JP3947830B2 - Manufacturing method of flat heat exchange tube - Google Patents
Manufacturing method of flat heat exchange tube Download PDFInfo
- Publication number
- JP3947830B2 JP3947830B2 JP17015797A JP17015797A JP3947830B2 JP 3947830 B2 JP3947830 B2 JP 3947830B2 JP 17015797 A JP17015797 A JP 17015797A JP 17015797 A JP17015797 A JP 17015797A JP 3947830 B2 JP3947830 B2 JP 3947830B2
- Authority
- JP
- Japan
- Prior art keywords
- wall forming
- forming portion
- heat exchange
- flat heat
- reinforcing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、カーエアコン用コンデンサ、カーエアコン用エバポレータ、ルームエアコン用コンデンサ、自動車用オイルクーラ、産業機械用オイルクーラ等の熱交換器に用いられる偏平状熱交換管を製造する方法に関する。
【0002】
この明細書において、図1および図5の上下、左右をそれぞれ上下、左右というものとする。但し、図13に関する説明については、同図の上下、左右をそれぞれ上下、左右というものとする。
【0003】
【従来の技術と発明が解決しようとする課題】
近時、たとえばカーエアコン用コンデンサとして、図13に示すように、互いに間隔をおいて左右に平行に配置された一対のヘッダ(31)(32)と、両端がそれぞれ両ヘッダ(31)(32)に接続された並列状の偏平状冷媒流通管(33)(熱交換管)と、隣り合う冷媒流通管(33)の間の通風間隙に配置されるとともに、両冷媒流通管(33)にろう付されたコルレゲート・フィン(34)と、左のヘッダ(31)の周壁上端部に接続された入口管(35)と、右ヘッダ(32)の周壁下端部に接続された出口管(36)と、左ヘッダ(31)の中程より上方位置の内部に設けられた左仕切板(37)と、右ヘッダ(32)の中程より下方位置の内部に設けられた右仕切板(38)とを備えており、入口管(35)と左仕切板(37)間の冷媒流通管(33)の本数、左仕切板(37)と右仕切板(38)間の冷媒流通管(33)の本数、右仕切板(38)と出口管(36)間の冷媒流通管(33)の本数がそれぞれ上から順次減少されて通路群を構成しており、入口管(35)から流入した気相の冷媒が、出口管(36)より液相となって流出するまでに、コンデンサ内を各通路群単位に蛇行状に流れるようになされているいわゆるマルレチフロー型と称されるコンデンサ(特公平3−45300号公報参照)が、従来のサーペンタイン型コンデンサに代わり高性能化、低圧力損失化および超コンパクト化を実現しうるものとして広く使用されてきている。
【0004】
上記コンデンサに用いられる偏平状冷媒流通管は、その内部に高圧ガス冷媒が導入されるため、耐圧性が要求される。この要求にこたえるとともに熱交換効率を高めるために、冷媒流通管には、平らな上下壁と、上下壁にまたがるとともに長さ方向にのびた補強壁を備えたアルミニウム中空押出形材よりなるものが用いられていた。ところで、熱交換効率の向上およびコンデンサのコンパクト化の関係上、偏平状冷媒流通管は薄肉で、かつ高さはできるだけ低い方が望ましい。しかしながら、押出形材製の場合、押出技術上の制約から管高さを低くしかつ薄肉化するには限界があった。
【0005】
そこで、この間題を解決するために、本出願人は、先に、上下壁と、上下壁の左右両側縁にまたがる左右両側壁と、上下壁にまたがるとともに長さ方向に伸びかつ相互に間隔をおいて設けられた複数の補強壁とを備え、内部に並列状の流体通路を有するとともに補強壁に並列状の流体通路どうしを通じさせる連通孔が長さ方向に間隔をおいて複数あけられている偏平状熱交換管であって、板材を圧延することにより形成され、かつ下壁形成部、下壁形成部に上方隆起状に一体成形された左右の両側壁形成部、および下壁形成部に上方隆起状に一体成形されかつ上縁に長さ方向に間隔をおいて複数の切欠きが形成されている補強壁形成部からなる板状下構成部材と、下面にろう材層を有するブレージングシートからなりかつ下構成部材の両側壁形成部にまたがる上壁形成部を有する板状上構成部材とをろう付することにより製造された偏平状熱交換管を提案した(特開平6−281373号公報参照)。
【0006】
ところが、上記下構成部材は圧延により形成されているので、図14に示すように、下構成部材(40)の補強壁形成部(41)における隣り合う切欠き(42)間の部分(43A)(43B)(43C)の上縁の高さ位置が同一にはならずに異なっていることがあり、その結果上記全ての部分(43A)(43B)(43C)のうち一部の部分(43A)の上縁だけが上構成部材(50)の上壁形成部(51)に接触し、他の部分(43B)(43C)ではその上縁と上壁形成部(51)との間に僅かの隙間が存在することになる。したがって、ろう付時に上記全ての部分(43A)(43B)(43C)のうちその上縁と上壁形成部(51)との間に隙間が存在する部分(43B)(43C)は上構成部材(50)の上壁形成部(51)とろう付されず、上構成部材(50)と下構成部材(40)の補強壁形成部(41)とのろう付強度が不足して要求される耐圧性を満たすことができないという問題がある。
【0007】
そこで、このような間題を解決するために、上構成部材下面のろう材層の厚さを厚くすることが考えられるが、この場合ろう付時にろう材が垂れ、その結果流体通路の横断面積が減少して通路抵抗が大きくなったり、ひどい場合には流体通路が閉鎖されたりするおそれがある。しかも、切欠き、すなわち補強壁に形成される連通孔が閉鎖されたりするおそれがある。
【0008】
本発明の目的は、上記間題を解決した偏平状熱交換管の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
請求項1の発明による偏平状熱交換管の製造方法は、上下壁と、上下壁の左右両側縁にまたがる左右両側壁と、上下壁にまたがるとともに長さ方向に伸びかつ相互に間隔をおいて設けられた複数の補強壁とを備え、内部に並列状の流体通路を有するとともに補強壁に並列状の流体通路どうしを通じさせる連通孔が長さ方向に間隔をおいて複数あけられている偏平状熱交換管を、下壁形成部、下壁形成部に上方隆起状に一体成形された左右の両側壁形成部、および下壁形成部に上方隆起状に一体成形されかつ上縁に長さ方向に間隔をおいて複数の切欠きが形成されている補強壁形成部からなる板状下構成部材と、下面にろう材層を有するブレージングシートからなりかつ下構成部材の両側壁形成部にまたがる上壁形成部を有する板状上構成部材とをろう付することにより製造するにあたり、
上構成部材の上壁形成部下面における各補強壁形成部の上端両隅と対応する部分に、長さ方向に伸びかつ先端部が横断面円弧状となされている一対の凸条を形成しておき、上下両構成部材を上下から力を加えた状態で仮止めした後、両構成部材をろう付することを特徴とするものである。
【0010】
これによれば、上下両構成部材の仮止め時に、上記凸条が補強壁形成部における隣り合う切欠き間の部分に接触することになる。すなわち、上記全ての部分の上縁の高さ位置が種々異なり、これにより上構成部材の上壁形成部下面との間に隙間が存在する部分があったとしても、このような隙間の間隔が凸条の突出高さと等しいか、あるいはこれよりも小さければ、この部分は上構成部材の上壁形成部下面に形成せられた先端部が横断面円弧状となされている一対の凸条に接触し、両凸条にろう付される。したがって、従来の場合に比べて、上下両構成部材どうしのろう付強度が増大する。この発明の偏平状熱交換管の製造方法によれば、上下両構成部材の仮止め時に、上記一対の凸条が補強壁形成部における隣り合う切欠き間の部分に接触することになる。すなわち、上記全ての部分の上縁の高さ位置が種々異なり、これにより上構成部材の上壁形成部下面との間に隙間が存在する部分があったとしても、このような隙間の間隔が凸条の突出高さと等しいか、あるいはこれよりも小さければ、この部分は上構成部材の上壁形成部下面の凸条に接触し、一対の凸条にろう付される。したがって、従来の場合に比べて、上下両構成部材どうしのろう付強度が増大する。
【0011】
請求項2の発明は、請求項1記載の偏平状熱交換管の製造方法において、凸条の突出高さが、10〜200μmであることを特徴とするものである。
【0012】
ここに凸条の突出高さを10〜200μmに限定したのは、補強壁形成部における隣り合う切欠き間の部分の上縁の高さ位置が種々異なることに起因して上構成部材の上壁形成部下面との間に存在する隙間の大きさが10μmよりも小さくなることはなく、10μmよりも低いと、両構成部材の仮止めのさいにも下構成部材の補強壁形成部の上端が凸条に接触しないことがあり、200μmよりも高いと、両構成部材の仮止めが不可能になるおそれがあるからである。
【0013】
請求項3の発明は、請求項1記載の偏平状熱交換管の製造方法において、補強壁形成部の上端両隅および凸条の先端部が、ともに横断面円弧状となされており、両構成部材を仮止めするさいに、各凸条の先端部の斜め横部分が、補強壁形成部の片隅に当たるように、各凸条が位置せしめられていることを特徴とするものである。
【0014】
これにより、両構成部材を上下から力を加えた状態で仮止めしたさい、補強壁形成部の上端部による一対の凸条間の押し広げおよび同上端部両隅の変形の少なくともいずれか一方の現象が生じるため、補強壁形成部と凸条との接触面積が大きくなり、ろう付けが良好となる。
【0015】
請求項4の発明は、請求項1ないし3のいずれか一項に記載の偏平状熱交換管の製造方法において、上構成部材の上壁形成部の左右両側縁部に、下構成部材の両側壁形成部の高さよりも垂下長さが大きくかつ両側壁形成部の外側に重なる垂下壁を一体に形成しておき、垂下壁の下端部を左右方向内方に折曲げて下構成部材の下壁形成部下面の左右両側縁部に係合させることにより、上下両構成部材を仮止めすることを特徴とするものである。
【0016】
これにより、上下両構成部材を仮止めするための治具等を必要としないし、また、製造された偏平状熱交換管では、左右両側壁が2重構造となるので、この部分の耐圧性が向上する。
【0017】
請求項5の発明は、請求項4記載の偏平状熱交換管の製造方法において、下壁形成部下面の左右両側縁部に外上向き傾斜面を形成しておき、垂下壁の下端部を外上向き傾斜面に折曲げて重ね、下壁形成部と面一となすことを特徴とするものである。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。以下の説明において、「アルミニウム」という語には、純アルミニウムの他にアルミニウム合金を含むものとする。
【0019】
図1および図2はこの実施形態で製造される偏平状熱交換管を示す。
【0020】
図1および図2において、偏平状熱交換管(A)は、平らな上下壁(1)(2)と、上下壁(1)(2)の左右両側縁にまたがる2重構造の左右両側壁(3)(4)と、左右両側壁(3)(4)間において上下壁(1)(2)にまたがるとともに長さ方向にのびかつ相互に所定間隔をおいて設けられた複数の補強壁(5)とを備え、内部に並列状の流体通路(6)を有するものであり、下壁(2)、左右両側壁(3)(4)および補強壁(5)を構成する坂状アルミニウム製下構成部材(10)と、上壁(1)および左右両側壁(3)(4)を構成する板状アルミニウム製上構成部材(20)とにより形成されたものである。
【0021】
上壁(1)の内面に、長さ方向にのびかつ先端部が横断面円弧状となされている凸条(7)が下方隆起状に一体に形成されている。下壁(2)内面における隣接する補強壁(5)どうしの間の部分には、それぞれ伝熱面積を増大させる目的で、長さ方向に間隔をおいて複数の凸条(8)が上方隆起状に一体に形成されている。補強壁(5)は、下壁(2)に一体に形成された補強壁形成部(11)が上壁(1)内面に接合されて形成されたものである。補強壁(5)の管幅方向におけるピッチは、4mm以下にするのが好ましく、補強壁(5)の高さは、2mm以下にするのが好ましい。また、補強壁(5)には、並列状の流体通路(6)どうしを通じさせる複数の連通孔(9)があけられている。連通孔(9)は、平面から見て千鳥配置となっている。連通孔(9)があけられていると、並列状の流体通路(6)をそれぞれ流通する流体は、連通孔(9)を通じて偏平状熱交換管(A)の幅方向に流れ、すべての流体通路(6)に行き渡って混合され、流体通路(6)間で流体に温度差が生じることはなくなる。したがって、熱交換効率が向上する。各補強壁(5)におけるすべての連通孔(9)の占める割合である開口率は、10〜40%、特に10〜30%の範囲内であることが好ましく、20%程度であることが望ましい。この場合に、連通孔(9)を形成することによる熱交換効率向上効果が顕著なものとなる。連通孔(9)は、補強壁形成部(11)の上縁に所定間隔おきに形成された切欠き(12)が、上壁(1)によりその開放部が塞がれることによって形成されたものである。この場合、複数の補強壁(5)にあけられた連通孔(9)が平面から見て千鳥配置となっているので、偏平状熱交換管(A)の幅方向において、両構成部材(10)(20)どうしの接合部が存在することになり、十分な接合強度が確保される。
【0022】
偏平状熱交換管(A)は、次のようにして製造される。
【0023】
まず、図3および図4に示すような板状アルミニウム製下構成部材(10)と、同じく板状アルミニウム製上構成部材(20)とを圧延により得る。
【0024】
下構成部材(10)は、平らな下壁形成部(13)と、下壁形成部(13)の両側縁に立ち上がり状に一体に形成された両側壁形成部(14)と、下壁形成部(13)の両側壁形成部(14)間に立ち上がり状にかつ相互に所定間隔をおいて一体に形成された長さ方向にのびる複数の補強壁形成部(11)とよりなり、補強壁形成部(11)の上縁にその長さ方向に所定間隔をおいて台形状の切欠き(12)が、平面から見て千鳥配置となるように形成されている。下構成部材(10)の下壁形成部(13)下面における左右両側縁部に、左右方向外方に向かって上方に傾斜した外上向き傾斜面(15)が形成されている。また、下構成部材(10)の両側壁形成部(14)の高さは補強壁形成部(11)と等しくなっている。さらに、下壁形成部(13)の上面に凸条(8)がー体に形成されている。下構成部材(10)は、外面、すなわち下壁形成部(13)の下面および両側壁形成部(14)の外面にろう材層(図示略)を有するアルミニウムブレージングシートからなる。
【0025】
上構成部材(20)は、平らな上壁形成部(21)と、上壁形成部(21)の両側縁に垂下状に一体に形成されかつ下構成部材(10)の両側壁形成部(14)の外側に重なる両垂下壁(22)とよりなる。上構成部材(20)の上壁形成部(21)の幅は下構成部材(10)の幅よりも若干広く、下構成部材(10)に被せられるようになっている。上構成部材(20)の上壁形成部(21)下面には、長さ方向に伸びかつ先端部が横断面円弧状となされている複数の凸条(23)が左右方向に間隔をおきかつ左右両端の所定幅部分を除いて全幅にわたって下方隆起状に一体に形成されている。そして、下構成部材(10)の各補強壁形成部(11)の上端両隅と対応する部分に1対の凸条(23)が存在するようになされている。上壁形成部(21)の下面における補強壁形成部対応部分以外の部分の凸条(23)は伝熱面積増大用凸条となる。上構成部材(20)の両垂下壁(22)の垂下長さは下構成部材(10)の両側壁形成部(14)の高さよりも若干大きくなっている。上構成部材(20)は、両面、すなわち上壁形成部(21)の上下両面、および両垂下壁(22)の内外両面にろう材層(24)を有するアルミニウムブレージングシートからなる。凸条(23)は、上構成部材(20)の圧延時に同時に形成されるので、図8に示すように、凸条(23)部分でのろう材層(24)の厚さは、その他の部分よりも厚くなる。
【0026】
ついで、上下構成部材(20)(10)に脱脂処理を施した後、これらにろう付用フラックスを塗布する。
【0027】
ついで、図4および図5に示すように、上構成部材(20)を下構成部材(10)に嵌め被せた後、上構成部材(20)の両垂下壁(22)における下構成部材(10)の両側壁形成部(14)よりも下方に突出した部分を内方に折り曲げて下構成部材(10)の傾斜面(15)に密着させ、両構成部材(20)(10)を上下から力を加えた状態で仮止めする。このとき、図6〜図8に示すように、補強壁形成部(11)における隣り合う切欠き(12)間の部分(16)の上縁の高さ位置が種々異なることに起因して上構成部材(20)の上壁形成部(21)下面との間に隙間が存在していたとしても、各部分(16)の上縁は上壁形成部(21)下面の一対の凸条(23)に密に接触する。上記隙間の大きさが凸条(23)の突出高さよりも小さい場合には、凸条(23)は変形する。また、上壁形成部(21)も若干変形する。
【0028】
ついで、両構成部材(20)(10)を仮止めしたものをろう付温度に加熱する。すると、下構成部材(10)の両側壁形成部(14)上端が上構成部材(20)の上壁形成部(21)下面の左右両端部にろう付されるとともに下構成部材(10)の補強壁形成部(11)の上端両隅が一対の凸条(23)にろう付される。凸条(23)部分でのろう材層(24)の厚さは、その他の部分よりも厚くなっているので、ろう付時には、溶融したろう材はこの部分に引き寄せられ易くなり、補強壁形成部(11)の上面と2つの凸条(23)との間の隙間も塞がれる。さらに、上構成部材(20)の両垂下壁(22)および下構成部材(10)の両側壁形成部(14)どうしがろう付されるとともに上構成部材(20)の垂下壁(22)下端の折り曲げられた部分が下構成部材(20)の傾斜面(15)に重ね継手でろう付され、下壁形成部(13)と面一となされる。こうして、偏平状熱交換管(A)が製造される。
【0029】
上記実施形態においては、凸条(23)は上壁形成部(21)下面のほぼ全幅にわたって形成されているが、これに限るものではなく、補強壁形成部(11)の上端両隅と対応する部分だけに形成されていてもよい。とくに、図9および図11に示されているように、補強壁形成部(27)の上端両隅(28)および凸条(29)の先端部が、ともに横断面円弧状となされており、凸条(29)が各補強壁形成部(27)の上端両隅(28)と対応する部分に一対存在するとともに、両構成部材(10)(20)を仮止めするさいに、各凸条(29)の先端部の斜め横部分が、補強壁形成部(27)の片隅に当たるように、各凸条(29)が位置せしめられていることが好ましい。図11における一対の凸条(29)どうしの間隔(L2)は、図9における一対の凸条(29)どうしの間隔(L1)より若干大きいので、両構成部材(10)(20)を組合わせた状態で、前者における補強壁形成部(27)の上縁と上壁形成部(21)との間隔(l2)は、後者における補強壁形成部(27)の上縁と上壁形成部(21)との間隔(l1)よりも小さくなる。両構成部材(10)(20)を上下から力を加えた状態で仮止めしたさい、上記間隔(l1)(l2)は縮められ、凸条(29)および補強壁形成部(27)の上端両隅(28)はいずれも変形するが、両間隔(l1)(l2)は異なるため、上記変形態様が異なり、図9の凸条(29)および補強壁形成部(27)の上端両隅(28)は、図10に示すような変形凸条(29A)および変形上端両隅(28A)となり、図11の凸条(29)および補強壁形成部(27)の上端両隅(28)は、図12に示すような変形凸条(29B)および変形上端両隅(28B)となり、一対の変形凸条(29B)と変形両隅(28B)の接触面積は、図10の変形凸条(29A)と変形上端両隅(28A)の接触面積より大きい。
【0030】
【発明の効果】
本発明の偏平状熱交換管の製造方法によれば、上述のように、上構成部材と下構成部材とのろう付は強固なものとなり、充分な耐圧性が得られる。
【図面の簡単な説明】
【図1】 本発明の方法で製造された扁平状熱交換管の横断面図である。
【図2】 図1の部分拡大図である。
【図3】 上構成部材と下構成部材との組み合わせ方法を示す部分斜視図である。
【図4】 上構成部材と下構成部材とを組み合わせた状態を示す横断面図である。
【図5】 上構成部材と下構成部材とを仮止めした状態を示す横断面図である。
【図6】 図5の部分拡大図である。
【図7】 図6のVII一VII線断面図である。
【図8】 図6の部分拡大図である。
【図9】 上構成部材の上壁形成部の凸条が、補強壁形成部対応部分に特定配置で一対存在している1例を示すもので、下構成部材と上構成部材とを組合わせた状態における部分拡大断面図である。
【図10】 図9の組合わせ物の仮止め後の拡大断面図である。
【図11】 上構成部材の上壁形成部のろう付け強度増大用凸条が、補強壁形成部対応部分に特定配置で一対存在している他の例を示すもので、下構成部材と上構成部材とを組合わせた状態における部分拡大断面図である。
【図12】 図11の組合せ物の仮止め後の拡大断面図である。
【図13】 偏平状冷媒流通管(熱交換管)が使用されたコンデンサの正面図である。
【図14】 従来の方法で上下両構成部材を仮止めした状態を示す図7相当の図である。
【符号の説明】
(1) 上壁
(2) 下壁
(3) 左側壁
(4) 右側壁
(5) 補強壁
(6) 、 流体通路
(9) 連通孔
(10) 下構成部材
(11)(27) 補強壁形成部
(12) 切欠き
(13) 下壁形成部
(14) 両側壁形成部
(15) 外上向き傾斜面
(20) 上構成部材
