2000234811A (en) * 1999-02-17 2000-08-29 Matsushita Electric Ind Co Ltd Refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101342930B1 (en) 2007-04-25 2013-12-18 한라비스테온공조 주식회사 Air conditioner utilizing carbon dioxide refrigerant

Also Published As

Publication number Publication date
JP2002081766A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP3838008B2 (en) Refrigeration cycle equipment
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
KR0126550B1 (en) Capacity adjusting method of steam compression cycle and vehicle air conditioner including the cycle
JP6125000B2 (en) Dual refrigeration equipment
JP5025605B2 (en) Refrigeration cycle apparatus and air conditioner
JP4167196B2 (en) Natural circulation combined use air conditioner and natural circulation combined use air conditioner control method
WO2008019689A2 (en) A transcritical refrigeration system with a booster
JP6033297B2 (en) Air conditioner
KR20060024438A (en) Control of the cooling system
JP2001133058A (en) Refrigeration cycle device
JP3983520B2 (en) Supercritical vapor compression system and suction line heat exchanger for adjusting the pressure of the high pressure component of the refrigerant circulating in the supercritical vapor compression system
JP2008134031A (en) Refrigeration equipment using non-azeotropic refrigerant mixture
JP4317793B2 (en) Cooling system
JP6080939B2 (en) Air conditioner
JP2000346466A (en) Vapor compression type refrigerating cycle
JP6598882B2 (en) Refrigeration cycle equipment
JP7241866B2 (en) refrigeration cycle equipment
JP5409747B2 (en) Dual refrigeration equipment
JP4999531B2 (en) Air conditioner
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
JP2001004235A (en) Steam compression refrigeration cycle
KR102313304B1 (en) Air conditioner for carbon dioxide
JP7224503B2 (en) refrigeration cycle equipment
JP2008096072A (en) Refrigeration cycle equipment
JP2006336943A (en) Refrigeration system and cold storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20051026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051205

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees