JP3975248B2 - ニューラルネットワーク分類を使用する生物測定認識 - Google Patents
ニューラルネットワーク分類を使用する生物測定認識 Download PDFInfo
- Publication number
- JP3975248B2 JP3975248B2 JP50158098A JP50158098A JP3975248B2 JP 3975248 B2 JP3975248 B2 JP 3975248B2 JP 50158098 A JP50158098 A JP 50158098A JP 50158098 A JP50158098 A JP 50158098A JP 3975248 B2 JP3975248 B2 JP 3975248B2
- Authority
- JP
- Japan
- Prior art keywords
- master
- features
- feature
- pattern
- biometric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/12—Fingerprints or palmprints
- G06V40/1347—Preprocessing; Feature extraction
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/25—Determination of region of interest [ROI] or a volume of interest [VOI]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Human Computer Interaction (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Databases & Information Systems (AREA)
- Collating Specific Patterns (AREA)
Description
本発明は、ローラルサブコントラクト(Loral Subcontract)第SO−124465−S号及び第MDA904−93−C4074号のもとで、政府後援によってなされた。政府は、本発明に対し、一定の権利を有する。
発明の分野
本発明は主に、画像一致の分野に関する。特に、本発明は、個人の同一性を証明する生物測定の個人証明装置に関する。
発明の背景
本発明は主に画像一致分野に適用することができるが、本発明は個人識別の領域に特に有用性がある。個人の識別または個人がその人が主張する人物であるかどうかを立証することは、個人、会社及び政府が直面する共通の問題である。非常に複雑な個人識別が、微妙な政府及び民間設備では安全のために使用されることが多いが、個人識別の一致は、空港、個人の敷地及び家庭等の物理的な場所への接近の制御等の個人の同一性が識別または立証される必要のあるところでは適用の可能性がある。コンピュータ計算及びデータ管理機器への接近の制御及びバンキングまたは商業処理への適用の可能性もある。
個人を識別する方法は、パスワード、パスキー等の制限された物品の所有、または参照写真に一致すること等の物理的外観等の制限された情報の知識に依頼することが多い。生物測定徴候も個人識別に使用される。生物測定学は生物現象の学問であり、個人識別の領域では、個人の選択されたいくつかの特性を使用してその個人の同一性を識別または立証する。生物測定識別は、一定の個人特性は実質的に各個人に独特であり、詐欺師が複製することは困難であるため、特に有用である。更に、生物測定データの記録及び分析は自動化することができるため、コンピュータ制御エレクトロニクス及びデジタル記録技術を使用することができる。
識別目的に生物測定徴候を使用することは、特定の生物測定要因が実質的に各個人に独特であり、容易に測定でき、その個人が識別のためにテストされる期間のわたって不変であることを必要とする。更に、生物測定徴候は、誤った識別に対する安全を保障するために、詐欺師が複製することが困難なものでなければならない。生物測定徴候は生物学的に決定されるか、または、筆跡または音声パターン等の学習されるまたは後天的ないくつかの特性でもよい。
個人識別装置に使用するために今日最も研究されている生物測定特性には、指紋、手型または掌型、網膜スキャン、サイン及び音声パターンが挙げられる。手型または掌型技術は一般に、人の手の形状または掌のしわ等の他の重要な特徴を評価するが、これらの技術は、認可された個人の手のテンプレートまたは模型によってだまされることもある。網膜スキャン技術は、人の網膜の血管のパターンを評価する。この技術の欠点は、アルコールが血流にあるときまたは眼鏡またはコンタクトレンズを不規則に使用したとき等、ときによって血管のパターンが変動することである。また、ユーザは、網膜スキャンのために目を照らされるのは不快に感じることもあり、または、目とスキャン装置とが接触するときに目が汚染される可能性もある。サインは容易に偽造され、通常、人間が評価しなければならないが、書くときの手の動きの速さ及び力、及びポーズの置き方等の人の手書きの力学を評価する自動装置の研究もなされた。特性を識別するために音声パターンを使用することは、時がたつと人の声は広く変化するための困難、評価の際の背景雑音、及び、認可された個人の声の録音で詐欺師が装置をだます可能性に遭遇する。
人間の眼、顔の特徴、骨の構造、爪パターン及び掌または手の指のしわ、指紋等の多くの生物学的に決定された徴候が長年使用されてきているが、指紋が最も普通に使用されている個人識別の生物測定特性である。指紋分析による個人識別の技術は、長い間、法の施行に使用されたきた。指紋分析に関するこの長い期間の経験により、指紋に関する数多くの情報が発展し、個人の指紋の独特さが確認されてきた。歴史的に、法の施行において、指紋は、保管用に指紋にインクを付けてカードにプリントすることによって記録された。特に法の施行以外の適用のために、煩わしくなく押しつけがましくない記録方法の開発が必要であった。
生の指紋を記録して認可された個人の指紋の格納された代表例と一致させる様々な電気機械装置が開発されてきた。装置の1つの型は、生の指紋のパターンの画像を読み取り、フィルムに格納されたマスター指紋を光学的に比較する。この装置では、生指紋パターンとマスター指紋パターンとを整列し、複雑な装置を使用してユーザの指を記録装置に正確に整合させるのを確実にすることまたは登録を実行するために格納されたパターンに対して生のパターンを回転し並進することが困難である。更に、この型の装置は生と格納された指紋パターンとの正確に1対1の大きさに依存しているため、指がふくれたり、指を記録表面に強く押したりしたとき等、生の指紋パターンがほんのわずかに変形しても一致しないというエラーが起こりうる。
別の型の指紋一致装置では、生の指紋を読み取り、画像を、認可された個人の指紋のホログラムと比較する。この装置は、装置内に各認可された個人用のテスト位置でホログラムのライブラリに保管しなければならず、特別な光源と複雑な光学装置を使用しなければならない。
自動的に指紋を一致させる傾向は、エレクトロニクス及びコンピュータ制御の一致プロセスの使用の増加に向かうが、機械部品及び複雑な光学装置を動かすことに依存することは最小限になる。そのような装置において、一般に生の指紋をスキャンして指紋パターンのバイナリ画像としてデジタルに記録する。各々が指紋パターンの特徴部を規定するうね終端、うねの分岐の点及び渦の芯等指紋パターンの特性的特徴部は、バイナリ指紋画像内に見いだされる。バイナリ指紋画像は、一致があるかどうか決定するために、認可された個人の指紋から予め得られた格納したマスターパターンと比較される。分岐型またはうね終端等の指紋パターン内の特徴部を識別しようと試みる多くの装置は、比較プロセスの初期に一致を決定しなければならない。決定プロセスの初期でエラーがあると、そのようなエラーは決定プロセスの残りを伝播し、それによってエラーの機会は増加する。また、多くの装置は、どの特徴部を指紋画像に認識するべきかに関する考えを予想した。例えば、指紋に関する人間の研究に基づいて、指紋の一定のカテゴリーが識別され指紋の特徴部に名前が付けられた。そのような所定の特徴部及び現象を識別することは、大半の指紋識別装置では不可欠である。
最も簡単な装置一致装置において、生の指紋とマスター指紋との両方の特徴部を比較し、比較に相関関数を適用する。この型の装置の不利点は、生の指紋パターンから得られるバイナリ画像の座標装置が、マスター指紋パターンの座標装置と同一の向き及び位置であるように、ユーザの指が一般に画像記録装置と正確に整列することを要求されることである。更に、人の皮膚は弾性があるため、指の皮膚が画像記録装置のプラテンとどのように交差するかによって記録される生の指紋を変動することがある。例えば、皮膚の弾性性質による記録される装置の弾性変形またはゆがみが記録されるか、または、皮膚の油がプラテンに広いうねを記録させる可能性がある。そのような変化しやすさは、相関関数に依存する装置の正確さを損なうことが多い。
発明の開示
生物測定認識装置は2つのフェーズを含む。すなわち、認可されたユーザの生物測定徴候のマスターパターンセットを作製することと、分類ニューラルネットワークを使用する証明とである。マスターパターンセットを作製するために、認可された生物測定ユーザの徴候の画像を複数の関心領域すなわち「特徴部」に分割する。装置は、識別目的にはどの特徴部が最も有用であるかを決定する。次いでこれらのマスター特徴部からマスターパターンが作製され、このようにしてマスターパターンセットを作製する。証明の間に、ユーザの試料パターンセットも同様に作製される。ニューラルネットワークを使用して、試料パターンセットをマスターパターンセットと比較して、ユーザを証明するべきか否かを決定する。
【図面の簡単な説明】
本発明は、添付の図面を参照して更に完全に記載するが、図面中の対応部品には同一の参照符号を付してある。
図1は、本発明による生物測定認識装置のブロック図である。
図2a、図2bは、それぞれ、入力/出力及び指紋記録装置の正面斜視図及び上面図である。
図3は、ユーザの生物測定特徴部を登録してマスターパターンとしてメモリに格納するための方法の流れ図である。
図4は、指紋パターンからの特徴部を有する関心領域を示す。
図5は、指紋パターンの回転を説明するのに使用される。
図6は、n個の最も独特な関心領域を選択するための方法の流れ図である。
図7は、3つの特徴部パターンが規定される2つの方法を示すために使用される。
図8は、どのようにして4つの特徴部パターンが規定されるかを示すために使用される。
図9は、ユーザの生物測定特徴部を証明するための方法の流れ図である。
図10は、域値を規定するのに使用される頻度密度関数の例である。
図11は、頻度密度関数の別の例を示す。
好適な実施例の詳細な説明
下記の好適な実施例の詳細な説明において、その一部を形成する添付図面を参照しており、図面には本発明が実施される特定の実施例が例のために示されている。他の実施例も利用することができ、本発明の範囲を逸脱することなく構造的変更をすることもできると理解されるすべきものである。
本発明の生物測定装置は2つのフェーズに分類することができる。第1のフェーズは、マスターパターンセットと呼ばれる認可されたユーザの生物測定徴候のマスターパターンのセットを作製することである。第2のフェーズは、証明であり、すなわち、証明する対象のユーザの生物測定徴候の画像が得られる。証明には、ユーザの提示した生の生物測定パターンと記録されたマスターパターンセットとの間に一致が必要である。下記の好適な実施例の詳細な説明において、指紋を認識する生物測定認識装置が記載される。しかし、当業者には、実質的でない変更を加えることにより、本明細書に記載した実施例が、例えば、顔の特徴、気孔紋、または目の特徴等の他の生物測定徴候を認識するために使用することができることは、容易に認識される。
図1は、指紋認識装置10の実施例のブロック図である。指紋記録装置は、ユーザの指紋の画像を取得する。取得した指紋画像とともに、ユーザの名前及び他のデータ等の指紋画像に関連する情報を入力/出力手段14を使用して入力し、メモリ18に格納する。適切な指紋記録装置12は、ユーザの親指または他の指を、好ましくは一般に所定の向きに、受け入れて、指紋を画像形成しなければならない。例えば、指紋パターンの画像アレイは、0〜255の各色の解像範囲で明暗度を画定する整数を有する512×512ピクセルの3色画像であるか、0〜255の間のピクセル値を有するグレースケール画像であるか、または各ピクセルを単一ビットで規定するバイナリ画像でもよい。画像情報がデジタル形態でない場合は、アナログ−デジタルコンバータ15等のビデオ画像プレプロセッサモジュールが画像情報をデジタル化する。
指紋を記録する多くの装置が業界ではよく知られている。例えば、図2a、2bは、入力/出力手段14を有する指紋認識装置10の指紋記録装置12のカウンタが装着された実施例の半正面図及び上面図である。指紋記録部12は、親指または他の指の位置決めキャビティ32を有し、ぎざぎざのついたプラテンを備えることが好ましく、親指または他の指を快適に、一般に所定の向きに受ける。指位置決めキャビティ32は、検出窓30にアクセスを提供する器具の内部に延在する。キャビティ32の場所及び構成によって、証明を求める個人の左手または右手のいずれかを位置決めすることができる。図2aに示す構成は、手の位置を決めて適切に指紋パターンを取得することができる数多くのものの中の1つにすぎない。例えば、検出窓30はカウンタまたは壁に一体になった単なる平らな窓であり、配置ガイドラインを備え、一般に受け入れ可能な向きを確実にしてもよい。
指紋記録装置12は、個人が親指または他の指を検出窓30に置くときにCCDカメラで個人の指紋を画像形成する。使用に適切な多くのカメラが市販されており、例えば、ミネソタ州ミネトンカのデジタルバイオメトリクスが販売のモデルFC−11指紋捕獲ストリップ等である。デジタルバイオメトリクスのカメラを使用し、次いで、カナダ、ケベック州、Dorualのマトロックスエレクトロニック装置ズ社が販売のフレーム把持器IP−8画像処理ボードも使用する。あるいは、フレーム把持のために、カリフォルニア州アービンのシャープエレクトロニクスが販売の情報処理及びディスプレイ、モデルGPB1を、カリフォルニア州サンブルーノのアイデンティケータの指紋画像形成機DFR−90ととに使用することができ、DFR−90は中にCCDカメラを備えた直接指紋読取機であり、標準RS−170ビデオ信号を出力する。
マスターパターンセットの作製
認可されたユーザの指紋マスターパターンセットを作製するために、プロセッサ16は、図3に示された流れ図に従ってデジタル化された指紋画像情報を処理する。取得された指紋画像を詳細に分析することができるため、ブロック51で取得された各指紋画像は複数の関心領域に分割される。
好適な実施例において、関心領域は重なり合うが、関心領域は互いに隣接してもよい。各関心領域は、このようにして、総指紋画像の一定の部分に関する情報を含む。本発明のために、関心領域は「特徴部」と称する。従って、「特徴部」及び「関心領域」という用語は、本発明のためには、交代可能に使用することができると理解される。しかし、明瞭のため及び理解を容易にするために、「特徴部」という用語を詳細な説明全体にわたって使用するものとする。
特徴部のサイズはブロック52で規定される。特徴部のサイズを決定するために、認可されていないユーザと認められたり、認可されたユーザと認められなかったりする可能性がある皮膚の弾性による指紋パターンの弾性変形及びゆがみを考慮に入れなければならない。弾性に関して、特徴部のサイズは、指紋パターンのうねがパターンの間隙内に入らないように、規定しなければならない。図4は、うね72とうね72の間の間隙74とを有する指紋パターンの特徴部70を示す。本発明において、特徴部70のサイズは、弾性によって間隙74が存在すべき領域へうねが変形して入り込まないように、選択される。特徴部70が大きすぎると、少ない数のピクセルがうね72と間隙74との幅を現し、それによってうね72が間隙74に変形することになる。更に、特徴部のサイズは、特徴部の境界外部へうねが伸びることができる点へ皮膚の弾性が変形しないように、選択される。
間隙74が存在すべき領域へうねが変形して入り込まないことを確実にするに、ピクセルの数で測定される最大変形は、特徴部の対角線を横切って測定したうねの中心から隣接する間隙の中心までにあるピクセルの数よりも大幅に少なくなければならない。図4を参照すると、距離Dは対角線76を横切るうね72の中心と間隙74の中心との間の距離である。このようにして、特徴部のサイズは、ピクセルの数で測定する最大変形が距離Dよりも大幅に小さくなるように、選択される。ピクセルの数による特徴部のサイズは、装置を実行するのに選択したハードウェアによって、特に光学素子の大きさに関して、変動する。一般的なハードウェア器具において、全体的画像の解像度は256×256ピクセルであるが、好適な特徴部のサイズは、20〜25ピクセルスクエアの寸法を有する。そのような特徴部は一般にその中におよそ3個か4個のうねを含む。
特徴部のサイズを決定する際に考慮に入れることができる別の要因は、指紋を提示するときの回転の可能性である。指紋を提示するときにユーザが回転すると、指紋パターンのうねは間隙が存在すべき領域に回転して入り、それによって次の一致に問題が生じる。図5において、角度θは、うね72の縁が特徴部70の境界と交差する場所によって規定される。上述のように、エルゴノミクスに基づいて、ハードウェアは、ユーザがプラテン上にどのように指紋を提示するかを制御することができる。しかし、この制御があっても、記録された指紋画像がいくらかの回転を含むことは避けることができない。特徴部70のサイズは、ユーザが一般に回転するよりも角度θが大幅に大きいように選択されることが好ましい。特徴部のサイズが小さくなさればなるほど、回転の問題は小さくなる。
再度図3を参照すると、ブロック52で特徴部のサイズを決定した後、ブロック54で指紋画像内でn個の最も独特な特徴部が識別される。本発明の装置は、指紋内の所定の数の独特な特徴部を識別する。特徴部は、全体的な構造ではなく、局所的であることが好ましい。これらの「独特な」特徴部は次いでパターン内で互いに対して配列することができ、パターンが全体構造を規定する。これらのパターンはマスターパターンセットとして格納されるものである。
指紋パターンを特徴づけるのに十分独特であるとして選択される特徴部は、数多くの異なる方法で選択することができる。例えば、プロセッサは、相関機能を使用して同一の指紋が元である特徴部を比較し、同一指紋内の他の特徴部に対する1つの特徴部の独特さを決定する。あるいは、プロセッサは、複数の指紋の特徴部に対する特徴部を比較し、それによって、いずれの指紋内にも存在する特徴部の蓋然性を決定する。
1つの指紋内のn個の最も独特な特徴部を決定する好適な方法を図6に示す。ブロック80で、特徴部が選択されて、それが取られた指紋内でその特徴部の独特さを決定する。ブロック82、84で、選択された特徴部を画像内の他のすべての特徴部と比較する。この比較から、各特徴部はブロック85で独特値を割り当てられる。ブロック82での特徴部の比較は、指紋内の他の特徴部に対する独特さと、候補特徴部内での変化の両方を要求することが好ましい。特徴部の独特さは、相関関数を使用する良好な相関の逆である。より独特な特徴部は、同一指紋内の他の特徴部との一致が不良であるかまたは適合が不良である。1つの特徴部内での変化は、その特徴部内のピクセル値内に変化があることを必要とする。例えば、すべての黒ピクセルまたはすべてのグレーピクセルを有する特徴部はほとんどまたは全く変化がない。相関値は低いが独特な特徴部ではないいくつかの特徴部を排除することができるため、1つの特徴部内での変化が望ましい。
本発明の好適な実施例において、装置は、画像内の各特徴部Rの独特さUを決定するために方程式1を使用する。
方程式1において、Sは画像内のすべてのm×m個の特徴部のセットであるが、Rは例外で、これは参照特徴部である。Rijは特徴部Rの(i,j)番目のピクセルグレーレベルである。同様に、IijはIの(i,j)番目のピクセルグレーレベルである。
は、それぞれの特徴部内の平均グレーレベルである。方程式1に示される規定基準は、画像内の特徴部の独特さと特徴部内の変化の両方を必要とする。
各特徴部の独特値が決定された後、装置はブロック88でn個の最も独特な特徴部を選択する。n個の最も独特な特徴部を選択するときに、n個の最も高い独特値を備えた特徴部を選択することができるが、必ずしもそうする必要はない。例えば、1つのピクセルによって間隔をおかれるように、特徴部が高程度に重なり合う実施例において、装置の極めて独特な部分を含むいくつかの重なり合う特徴部は、高独特値を有する。そのような場合、1つの領域内で最も高い独特値を備えた特徴部を選択することが好ましい。1つの特徴部を選択した後、選択した特徴部の周りの領域を占有する特徴部は、独特な特徴部として選択される候補から排除される。別の例では、n個の最も独特な特徴部を選択するときに、例えば、特徴部の1/3または1/2のステップで、画像をインクレメントで分析して、それによって、2つの選択された特徴部が、それぞれ、特徴部のサイズのせいぜい1/3または1/2だけ重なり合うことを確実にする。更に別の実施例は、1つの領域内の独特値を比較して、最大独特値を備えた特徴部を選択してその領域を代表するすることができる。
選択される特徴部の数、nは、数多くの要因によって変動する。選択される特徴部の数、nは、生の指紋パターンを格納されたパターンと一致させるときに装置が特定の個別の特徴部に依存しすぎないように、十分大きな数でなければならない。パターンが1つの特徴部に依存しすぎ、そのパターンを規定するのに他の十分な特徴部を使用していないときに、ユーザが画像から並進した特徴部を備えた生の指紋パターンを提示する場合、一致の正確性に影響を与える可能性がある。他方、パターンを規定するために多すぎる特徴部を選択すると、選択された多くの特徴部はそれほど独特ではないため、意義のあるデータを提供しないことがある。多すぎる特徴部が選択されると、プロセッサ16から追加の計算時間が必要になり、追加の特徴部が重要な情報を提供しないならば、これは望ましくない。好適な実施例において、パターンを規定するために4個から12個の間の特徴部が選択される。選択される数は、プロセッサの速度またはカメラの解像度等の数多くの要因に依存する。
再度図3を参照すると、n個の最も独特な特徴部を選択した後、これらのn個の特徴部に基づいたパターンはブロック56で決定される。好適な実施例において、「パターン」は、後述されるように、それらの特徴部の間の位置関係を記載する向きのデータを伴ったp個の特徴部の集合として規定される。指紋パターンを規定することのできる独特な特徴部の数としてn個の特徴部を選択し、各パターンにp個の特徴部があるならば、
個の可能なパターンがある。
図7、8を使用して、装置が選択された特徴部をどのように取ってパターンを規定するかをブロック56で記載する。6個の独特な特徴部を選択し(n=6)、各パターンを規定するのに3個の特徴部を使用すると(p=3)、6個の特徴部の様々な可能性のある組み合わせに基づいて、20のパターン、
がマスターパターンセットを規定する。
図7は、各パターンがどのように規定されるかを示す。パターンは、複数の特徴部及びそれらの特徴部の間の位置関係を記載する向きのデータによって規定される。パターンを規定するための好適なフォーマットは、特徴部の各対の間の線の長さとこれらの線のスロープとを伴うp個の特徴部の集合である。パターン100は、3つの特徴部(p=3)P1、102、P2、104及びP3、106によって規定され、各々はピクセル位置対(i,j)によって規定される。3つの特徴部の1つは、参照特徴部として示される。図7において、特徴部P1102が参照特徴部として示される。パターンを規定するために、参照特徴部と他の2つの特徴部との間の線の長さが決定される。図7において、長さl1108はP1102とP2104との間の長さであり、長さl2110はP1102とP3106との間の長さである。パターン100は線108及び110のスロープによっても規定され、任意の所定の参照に対する線の角度によって計算される。図7において、スロープα1及びスロープα2は、それぞれ線108及び110の、例えば、水平参照線または垂直参照線の所定の参照に対する向きを規定する。このようにして、参照特徴部、特徴部の間の線の長さ、及び線の長さのスロープがパターンを規定することができる。後述するように、証明は、生の指紋パターンが選択されたマスターに一致する特徴部と、特徴部がマスターパターンと同一のパターンに向くこととの両方を有することを必要とする。
パターンの1つの望ましい性質は回転不変性であり、生の指紋がマスターパターン画像の向きに対して回転する場合、装置は依然として2つの類似パターンを一致させることができることを意味する。図7に示す実施例は回転不変性ではないが、図5に規定するように、回転が角度θよりも大幅に小さい限り、相関関数を適用すると依然として一致特徴部は高い値になるため、回転に耐える。回転した生の指紋パターンを補償する1つの方法は、回転したパターンを、小さなインクレメントで、例えば、1度か5度のインクレメントで、格納して、ハードウェアに基づいてユーザが回転した生の指紋パターンを現実的に提示する大半が格納された回転したパターンによって覆われるようにすることである。別の実施例において、パターンは2つの長さ及び2つの角度ではなく、3つの長さによって規定される。例えば、図7において、l1及びl2に加えて、第3の線の長さ112、すなわちP2とP3との間の長さ、がパターン100を規定することができる。そのようにしてパターン100を規定することは、パターン100が回転的に不変であることを確実にする。
図8は、4つの特徴部(p=4)を使用して各パターンを規定する場合一般に、どのようにしてパターンが規定されるかを示す。パターン120は、それぞれ関心領域122、124、126及び128によって規定される4つの特徴部、P1、P2、P3及びP4を有する。各特徴部はピクセル位置対(i,j)によって規定され、特徴部P1は参照特徴部として示される。4つの特徴部を伴い、それぞれ、P1とP2との間、P1とP3との間及びP1とP4との間の長さを現す3つの線の長さl1、l2及びl3と、線の長さl1、l2及びl3に対応する3つの角度α1、α2及びα3と、がパターン120を規定する。パターンを格納する長さ/角度フォーマットは、パターン内の任意の数多くの特徴部で一般化することがより容易であるため、例えば長さだけのもの等の他のフォーマットより好適である。しかし、向きを現す他の手段も本発明の範囲から逸脱することなく、使用することができると理解される。生の指紋のいずれの並進が全4個の特徴部位置のいずれの可能な一致を壊すため、パターンを格納するフォーマットは、ピクセル対位置を格納することによって行わないことが好ましい。しかし、ピクセル対位置の予想される位置は、一致プロセスを促進する次のサーチために装置によって格納されてもよい。また、画像の境界近傍の特徴部は、そのような特徴部はユーザが画像取得装置から特徴部を並進運動させるときに失われることがあるため、排除することが好ましい。
再度図3を参照すると、マスターパターンセット用にパターンが規定された後、それらはブロック58でメモリに格納される。このようにして、装置は実際の指紋画像は格納しない。むしろ、ブロック56で決定されたパターン及びその中の特徴部がマスターパターンセットして格納される。例えば、6個の特徴部と1パターンにつき3個の特徴部を有する実施例において、6個の特徴部へのポインタ及び20個のパターンがメモリ内に格納される。ブロック58の後、ユーザはこの装置に登録される。
上述の装置は、装置自体が、指紋画像のどの特徴部またはどの領域が最も独特であるかを決定することができる。これらの最も独特な特徴部は、最も有用な識別情報を含み、従ってマスターパターンセットを作製するのに最も有用である。本発明の装置にどの特徴部が最も独特または有用であるかを決定させることによって、本装置は、分岐型、行き止まり型、渦巻型等の予め規定された一定の指紋特徴部に制限される既存の「細目系」装置よりも信頼性がある。これらの型の装置において、装置によって見いだされ使用される特徴部は実際には最良の識別特徴部ではないこともある。これらの当初特徴部の決定は、次いで装置中に伝播するため、結果として誤った識別及び誤った拒絶が高程度に現れる。本発明の装置は装置自体にどの特徴部が最も独特であるかを決定させることによって、本装置は細目系装置の利点を維持しながら、最終結果の信頼性を増加する。
証明
本発明の第2のフェーズは、ユーザの生物測定徴候の証明を提供することである。これは、提示された生の生物測定徴候と認可されたユーザの記録されたマスターパターンのセットに1つとの間に一致があることを装置が見いだすことが必要である。上述のように、本発明は、生物測定徴候が指紋であるものに関して記載する。
図9は、提示された生の生物測定徴候を、上述のフォーマットで格納された記録されたマスターパターン画像で証明する好適な方法の流れ図である。ユーザの指紋の証明を提供するときに、装置はブロック150でユーザ識別情報を受け取ることが好ましい。この識別情報は、例えば、個人識別番号(PIN)、IDカードまたは他のいずれの型の識別情報であってもよい。ユーザがID番号を受け取ると、プロセッサ16はそのユーザID情報に対応するマスターパターンセットを検索する。例えば予想される特徴部の位置等の情報を提供することによって、証明プロセスを促進するため、ユーザがPIN番号を入力することを要請することが好ましい。別の実施例において、装置は、一致が見いだされるまで装置に格納された各マスターパターンセットをチェックし、その場合ユーザは証明され、または一致が見いだされない場合はユーザは証明されない。
ブロック152で装置は生物測定徴候が証明される対象のユーザの画像を取得するが、本明細書では試料画像と称する。ブロック156、158及び160で、プロセッサ16は、マスターパターンセット内の各特徴部に最良に一致する試料画像内の特徴部を識別する。例えば、6個の特徴部を使用してマスターパターンセットを規定する実施例において、6個の特徴部の各々に対する最良の一致が決定される。ブロック158で、マスターパターンセットからの特徴部は、試料画像のいくつかのまたはすべての特徴部と比較される。マスター特徴部が比較される試料画像の特徴部は、重なり合う領域であり1つのピクセルのみによって間隔をおいて置かれるか、または複数のピクセルのインクレメントで間隔をおいて置かれる。予想される位置が提供される実施例において、マスター特徴部はその予想される位置を囲繞する、例えば、40×40または80×80ピクセルのサブ画像等の、サブ画像内の特徴部と比較することができる。別の実施例において、特徴部は画像全体から取ることができる。
マスター特徴部と試料特徴部との類似度を決定するために、数多くの公知の関数のいずれかを使用することができる。好適な実施例において、下記標準相関式が生じる。
ただし、Sは画像またはサブ画像内の全m×m個の特徴部のセットである。Rはマスターパターン画像からの1つの特徴部であり、試料画像からの各候補特徴部Iと比較される。Rijはマスター特徴部Rの(i,j)番目のピクセルグレーレベルである。同様に、Iijは同一特徴部Iの(i,j)番目のピクセルグレーレベルである。
は、それぞれの特徴部内の平均グレーレベルである。各試料特徴部、Iは、特徴部の予想される位置に対する中心であるサーチ領域S内にある。予想される位置は、予想される位置を使用する実施例におけるRの座標値である。
マスターパターンセット内の各特徴部に最良に一致する試料画像内の特徴部を見いだした後、一致した試料特徴部のこのセットを使用して、ブロック162で対応する試料パターンのセットを生成する。次いでマスターパターンセット及び試料パターンセットはブロック164で比較される。パターン比較の最も簡単な方法は、互いから対応するパターンから線の長さ及び角度を引き出して、相関値を使用して、パターン差ベクトルを作製することである。例えば、各パターンが3つの特徴部からなる実施例において、そのような比較はパターン差を規定する七次元差関数を産する。
パターン差≡(3相関値、2Δl値、2Δα値)である。
Δl値は対応する線の長さの差であり、Δα値は対応するスロープ値の差である。あるいは、Δlは差ではなく、l1とl2との比として計算されてもよく、同様の計算をΔαにも使用してもよい。相関値は、装置がマスター特徴部に最良に一致する試料特徴部をサーチしたときに、ブロック158で決定された。そのようなパターン差において、よりよく一致する指紋パターンは、大きな相関値を有し、特徴部が類似していることを示し、また、小さなΔl値及びΔα値を有し、パターンが類似していることを示す。
ブロック165で生成された各パターン差ベクトルは次いで166でプロセッサ16からニューラルネットワーク20へ伝達されてブロック分類を行う。図1に示すように、分類ニューラルネットワーク20は、パターン差ベクトルのセット上に調整され、そのうちのいくつかは一致すると知られており、いくつかは一致しないと知られている。ニューラルネットワーク20は、受け取ったパターンの各々を一致するまたは一致しないとして分類して分類を示す分類識別子を作製し、情報をプロセッサ16へ戻す。好適な分類ニューラルネットワークは、「ファセット分類ニューラルネットワーク(Facet Clasification Neural Network)」という発明の名称で、Brady et al.が1993年12月8日に出願して本願の譲受人に譲渡された米国特許出願第08/163,825号に記載されており、その内容を本願明細書に引用したものとする。
プロセッサ16が分類ニューラルネットワーク20から分類識別子を受け取った後、プロセッサ16は試料パターン画像がマスターパターン画像に一致するか否かを決定する。図9のブロック168で、プロセッサ16はパターンが一致したことを示す分類識別子の数を合計する。この合計を、域値θと比較してもよく、一致するパターンの数が域値を超るならば、プロセッサ16はその指紋が一致すると決定する。
域値を使用するほかに、プロセッサ16は、頻度密度関数に基づいて、域を設定することができる。図10は、プロセッサ16が域を設定するために使用する頻度密度関数180、182の例を示す。頻度密度関数180は無効な比較を現すが、頻度密度関数182は有効な比較を現す。x軸上に一致するパターンの数があり、y軸上に比較の数がある。頻度密度関数180、182は、例に基づいた一対のヒストグラムであり、x軸上の各数で離散値によって図10に示される。連続関数は、図10、11に示すように、離散値に適合することができる。域値θは、頻度密度関数180、182が交差する点に位置し、両方とも最小である位置が好ましい。域値は、一致を判定するプロセッサ16のために一致しなければならないパターンの最小数を示す。ゼロ(0)一致パターンは、一致がないことを意味する。図10において、1から7の一致パターンも一致がないと思われるが、例にはいくつかのエラーがある。θ以上のパターンが一致するときには、プロセッサ16は指紋パターンが一致すると決定し、ブロック170で一致信号を入力/出力装置14へ送る。
図11は、x軸上で交差しない交錯点184を有するヒストグラムの別の対を示す。そのような場合、誤った証明または誤った拒絶が発生する可能性がある。用途により、域値は、x軸を上または下へ動くことができる。例えば、誤った証明を受け入れることができない安全性の高い用途では、より高い域値を使用するが、いくらかの誤った拒絶を発生させる可能性はある。
本発明はいくつかの実施例を参照して記載してきた。本発明の範囲を逸脱することなく、記載の実施例に対して多くの変更または追加を施すことができることは当業者には明らかである。従って、本発明の範囲は、本明細書に記載した構造に限定されるものではなく、請求の範囲の文言によって記載された構造及びそれらの構造の等価物によってのみ限定されるものである。
Claims (12)
- ユーザの生物測定徴候を証明する生物測定認識装置が、
複数のマスターパターンセットを格納するデータ格納手段であって、各マスターパターンセットは複数の認可されたユーザの1人に対応し、該マスターパターンセットの各々は複数のマスター特徴部と該複数のマスター特徴部のマスター向きデータとによって規定され、該複数のマスター特徴部の各々はマスターパターン画像の部分画像であり、該マスターパターンセットは、各々がn個の最も独特なマスター特徴部のうちのp個のマスター特徴部及び該p個のマスター特徴部間の位置関係を含む該マスター向きデータを有するパターンからなり、該マスターパターンセットの各々はn!/(p!(n-p)!)個のパターンで構成される手段と、
プロセッサであって、
前記データ格納手段から読み出したマスターパターンセットの一つと複数の試料パターンを有する試料パターンセットとの間の類似度のレベルを表す比較ベクトルを作製するベクトル生成手段と、
該試料パターンと対応する該マスターパターンとの一致を示す該比較ベクトルの数を合計して合計数を求め、該合計数を域値と比較して該合計数が該域値を超えるときに該ユーザの生物測定徴候が証明されるべきものであることを示す一致信号を出力する限界手段とを具備するプロセッサと、
を具備していて、
前記試料パターンの各々は、前記マスター特徴部の各々に最良に一致する前記生物測定徴候内のn個の試料特徴部のうちのp個と、該p個の試料特徴部間の位置関係を含む試料向きデータを有し、且つ前記試料パターンセットは、n!/(p!(n-p)!)個の前記試料パターンで構成され、
前記ベクトル生成手段は、
前記マスター特徴部の各々に最良に一致する試料特徴部を識別するための識別手段と、
前記マスター特徴部の各々に最良に一致する前記試料特徴部を決定し、該試料特徴部間の位置関係を求めることにより、前記試料パターン及び試料パターンセットを生成するパターン生成手段と、
前記試料向きデータに含まれる前記位置関係と対応する前記マスター向きデータに含まれる対応する位置関係の差を求めることにより、該差を含む比較向きデータを作製する比較向きデータ作製手段と、
を具備し、
前記比較ベクトルは前記比較向きデータと、前記マスター特徴部とそれらの対応する試料特徴部との類似度とを有し、該類似度は相関関数を使用して決定され、かつ
前記n個の最も独特なマスター特徴部は、以下の方程式(1)を用いて前記マスターパターン画像における各マスター特徴部に対する独特値U(R)を割り当てることにより決定され、
方程式(1)において、Sは、参照特徴部であるRを除く前記マスターパターン画像内の全ての特徴部のセットであり、IはSの何れか一つであり、Rijは特徴部Rの(i,j)番目のピクセルグレーレベルであり、IijはIの(i,j)番目のピクセルグレーレベルであり、
は、それぞれの特徴部内の平均グレーレベルであり、U(R)はRの独特値である、
ことからなる生物測定認識装置。 - 前記マスター向きデータは、前記マスター特徴部の間の線の長さと、前記マスター特徴部の間の線の長さのスロープデータとを含み、且つ前記試料向きデータは、前記試料特徴部の間の線の長さと、前記試料特徴部の間の線の長さのスロープデータとを含む請求項1記載の生物測定認識装置。
- 前記比較向きデータ作製手段は、前記マスター特徴部の線の長さと前記試料特徴部の対応する線の長さとの間の差及び該対応する線の長さの対応するスロープデータの間の差を取ることによって前記試料向きデータに含まれる前記位置関係と対応する前記マスター向きデータに含まれる対応する位置関係の差を求める、請求項3記載の生物測定認識装置。
- 前記比較向きデータ作製手段は、前記マスター特徴部の線の長さと前記試料特徴部の対応する線の長さとの間の比及び該対応する線の長さの対応するスロープデータの間の差を取ることによって前記試料向きデータに含まれる前記位置関係と対応する前記マスター向きデータに含まれる対応する位置関係の差を求める、請求項3記載の生物測定認識装置。
- 前記生物測定徴候の画像を取得してそれから試料画像を作製するための生物測定パターン取得手段を更に具備する請求項1記載の生物測定認識装置。
- 前記データ格納手段は前記生物測定徴候に関するデータを更に格納し、かつ前記データは前記試料画像内の前記マスター特徴部の予想される位置を含む請求項6記載の生物測定認識装置。
- 前記識別手段は、前記方程式(1)を用いて前記マスター特徴部の各々に最良に一致する試料特徴部を識別するときに、前記試料画像内の前記予想される位置をサーチする請求項7記載の生物測定認識装置。
- 前記ユーザとのインターフェースを提供するインターフェース手段を更に具備する請求項1記載の生物測定認識装置。
- ユーザの生物測定徴候のマスターパターンセットを生成する方法が、
(a)該生物測定徴候の画像を取得して生物測定パターン画像を作製するステップであって、該生物測定パターン画像は複数の特徴部を含み、該複数の特徴部の各々は、前記生物測定パターン画像の部分画像であるステップと、
(b)該生物測定パターン画像内の各特徴部を該生物測定パターン画像内の他のすべての特徴部と比較するステップと、
(c)ステップ(b)の結果に基づいて該生物測定パターン画像内の各特徴部に独特値を割り当てるステップと、
(d)該独特値に基づいて、該生物測定パターン画像内の該特徴部から複数のマスター特徴部を選択するステップと、
(e)該マスター特徴部に基づいてマスターパターンを規定するステップと、
(f)該マスターパターン及びマスター特徴部をマスターパターンセットとして格納するステップと、
を含んでいて、
該割り当てるステップ(c)が、以下の方程式(1)を用いる、
方程式(1)において、Sは、参照特徴部であるRを除く前記生物測定画像内の全ての特徴部のセットであり、IはSの何れか一つであり、Rijは特徴部Rの(i,j)番目のピクセルグレーレベルであり、IijはIの(i,j)番目のピクセルグレーレベルであり、
は、それぞれの特徴部内の平均グレーレベルであり、U(R)はRの独特値である、
ことからなるマスターパターンセット生成方法。 - 前記マスターパターンは、前記方程式(1)を用いて、前記マスター特徴部と及び該マスター特徴部の間の位置関係を記載する向きデータとに基づいて規定され、また前記向きデータは前記複数のマスター特徴部の間の線の長さと該線の長さのスロープデータとを含む請求項10記載のマスターパターンセット生成方法。
- ユーザの生物測定徴候のマスターパターンセットの生成装置であって、
該生物測定徴候の画像を取得して生物測定パターン画像を作製する手段であって、該生物測定パターン画像は複数の特徴部を含み、該複数の特徴部の各々は、前記生物測定パターン画像の部分画像である手段と、