(21) 上壁形成部
(22) 垂下壁
(23)(29) 凸条
(24) ろう材層
(28) 補強壁形成部の上端両隅
(A) 偏平状熱交換管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a flat heat exchange tube used in a heat exchanger such as a condenser for a car air conditioner, an evaporator for a car air conditioner, a condenser for a room air conditioner, an oil cooler for an automobile, and an oil cooler for an industrial machine.
[0002]
In this specification, the upper and lower sides and the left and right sides in FIGS. However, in the description relating to FIG. 13, the upper and lower sides and the left and right sides in FIG.
[0003]
[Prior art and problems to be solved by the invention]
Recently, as a capacitor for a car air conditioner, for example, as shown in FIG. 13, a pair of headers (31) and (32) arranged in parallel to each other at a distance from each other, and both headers (31) and (32) at both ends, respectively. ) Connected to the parallel flat refrigerant circulation pipe (33) (heat exchange pipe) and the adjacent refrigerant circulation pipe (33), and to both refrigerant circulation pipes (33). A brazed corrugated fin (34), an inlet pipe (35) connected to the upper end of the peripheral wall of the left header (31), and an outlet pipe (36) connected to the lower end of the peripheral wall of the right header (32) ), A left partition plate (37) provided in the upper position from the middle of the left header (31), and a right partition plate (38) provided in the lower position from the middle of the right header (32). ), The inlet pipe (35) and the left divider (3 ), The number of refrigerant flow pipes (33) between the left partition plate (37) and the right partition plate (38), the number of refrigerant flow pipes (33) between the right partition plate (38) and the outlet pipe (36). The number of refrigerant flow pipes (33) is sequentially reduced from above to form a passage group, and the gas-phase refrigerant flowing from the inlet pipe (35) flows out from the outlet pipe (36) as a liquid phase. By the way, a so-called multi-flow type capacitor (refer to Japanese Patent Publication No. 3-45300), which is configured to flow in a meandering manner in each path group in the capacitor, replaces the conventional serpentine type capacitor. It has been widely used as a device that can realize a reduction in pressure, a reduction in pressure loss, and a reduction in size.
[0004]
Since the high-pressure gas refrigerant is introduced into the flat refrigerant circulation pipe used for the capacitor, pressure resistance is required. In order to meet this requirement and increase the heat exchange efficiency, the refrigerant distribution pipe is made of an aluminum hollow extruded shape that has flat upper and lower walls and a reinforcing wall that extends across the upper and lower walls and extends in the length direction. It was done. By the way, in view of improving heat exchange efficiency and downsizing of the condenser, it is desirable that the flat refrigerant flow pipe is thin and has a height as low as possible. However, in the case of an extruded profile, there is a limit to reducing the tube height and reducing the wall thickness due to restrictions on extrusion technology.