ストレージユニットと、
プロセッサであって、
前記生物測定パターン画像内の各特徴部を前記生物測定パターン画像内の他のすべての特徴部と比較する手段と、
前記比較手段による比較結果に基づいて前記生物測定パターン画像内の各特徴部に独特値を割り当てる手段と、
前記独特値に基づいて、前記生物測定パターン画像内の前記特徴部から複数のマスター特徴部を選択する手段と、
前記マスター特徴部に基づいてマスターパターンを規定する手段と、
前記マスターパターン及びマスター特徴部をマスターパターンセットとして前記ストレージユニットに格納する手段とを具備するプロセッサと、
を具備し、
前記割り当てる手段が、以下の方程式(1)を用い、
方程式(1)において、Sは、参照特徴部であるRを除く前記生物測定パターン画像内の全ての特徴部のセットであり、IはSの何れか一つであり、R ij は特徴部Rの(i,j)番目のピクセルグレーレベルであり、I ij はIの(i,j)番目のピクセルグレーレベルであり、
は、それぞれの特徴部内の平均グレーレベルであり、U(R)はRの独特値である、
ことからなるマスターパターンセット生成装置。
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US08/664,215 US5892838A (en) | 1996-06-11 | 1996-06-11 | Biometric recognition using a classification neural network |
| US08/664,215 | 1996-06-11 | ||
| PCT/US1997/006583 WO1997048067A1 (en) | 1996-06-11 | 1997-04-21 | Biometric recognition using a classification neural network |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2000512047A JP2000512047A (ja) | 2000-09-12 |
| JP2000512047A5 JP2000512047A5 (ja) | 2004-12-09 |
| JP3975248B2 true JP3975248B2 (ja) | 2007-09-12 |
Family
ID=24665072
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP50158098A Expired - Lifetime JP3975248B2 (ja) | 1996-06-11 | 1997-04-21 | ニューラルネットワーク分類を使用する生物測定認識 |
Country Status (11)
| Country | Link |
|---|---|
| US (1) | US5892838A (ja) |
| EP (1) | EP0976087B1 (ja) |
| JP (1) | JP3975248B2 (ja) |
| KR (1) | KR100447023B1 (ja) |
| AR (1) | AR007516A1 (ja) |
| AU (1) | AU2805597A (ja) |
| BR (1) | BR9709670A (ja) |
| CA (1) | CA2256672C (ja) |
| DE (1) | DE69719085T2 (ja) |
| ES (1) | ES2189958T3 (ja) |
| WO (1) | WO1997048067A1 (ja) |
Families Citing this family (100)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10361802B1 (en) | 1999-02-01 | 2019-07-23 | Blanding Hovenweep, Llc | Adaptive pattern recognition based control system and method |
| US7631193B1 (en) | 1994-11-28 | 2009-12-08 | Yt Acquisition Corporation | Tokenless identification system for authorization of electronic transactions and electronic transmissions |
| US6950810B2 (en) * | 1994-11-28 | 2005-09-27 | Indivos Corporation | Tokenless biometric electronic financial transactions via a third party identicator |
| US6192142B1 (en) * | 1994-11-28 | 2001-02-20 | Smarttouch, Inc. | Tokenless biometric electronic stored value transactions |
| US20040128249A1 (en) * | 1994-11-28 | 2004-07-01 | Indivos Corporation, A Delaware Corporation | System and method for tokenless biometric electronic scrip |
| US7882032B1 (en) | 1994-11-28 | 2011-02-01 | Open Invention Network, Llc | System and method for tokenless biometric authorization of electronic communications |
| US7613659B1 (en) * | 1994-11-28 | 2009-11-03 | Yt Acquisition Corporation | System and method for processing tokenless biometric electronic transmissions using an electronic rule module clearinghouse |
| US7248719B2 (en) * | 1994-11-28 | 2007-07-24 | Indivos Corporation | Tokenless electronic transaction system |
| US6397198B1 (en) * | 1994-11-28 | 2002-05-28 | Indivos Corporation | Tokenless biometric electronic transactions using an audio signature to identify the transaction processor |
| US5989835A (en) | 1997-02-27 | 1999-11-23 | Cellomics, Inc. | System for cell-based screening |
| EP0848347A1 (en) * | 1996-12-11 | 1998-06-17 | Sony Corporation | Method of extracting features characterising objects |
| US6105010A (en) * | 1997-05-09 | 2000-08-15 | Gte Service Corporation | Biometric certifying authorities |
| US6202151B1 (en) * | 1997-05-09 | 2001-03-13 | Gte Service Corporation | System and method for authenticating electronic transactions using biometric certificates |
| US6317544B1 (en) * | 1997-09-25 | 2001-11-13 | Raytheon Company | Distributed mobile biometric identification system with a centralized server and mobile workstations |
| US6408087B1 (en) * | 1998-01-13 | 2002-06-18 | Stmicroelectronics, Inc. | Capacitive semiconductor user input device |
| US6980670B1 (en) * | 1998-02-09 | 2005-12-27 | Indivos Corporation | Biometric tokenless electronic rewards system and method |
| AU5461299A (en) * | 1998-07-30 | 2000-02-21 | Ethentica, Inc. | Method and system for controlling access to computer conferences using relief objects |
| JP4120997B2 (ja) * | 1998-10-23 | 2008-07-16 | 富士通株式会社 | 不正アクセス判断装置及び方法 |
| ATE292822T1 (de) * | 1998-11-13 | 2005-04-15 | Cellomics Inc | Verfahren und system zum effizienten gewinnen und speichern von experimentellen daten |
| US6631199B1 (en) * | 1998-12-08 | 2003-10-07 | Allen W. L. Topping | Automated identification through analysis of optical birefringence within nail beds |
| US6256737B1 (en) | 1999-03-09 | 2001-07-03 | Bionetrix Systems Corporation | System, method and computer program product for allowing access to enterprise resources using biometric devices |