[0005]
Therefore, in order to solve this problem, the present applicant firstly has the upper and lower walls, the left and right side walls that straddle the left and right side edges of the upper and lower walls, the upper and lower walls, and the lengthwise direction. And a plurality of communication holes that have parallel fluid passages in the interior and that allow the parallel fluid passages to pass through the reinforcement walls at intervals in the lengthwise direction. A flat heat exchange tube formed by rolling a plate material, and formed into a lower wall forming portion, left and right side wall forming portions integrally formed in a raised shape on the lower wall forming portion, and a lower wall forming portion. A brazing sheet having a plate-like lower constituent member formed of a reinforcing wall forming portion integrally formed in an upward protruding shape and having a plurality of notches formed in the upper edge at intervals in the length direction, and a brazing material layer on the lower surface And both side walls of the lower component A plate on component having a top wall forming portion that spans forming unit proposed flat heat exchange tubes produced by brazing (see Japanese Patent Laid-Open No. 6-281373).
[0006]
However, since the lower component member is formed by rolling, as shown in FIG. 14, a portion (43A) between adjacent notches (42) in the reinforcing wall forming portion (41) of the lower component member (40). (43B) The height position of the upper edge of (43C) may not be the same and may be different, and as a result, some of the above-mentioned parts (43A) (43B) (43C) (43A) ) Only contacts the upper wall forming portion (51) of the upper structural member (50), and the other portions (43B) and (43C) are slightly between the upper edge and the upper wall forming portion (51). There will be a gap. Therefore, the part (43B) (43C) in which a gap exists between the upper edge and the upper wall forming part (51) among all the parts (43A) (43B) (43C) at the time of brazing is the upper constituent member. (50) The upper wall forming portion (51) is not brazed and the brazing strength between the upper structural member (50) and the reinforcing wall forming portion (41) of the lower structural member (40) is insufficient and required. There is a problem that the pressure resistance cannot be satisfied.
[0007]
Therefore, in order to solve such a problem, it is conceivable to increase the thickness of the brazing material layer on the lower surface of the upper component member. In this case, the brazing material hangs down during brazing, and as a result, the cross-sectional area of the fluid passageway. May decrease and the passage resistance may increase, and in a severe case, the fluid passage may be closed. In addition, the notch, that is, the communication hole formed in the reinforcing wall may be closed.
[0008]
An object of the present invention is to provide a method of manufacturing a flat heat exchange tube that solves the above problem.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a flat heat exchange pipe manufacturing method comprising: upper and lower walls; left and right side walls straddling left and right edges of the upper and lower walls; straddling the upper and lower walls and extending in the length direction and spaced apart from each other. A flat shape having a plurality of reinforcing walls provided and having parallel fluid passages therein and a plurality of communicating holes through the reinforcing walls through the parallel fluid passages at intervals in the lengthwise direction. the heat exchange tubes, the lower wall forming portion, the length side walls forming part of the left and right integrally formed upwardly ridged, and the upper edge one or formed integrally with the upper ridge shape lower wall forming portion on the lower wall forming portion A plate-like lower constituent member composed of a reinforcing wall forming portion having a plurality of notches formed at intervals in the direction, and a brazing sheet having a brazing material layer on the lower surface and straddling both side wall forming portions of the lower constituent member A plate-like upper component having an upper wall forming portion In producing by the brazing,
A pair of ridges extending in the length direction and having a distal end portion having an arcuate cross section are formed at portions corresponding to the upper end corners of each reinforcing wall forming portion on the lower surface of the upper wall forming portion of the upper structural member. The upper and lower constituent members are temporarily fixed in a state where force is applied from the upper and lower sides, and then both constituent members are brazed.
[0010]
According to this, at the time of temporarily fixing the upper and lower constituent members, the ridge contacts the portion between the adjacent notches in the reinforcing wall forming portion. That is, the height positions of the upper edges of all the parts are variously different, and even if there is a part where there is a gap between the upper wall forming portion and the lower surface of the upper component member, the gap interval is not reduced. If it is equal to or smaller than the protruding height of the ridges, this portion contacts a pair of ridges whose tip is formed on the lower surface of the upper wall forming portion of the upper component member and has an arcuate cross section. And it is brazed to both ridges. Therefore, the brazing strength between the upper and lower constituent members is increased as compared with the conventional case. According to the manufacturing method of the flat heat exchange tubes of the present invention, when the temporary stop of the upper and lower components, so that the pair of projections is in contact with the portion between the notch adjacent the auxiliary Tsuyokabe forming unit. That is, the height positions of the upper edges of all the parts are variously different, and even if there is a part where there is a gap between the upper wall forming portion and the lower surface of the upper component member, the gap interval is not reduced. If it is equal to or smaller than the protruding height of the ridges, this portion contacts the ridges on the lower surface of the upper wall forming portion of the upper component member and is brazed to the pair of ridges. Therefore, the brazing strength between the upper and lower constituent members is increased as compared with the conventional case.
[0011]
According to a second aspect of the present invention, in the method for producing a flat heat exchange tube according to the first aspect, the protruding height of the ridge is 10 to 200 μm.
[0012]
The protrusion height of the ridge is limited to 10 to 200 μm because the height position of the upper edge of the portion between the adjacent notches in the reinforcing wall forming portion is different. The size of the gap existing between the lower surface of the wall forming portion is not smaller than 10 μm, and if it is lower than 10 μm, the upper end of the reinforcing wall forming portion of the lower structural member is also used for temporarily fixing both structural members. This is because there is a possibility that the protrusions do not come into contact with each other, and if it is higher than 200 μm, the temporary fixing of both the constituent members may be impossible .
[0013]
Invention 請 Motomeko 3 is a method of manufacturing a flat heat exchange tube according to
[0014]
As a result, when both the constituent members are temporarily fixed in a state where force is applied from above and below, at least one of the expansion between the pair of ridges by the upper end portion of the reinforcing wall forming portion and the deformation of both corners of the upper end portion is provided. Since the phenomenon occurs, the contact area between the reinforcing wall forming portion and the ridge is increased, and brazing is improved .