| US7305562B1 (en) | 1999-03-09 | 2007-12-04 | Citibank, N.A. | System, method and computer program product for an authentication management infrastructure |
| US6324125B1 (en) * | 1999-03-30 | 2001-11-27 | Infineon Technologies Ag | Pulse width detection |
| DE19924628A1 (de) * | 1999-05-28 | 2000-11-30 | Giesecke & Devrient Gmbh | Einrichtung und Verfahren zur biometrischen Authentisierung |
| DE19935945A1 (de) * | 1999-07-30 | 2001-02-22 | Giesecke & Devrient Gmbh | Verfahren, Datenträger sowie System zur Authentisierung eines Benutzers und eines Endgeräts |
| AU7346800A (en) * | 1999-09-02 | 2001-03-26 | Automated Business Companies | Communication and proximity authorization systems |
| US6901155B2 (en) | 1999-12-23 | 2005-05-31 | National University Of Singapore | Wavelet-enhanced automated fingerprint identification system |
| US7356416B2 (en) | 2000-01-25 | 2008-04-08 | Cellomics, Inc. | Method and system for automated inference creation of physico-chemical interaction knowledge from databases of co-occurrence data |
| US7441263B1 (en) | 2000-03-23 | 2008-10-21 | Citibank, N.A. | System, method and computer program product for providing unified authentication services for online applications |
| JP4321944B2 (ja) * | 2000-04-27 | 2009-08-26 | 富士通株式会社 | 生体情報を用いた個人認証システム |
| US7318050B1 (en) * | 2000-05-08 | 2008-01-08 | Verizon Corporate Services Group Inc. | Biometric certifying authorities |
| US6496595B1 (en) | 2000-05-19 | 2002-12-17 | Nextgenid, Ltd. | Distributed biometric access control apparatus and method |
| US6504470B2 (en) | 2000-05-19 | 2003-01-07 | Nextgenid, Ltd. | Access control method and apparatus for members and guests |
| AU2001266628A1 (en) * | 2000-05-31 | 2001-12-11 | Indivos Corporation | Biometric financial transaction system and method |
| US9165323B1 (en) | 2000-05-31 | 2015-10-20 | Open Innovation Network, LLC | Biometric transaction system and method |
| US7536557B2 (en) * | 2001-03-22 | 2009-05-19 | Ensign Holdings | Method for biometric authentication through layering biometric traits |
| AU7182701A (en) | 2000-07-06 | 2002-01-21 | David Paul Felsher | Information record infrastructure, system and method |
| US6813615B1 (en) | 2000-09-06 | 2004-11-02 | Cellomics, Inc. | Method and system for interpreting and validating experimental data with automated reasoning |
| US20020095608A1 (en) * | 2000-11-06 | 2002-07-18 | Slevin Richard S. | Access control apparatus and method for electronic device |
| US6961449B2 (en) * | 2001-01-16 | 2005-11-01 | University Of Massachusetts Lowell | Method of correlation of images in biometric applications |
| US7031502B1 (en) | 2001-01-29 | 2006-04-18 | University Of Massachusetts Lowell | Adjustable guide for viewing biometric surface patterns |
| US7181017B1 (en) | 2001-03-23 | 2007-02-20 | David Felsher | System and method for secure three-party communications |
| JP2002298141A (ja) | 2001-03-29 | 2002-10-11 | Nec Corp | パターン照合装置とそのパターン照合方法、及びパターン照合プログラム |
| AU2002259229A1 (en) * | 2001-05-18 | 2002-12-03 | Imprivata, Inc. | Authentication with variable biometric templates |
| FI20011370L (fi) * | 2001-06-27 | 2002-12-28 | Nokia Corp | Biotunnistusmenetelmä ja sitä hyödyntävä laite |
| US6758394B2 (en) * | 2001-07-09 | 2004-07-06 | Infonox On The Web | Identity verification and enrollment system for self-service devices |
| US20060110014A1 (en) * | 2002-12-13 | 2006-05-25 | Koninklijke Philips Electronics, N.V. | Expression invariant face recognition |
| US9818136B1 (en) | 2003-02-05 | 2017-11-14 | Steven M. Hoffberg | System and method for determining contingent relevance |
| US20040187029A1 (en) | 2003-03-21 | 2004-09-23 | Ting David M. T. | System and method for data and request filtering |
| US7660880B2 (en) * | 2003-03-21 | 2010-02-09 | Imprivata, Inc. | System and method for automated login |
| US7580551B1 (en) * | 2003-06-30 | 2009-08-25 | The Research Foundation Of State University Of Ny | Method and apparatus for analyzing and/or comparing handwritten and/or biometric samples |
| US7760918B2 (en) * | 2003-08-06 | 2010-07-20 | Zinayida Bezvershenko | Identification of a person based on ultra-sound scan analyses of hand bone geometry |
| CA2438220C (en) * | 2003-08-06 | 2011-11-08 | Click-Into Inc. | Identification of a person based on ultra-sound scan analyses of hand bone geometry |
| JP4428067B2 (ja) * | 2004-01-28 | 2010-03-10 | ソニー株式会社 | 画像照合装置、プログラム、および画像照合方法 |
| EP1759484A1 (en) * | 2004-06-09 | 2007-03-07 | Koninklijke Philips Electronics N.V. | Biometric template protection and feature handling |
| US20060034497A1 (en) * | 2004-08-15 | 2006-02-16 | Michael Manansala | Protometric authentication system |
| RU2273877C1 (ru) * | 2004-08-16 | 2006-04-10 | Федеральное государственное унитарное предприятие "ПЕНЗЕНСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ ИНСТИТУТ" (ФГУП "ПНИЭИ") | Способ распределения ключей в большой территориально разнесенной системе |
| US20060104484A1 (en) * | 2004-11-16 | 2006-05-18 | Bolle Rudolf M | Fingerprint biometric machine representations based on triangles |
| US20060206722A1 (en) * | 2004-12-06 | 2006-09-14 | Zhang George Z | Method and apparatus for networked biometric authentication |
| RU2292079C2 (ru) * | 2005-02-02 | 2007-01-20 | Федеральное государственное унитарное предприятие "ПЕНЗЕНСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ ИНСТИТУТ" (ФГУП "ПНИЭИ") | Способ идентификации человека по его биометрическому образу |
| US20060293891A1 (en) * | 2005-06-22 | 2006-12-28 | Jan Pathuel | Biometric control systems and associated methods of use |
| DE112006002388A5 (de) * | 2005-09-08 | 2008-06-05 | Grohmann Technologies Gmbh | Terminal und Verfahren zum Erfassen biometrischer Daten einer Person sowie Terminalsystem |
| US8874477B2 (en) | 2005-10-04 | 2014-10-28 | Steven Mark Hoffberg | Multifactorial optimization system and method |
| US20070244844A1 (en) * | 2006-03-23 | 2007-10-18 | Intelliscience Corporation | Methods and systems for data analysis and feature recognition |
| US8625885B2 (en) | 2006-03-23 | 2014-01-07 | Intelliscience Corporation | Methods and systems for data analysis and feature recognition |
| US7950021B2 (en) * | 2006-03-29 | 2011-05-24 | Imprivata, Inc. | Methods and systems for providing responses to software commands |
| ES2324896B1 (es) * | 2006-10-27 | 2010-05-24 | Universidad Del Pais Vasco-Euskal Herriko Unibertsitatea | Metodo de identificacion de muestras y sistema utilizado. |
| JP2008123207A (ja) * | 2006-11-10 | 2008-05-29 | Sony Corp | 登録装置、照合装置、登録方法、照合方法及びプログラム |
| IE20070437A1 (en) * | 2007-06-18 | 2009-02-18 | Nat Univ Ireland | Biometric print enrolment and authentication |
| US8031981B2 (en) * | 2007-12-21 | 2011-10-04 | Daon Holdings Limited | Method and systems for generating a subset of biometric representations |
| US8055470B2 (en) * | 2008-02-14 | 2011-11-08 | Yahoo!, Inc. | Simulated bucket testing |
| EP2249309A1 (en) * | 2008-02-19 | 2010-11-10 | NEC Corporation | Pattern matching device, pattern matching method, and program |
| US8175992B2 (en) | 2008-03-17 | 2012-05-08 | Intelliscience Corporation | Methods and systems for compound feature creation, processing, and identification in conjunction with a data analysis and feature recognition system wherein hit weights are summed |
| US8913831B2 (en) | 2008-07-31 | 2014-12-16 | Hewlett-Packard Development Company, L.P. | Perceptual segmentation of images |
| US8086745B2 (en) * | 2008-08-29 | 2011-12-27 | Fuji Xerox Co., Ltd | Graphical system and method for user authentication |
| RU2391704C1 (ru) * | 2008-10-23 | 2010-06-10 | Государственный научно-исследовательский испытательный институт проблем технической защиты информации Федеральной службы по техническому и экспортному контролю России (ГНИИИ ПТЗИ ФСТЭК России) | Способ формирования электронного биометрического удостоверения личности |
| JP2010286937A (ja) * | 2009-06-10 | 2010-12-24 | Hitachi Ltd | 生体認証方法、及び、生体認証に用いるクライアント端末、認証サーバ |
| JP5135384B2 (ja) * | 2010-06-02 | 2013-02-06 | 日立オムロンターミナルソリューションズ株式会社 | 生体認証サーバ、および生体認証システム |
| US20130170726A1 (en) * | 2010-09-24 | 2013-07-04 | The Research Foundation Of State University Of New York | Registration of scanned objects obtained from different orientations |
| US8461987B2 (en) * | 2010-11-17 | 2013-06-11 | Theodosios Kountotsis | System and method for performing chemical analysis of fingerprints for providing at least one response |
| US8724861B1 (en) * | 2010-12-06 | 2014-05-13 | University Of South Florida | Fingertip force, location, and orientation sensor |
| CN103765453B (zh) * | 2011-02-16 | 2018-08-14 | 维萨国际服务协会 | 快拍移动支付装置,方法和系统 |
| US10586227B2 (en) | 2011-02-16 | 2020-03-10 | Visa International Service Association | Snap mobile payment apparatuses, methods and systems |
| CN103635920A (zh) | 2011-02-22 | 2014-03-12 | 维萨国际服务协会 | 通用电子付款装置、方法与系统 |
| US9582598B2 (en) | 2011-07-05 | 2017-02-28 | Visa International Service Association | Hybrid applications utilizing distributed models and views apparatuses, methods and systems |
| US10121129B2 (en) | 2011-07-05 | 2018-11-06 | Visa International Service Association | Electronic wallet checkout platform apparatuses, methods and systems |
| US9355393B2 (en) | 2011-08-18 | 2016-05-31 | Visa International Service Association | Multi-directional wallet connector apparatuses, methods and systems |