[0015]
Invention 請
[0016]
As a result, a jig or the like for temporarily fixing the upper and lower constituent members is not required, and the manufactured flat heat exchange pipe has a double structure on the left and right side walls. Will improve.
[0017]
According to a fifth aspect of the present invention, in the method for manufacturing a flat heat exchange tube according to the fourth aspect, the upper and lower inclined surfaces are formed on the left and right side edges of the lower surface of the lower wall forming portion, and the lower end portion of the hanging wall is It is characterized in that it is folded and stacked on an upward inclined surface so as to be flush with the lower wall forming portion.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the term “aluminum” includes an aluminum alloy in addition to pure aluminum.
[0019]
1 and 2 show a flat heat exchange tube manufactured in this embodiment.
[0020]
1 and 2, the flat heat exchange pipe (A) is composed of a flat upper and lower walls (1) and (2) and left and right side walls of a double structure straddling the left and right edges of the upper and lower walls (1) and (2). (3) A plurality of reinforcing walls extending between the upper and lower walls (1) and (2) and extending in the length direction and spaced from each other between the left and right side walls (3) and (4). (5), which has parallel fluid passages (6) in the interior thereof, and is sloped aluminum that constitutes the lower wall (2), the left and right side walls (3), (4), and the reinforcing wall (5) and manufactured under component (10), and is formed by the upper wall (1) and left and right side walls (3) a plate-like Al mini um made on components constituting the (4) (20).
[0021]
On the inner surface of the upper wall (1), a ridge (7) extending in the length direction and having a distal end portion having a circular arc shape is integrally formed in a downwardly raised shape. A plurality of ridges (8) bulge upward at intervals in the longitudinal direction at the portion between the adjacent reinforcing walls (5) on the inner surface of the lower wall (2) to increase the heat transfer area. Are integrally formed. The reinforcing wall (5) is formed by joining a reinforcing wall forming portion (11) formed integrally with the lower wall (2) to the inner surface of the upper wall (1). The pitch in the tube width direction of the reinforcing wall (5) is preferably 4 mm or less, and the height of the reinforcing wall (5) is preferably 2 mm or less. The reinforcing wall (5) has a plurality of communication holes (9) through which the parallel fluid passages (6) pass. The communication holes (9) are staggered when viewed from the plane. When the communication hole (9) is opened, the fluid flowing through each of the parallel fluid passages (6) flows in the width direction of the flat heat exchange pipe (A) through the communication hole (9). The fluid is mixed in the passage (6), and no temperature difference is generated in the fluid between the fluid passages (6). Therefore, the heat exchange efficiency is improved. The opening ratio, which is the proportion of all the communication holes (9) in each reinforcing wall (5), is preferably in the range of 10 to 40%, particularly 10 to 30%, and preferably about 20%. . In this case, the effect of improving the heat exchange efficiency by forming the communication hole (9) becomes remarkable. The communication hole (9) is formed by notches (12) formed at predetermined intervals on the upper edge of the reinforcing wall forming portion (11), and the open portion is closed by the upper wall (1). Is. In this case, since the communicating holes (9) drilled in the plurality of reinforcing walls (5) are arranged in a staggered manner when viewed from above, both constituent members (10) are formed in the width direction of the flat heat exchange pipe (A). (20) There will be joints between each other, and sufficient joint strength will be ensured.
[0022]
The flat heat exchange tube (A) is manufactured as follows.
[0023]
First, a plate-like aluminum lower component (10) as shown in FIGS. 3 and 4 and a plate-like aluminum upper component (20) are obtained by rolling.
[0024]
The lower component (10) includes a flat lower wall forming portion (13), both side wall forming portions (14) integrally formed in a rising shape on both side edges of the lower wall forming portion (13), and a lower wall forming portion. The reinforcing wall includes a plurality of reinforcing wall forming portions (11) extending in the length direction and formed integrally between the both side wall forming portions (14) of the portion (13) at predetermined intervals. A trapezoidal notch (12) is formed on the upper edge of the forming portion (11) at a predetermined interval in the length direction so as to be arranged in a staggered manner when viewed from the plane. An outwardly inclined surface (15) inclined upward in the left-right direction is formed on the left and right side edges of the lower surface of the lower wall forming portion (13) of the lower component (10). Moreover, the height of the both side wall formation part (14) of a lower structural member (10) is equal to the reinforcement wall formation part (11). Further, a protrusion (8) is formed on the upper surface of the lower wall forming portion (13). The lower component member (10) is made of an aluminum brazing sheet having a brazing filler metal layer (not shown) on the outer surface, that is, the lower surface of the lower wall forming portion (13) and the outer surfaces of both side wall forming portions (14).
[0025]
The upper component member (20) is formed integrally with a flat upper wall forming portion (21) and both side edges of the upper wall forming portion (21) in a hanging manner and on both side wall forming portions ( 14) and both hanging walls (22) overlapping the outside. The width of the upper wall forming portion (21) of the upper constituent member (20) is slightly wider than the width of the lower constituent member (10), and covers the lower constituent member (10). On the lower surface of the upper wall forming portion (21) of the upper component member (20), a plurality of ridges (23) extending in the length direction and having a distal end portion having an arcuate cross section are spaced apart in the left-right direction. Except for the predetermined width portions at the left and right ends, they are integrally formed in a downwardly raised shape over the entire width. A pair of ridges (23) are present at portions corresponding to the upper corners of each reinforcing wall forming portion (11) of the lower component (10). The ridges (23) in portions other than the portion corresponding to the reinforcing wall formation portion on the lower surface of the upper wall formation portion (21) serve as ridges for increasing the heat transfer area. The hanging length of both hanging walls (22) of the upper component (20) is slightly larger than the height of both side wall forming portions (14) of the lower component (10). Upper component (20) is double-sided, i.e. consisting of upper and lower surfaces, and aluminum brazing sheet having a brazing material layer (24) on the inner and outer surfaces of Ryoshide lower wall (22) of the upper wall forming portion (21). Since the ridge (23) is formed simultaneously with the rolling of the upper component member (20), the thickness of the brazing filler metal layer (24) at the ridge (23) portion is as shown in FIG. Thicker than part.
[0026]
Subsequently, after degreasing the upper and lower constituent members (20) and (10), a brazing flux is applied thereto.
[0027]
Next, as shown in FIG. 4 and FIG. 5, after the upper component member (20) is fitted on the lower component member (10), the lower component member (10) on the both hanging walls (22) of the upper component member (20). ) Of the both side wall forming portions (14) projecting downward from the both side wall forming portions (14) is inwardly bent and brought into close contact with the inclined surface (15) of the lower component member (10), so that both component members (20) and (10) are Temporarily fix with force applied. At this time, as shown in FIGS. 6 to 8, the height position of the upper edge of the portion (16) between the adjacent notches (12) in the reinforcing wall forming portion (11) is different. Even if there is a gap between the lower surface of the upper wall forming portion (21) of the component member (20), the upper edge of each portion (16) is a pair of ridges on the lower surface of the upper wall forming portion (21) ( 23) in intimate contact. When the size of the gap is smaller than the protruding height of the ridge (23), the ridge (23) is deformed. Further, the upper wall forming portion (21) is also slightly deformed.
[0028]
Subsequently, what temporarily fixed both structural members (20) and (10) is heated to brazing temperature. Then, the upper ends of both side wall forming portions (14) of the lower constituent member (10) are brazed to the left and right ends of the lower surface of the upper wall forming portion (21) of the upper constituent member (20) and the lower constituent member (10). Both upper corners of the reinforcing wall forming part (11) are brazed to the pair of ridges (23). Since the thickness of the brazing material layer (24) at the ridge (23) is thicker than the other parts, the molten brazing material is easily attracted to this part at the time of brazing, thereby forming a reinforcing wall. The gap between the upper surface of the part (11) and the two ridges (23) is also closed. Further, both the hanging walls (22) of the upper component member (20) and the both side wall forming portions (14) of the lower component member (10) are brazed to each other and the lower end of the hanging wall (22) of the upper component member (20). The bent portion is brazed to the inclined surface (15) of the lower component member (20) with a lap joint to be flush with the lower wall forming portion (13). In this way, a flat heat exchange tube (A) is manufactured.
[0029]
In the said embodiment, although the protruding item | line (23) is formed over substantially the full width of the upper wall formation part (21) lower surface, it is not restricted to this, It respond | corresponds with the upper-end both corners of a reinforcement wall formation part (11). You may form only in the part to do. In particular, as shown in FIGS. 9 and 11, both the upper end corners (28) of the reinforcing wall forming portion (27) and the tips of the ridges (29) are arc-shaped in cross section, A pair of ridges (29) exist at portions corresponding to the upper end corners (28 ) of each reinforcing wall forming portion (27), and each ridge is temporarily fixed when both constituent members (10) and (20) are temporarily fixed. It is preferable that each protrusion (29) is positioned so that the oblique lateral portion of the tip of (29) hits one corner of the reinforcing wall forming portion (27) . Since the distance (L2) between the pair of ridges (29) in FIG. 11 is slightly larger than the distance (L1) between the pair of ridges (29) in FIG. 9, both constituent members (10) and (20) are assembled. In the combined state, the distance (l2) between the upper edge and the upper wall forming portion (21) of the reinforcing wall forming portion (27) in the former is the upper edge and the upper wall forming portion of the reinforcing wall forming portion (27) in the latter. It becomes smaller than the interval (l1) with (21). When the two structural members (10) and (20) are temporarily fixed with force applied from above and below, the above-mentioned distances (l1) and (l2) are reduced, and the upper ends of the ridges (29) and the reinforcing wall forming part (27) Both corners (28) are deformed, but the distances (l1) and (l2) are different. Therefore, the above-described deformation modes are different, and the upper corners of the ridge (29) and the reinforcing wall forming part (27) in FIG. (28) becomes the deformed ridge (29A) and the deformed upper end corners (28A) as shown in FIG. 10, and the upper end corners (28) of the ridge (29) and the reinforcing wall forming portion (27) of FIG. Is a deformed ridge (29B) and deformed top corners (28B) as shown in FIG. 12, and the contact area between the pair of deformed ridges (29B) and the deformed corners (28B) is the deformed ridge of FIG. It is larger than the contact area between (29A) and the upper corners (28A) of the deformation upper end.
[0030]
【The invention's effect】
According to the method for manufacturing a flat heat exchange tube of the present invention, as described above, the brazing between the upper constituent member and the lower constituent member becomes strong, and sufficient pressure resistance is obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a flat heat exchange tube manufactured by the method of the present invention.
FIG. 2 is a partially enlarged view of FIG.
FIG. 3 is a partial perspective view showing a method of combining an upper constituent member and a lower constituent member.
FIG. 4 is a cross-sectional view showing a state in which an upper constituent member and a lower constituent member are combined.
FIG. 5 is a cross-sectional view showing a state in which an upper component member and a lower component member are temporarily fixed.
6 is a partially enlarged view of FIG. 5;
7 is a cross-sectional view taken along line VII-VII in FIG.
8 is a partially enlarged view of FIG.
FIG. 9 shows an example in which a pair of ridges on the upper wall forming portion of the upper structural member exist in a specific arrangement in the portion corresponding to the reinforcing wall forming portion, and the lower structural member and the upper structural member are combined. FIG.
FIG. 10 is an enlarged cross-sectional view of the combination of FIG. 9 after temporary fixing.
FIG. 11 shows another example in which a pair of protrusions for increasing the brazing strength of the upper wall forming portion of the upper constituent member are present in a specific arrangement in the portion corresponding to the reinforcing wall forming portion. It is a partial expanded sectional view in the state which combined the structural member.
12 is an enlarged cross-sectional view of the combination of FIG. 11 after being temporarily fixed.
FIG. 13 is a front view of a condenser in which a flat refrigerant flow pipe (heat exchange pipe) is used.
FIG. 14 is a view corresponding to FIG. 7 showing a state in which both the upper and lower constituent members are temporarily fixed by a conventional method.
[Explanation of symbols]
(1) upper wall (2) the lower wall (3) left side wall (4) right side wall (5) reinforcing wall (6), the fluid communication path
(9) Communication hole (10) Lower structural member (11) (27) Reinforcing wall forming portion (12) Notch (13) Lower wall forming portion (14) Both side wall forming portion (15) Outwardly upward inclined surface (20) Upper structural member (21) Upper wall forming part (22) Hanging wall (23) (29) Projection strip (24) Brazing material layer (28) Upper corners of reinforcing wall forming part (A) Flat heat exchange tube
Claims (5)
上構成部材の上壁形成部下面における各補強壁形成部の上端両隅と対応する部分に、長さ方向に伸びかつ先端部が横断面円弧状となされている一対の凸条を形成しておき、上下両構成部材を上下から力を加えた状態で仮止めした後、両構成部材をろう付することを特徴とする偏平状熱交換管の製造方法。The upper and lower walls, the left and right side walls straddling the left and right side edges of the upper and lower walls, and a plurality of reinforcing walls extending in the longitudinal direction and extending in the longitudinal direction and spaced apart from each other, A flat heat exchange pipe having a fluid passage and a plurality of communication holes that are arranged in parallel with the reinforcing wall through the parallel fluid passages is provided above the lower wall forming portion and the lower wall forming portion. both side wall forming portions of the left and right integrally formed on ridged, and a lower wall forming portion reinforcement has a plurality of notches formed at intervals in the longitudinal direction on the upper edge one or formed integrally with the upper ridge shape A plate-like lower constituent member made of a wall forming portion and a plate-like upper constituent member made of a brazing sheet having a brazing material layer on the lower surface and having an upper wall forming portion straddling both side wall forming portions of the lower constituent member are brazed. In manufacturing by
A pair of ridges extending in the length direction and having a distal end portion having an arcuate cross section are formed at portions corresponding to the upper end corners of each reinforcing wall forming portion on the lower surface of the upper wall forming portion of the upper structural member. A method for manufacturing a flat heat exchange tube, characterized in that both the upper and lower constituent members are temporarily fixed in a state where force is applied from above and below, and then both constituent members are brazed.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP17015797A JP3947830B2 (en) | 1996-06-26 | 1997-06-26 | Manufacturing method of flat heat exchange tube |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP8-166165 | 1996-06-26 | ||
| JP16616596 | 1996-06-26 | ||
| JP17015797A JP3947830B2 (en) | 1996-06-26 | 1997-06-26 | Manufacturing method of flat heat exchange tube |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JPH1071463A JPH1071463A (en) | 1998-03-17 |
| JPH1071463A5 JPH1071463A5 (en) | 2005-04-21 |
| JP3947830B2 true JP3947830B2 (en) | 2007-07-25 |
Family
ID=26490635
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP17015797A Expired - Fee Related JP3947830B2 (en) | 1996-06-26 | 1997-06-26 | Manufacturing method of flat heat exchange tube |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP3947830B2 (en) |
Families Citing this family (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4764647B2 (en) * | 2004-03-09 | 2011-09-07 | 昭和電工株式会社 | Flat plate manufacturing plate, flat tube, heat exchanger, and heat exchanger manufacturing method |
| CA2591683C (en) * | 2004-10-22 | 2013-12-10 | Aleris Aluminum Koblenz Gmbh | Tube made of a profile rolled metal product and method of producing the same |
| CN1959330A (en) * | 2006-09-15 | 2007-05-09 | 东莞高宝铝材制品厂有限公司 | Condenser and radiator-grid of environmental protective, energy saving air condition and refrigeration system prepared from high tech composite materials |
| JP5066708B2 (en) * | 2007-01-10 | 2012-11-07 | 株式会社ケーヒン・サーマル・テクノロジー | Plate for flat tube manufacturing |
| BRPI0806229B8 (en) | 2007-07-11 | 2020-09-15 | Denso Corp | heat exchanger |
| JP5359288B2 (en) * | 2008-02-28 | 2013-12-04 | 株式会社デンソー | Heat exchanger |
| JP6139699B2 (en) * | 2013-11-28 | 2017-05-31 | 京セラ株式会社 | Channel member |
-
1997
- 1997-06-26 JP JP17015797A patent/JP3947830B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JPH1071463A (en) | 1998-03-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3864916B2 (en) | Heat exchanger | |
| JP4122578B2 (en) | Heat exchanger | |
| JP3814917B2 (en) | Stacked evaporator | |
| EP0815971B1 (en) | Process for producing flat heat exchange tubes | |
| JP4171760B2 (en) | Flat tube and manufacturing method of flat tube | |
| US20080283229A1 (en) | Heat exchanger | |
| JP3580942B2 (en) | Flat tubes for heat exchangers and heat exchangers equipped with the tubes | |
| JP3947830B2 (en) | Manufacturing method of flat heat exchange tube | |
| EP0762070A1 (en) | Refrigerant tubes for heat exchangers | |
| JP2000193387A (en) | Flat heat exchange tube and method for producing the same | |
| JP2001050686A (en) | Evaporator | |
| JP2000193387A5 (en) | ||
| JP4751662B2 (en) | Plate for manufacturing flat tube, method for manufacturing flat tube, and method for manufacturing heat exchanger | |
| US20060162919A1 (en) | Flat tube and process for producing heat exchanger with use of the flat tube | |
| US20080264620A1 (en) | Flat Tube, Platelike Body for Making the Flat Tube and Heat Exchanger | |
| JPH1071463A5 (en) | ||
| US20080245518A1 (en) | Flat Tube Making Platelike Body, Flat Tube, Heat Exchanger and Process for Fabricating Heat Exchanger | |
| JP3806850B2 (en) | Manufacturing method of flat heat exchange tube | |
| JPH10185471A (en) | Heat exchanger | |
| JP2004069258A (en) | Flat tube, and method of manufacturing heat exchanger using flat tube | |
| JPH0345301B2 (en) | ||
| JP2952593B1 (en) | Stacked heat exchanger | |
| JP3000188B2 (en) | Stacked heat exchanger | |
| JP5250210B2 (en) | Flat tubes and heat exchangers | |
| JP3089542B2 (en) | Manufacturing method of flat heat exchange tube |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20010516 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040610 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040610 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060621 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060627 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060817 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060912 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061025 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070126 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070306 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070402 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
| S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 6 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140427 Year of fee payment: 7 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| LAPS | Cancellation because of no payment of annual fees |