| US10825001B2 (en) | 2011-08-18 | 2020-11-03 | Visa International Service Association | Multi-directional wallet connector apparatuses, methods and systems |
| US9710807B2 (en) | 2011-08-18 | 2017-07-18 | Visa International Service Association | Third-party value added wallet features and interfaces apparatuses, methods and systems |
| US10242358B2 (en) | 2011-08-18 | 2019-03-26 | Visa International Service Association | Remote decoupled application persistent state apparatuses, methods and systems |
| US10223730B2 (en) | 2011-09-23 | 2019-03-05 | Visa International Service Association | E-wallet store injection search apparatuses, methods and systems |
| US11354723B2 (en) | 2011-09-23 | 2022-06-07 | Visa International Service Association | Smart shopping cart with E-wallet store injection search |
| AU2013214801B2 (en) | 2012-02-02 | 2018-06-21 | Visa International Service Association | Multi-source, multi-dimensional, cross-entity, multimedia database platform apparatuses, methods and systems |
| WO2016025540A1 (en) * | 2014-08-11 | 2016-02-18 | Synaptics Incorporated | Multi-view fingerprint matching |
| CN104751037B (zh) * | 2015-04-10 | 2018-06-12 | 无锡海斯凯尔医学技术有限公司 | 医疗检测设备的使用控制方法、系统和医疗检测设备 |
| RU2678494C1 (ru) | 2017-08-24 | 2019-01-29 | Самсунг Электроникс Ко., Лтд. | Устройство и способ для биометрической идентификации пользователя с использованием рч (радиочастотного) радара |
| SG11202008549SA (en) * | 2018-08-13 | 2020-10-29 | Beijing Sensetime Technology Development Co Ltd | Identity authentication method and apparatus, electronic device, and storage medium |
| CN110162957B (zh) * | 2018-09-11 | 2023-01-06 | 腾讯科技(深圳)有限公司 | 智能设备的鉴权方法和装置、存储介质、电子装置 |
| US10713544B2 (en) | 2018-09-14 | 2020-07-14 | International Business Machines Corporation | Identification and/or verification by a consensus network using sparse parametric representations of biometric images |
| JP7130905B2 (ja) | 2019-06-18 | 2022-09-06 | ユーエービー “ニューロテクノロジー” | フィードフォワード畳み込みニューラルネットワークを使用した高速且つ堅牢な皮膚紋理の印のマニューシャの抽出 |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4151512A (en) * | 1976-09-10 | 1979-04-24 | Rockwell International Corporation | Automatic pattern processing system |
| US5202929A (en) * | 1979-09-24 | 1993-04-13 | Lemelson Jerome H | Data system and method |
| NL8503290A (nl) * | 1985-11-27 | 1987-06-16 | Antoon Sibum | Werkwijze en inrichting voor het identificeren van personen. |
| US5067162A (en) * | 1986-06-30 | 1991-11-19 | Identix Incorporated | Method and apparatus for verifying identity using image correlation |
| US4857916A (en) * | 1987-02-26 | 1989-08-15 | Bellin Robert W | System and method for identifying an individual utilizing grasping pressures |
| US4896363A (en) * | 1987-05-28 | 1990-01-23 | Thumbscan, Inc. | Apparatus and method for matching image characteristics such as fingerprint minutiae |
| EP0308162A3 (en) * | 1987-09-15 | 1990-06-06 | Identix Incorporated | Optical system for fingerprint imaging |
| GB8900866D0 (en) * | 1989-01-16 | 1989-03-08 | Nat Res Dev | Biometrics |
| US4993068A (en) * | 1989-11-27 | 1991-02-12 | Motorola, Inc. | Unforgeable personal identification system |
| US5258924A (en) * | 1990-03-30 | 1993-11-02 | Unisys Corporation | Target recognition using quantization indexes |
| US5103486A (en) * | 1990-04-19 | 1992-04-07 | Grippi Victor J | Fingerprint/signature synthesis |
| US5161204A (en) * | 1990-06-04 | 1992-11-03 | Neuristics, Inc. | Apparatus for generating a feature matrix based on normalized out-class and in-class variation matrices |
| US5163094A (en) * | 1991-03-20 | 1992-11-10 | Francine J. Prokoski | Method for identifying individuals from analysis of elemental shapes derived from biosensor data |
| US5229764A (en) * | 1991-06-20 | 1993-07-20 | Matchett Noel D | Continuous biometric authentication matrix |
| US5291560A (en) * | 1991-07-15 | 1994-03-01 | Iri Scan Incorporated | Biometric personal identification system based on iris analysis |
| US5450504A (en) * | 1992-05-19 | 1995-09-12 | Calia; James | Method for finding a most likely matching of a target facial image in a data base of facial images |
| US5572597A (en) * | 1994-03-29 | 1996-11-05 | Loral Corporation | Fingerprint classification system |
-
1996
- 1996-06-11 US US08/664,215 patent/US5892838A/en not_active Expired - Fee Related
-
1997
- 1997-04-21 AU AU28055/97A patent/AU2805597A/en not_active Abandoned
- 1997-04-21 KR KR10-1998-0710035A patent/KR100447023B1/ko not_active Expired - Fee Related
- 1997-04-21 JP JP50158098A patent/JP3975248B2/ja not_active Expired - Lifetime
- 1997-04-21 BR BR9709670-9A patent/BR9709670A/pt not_active Application Discontinuation
- 1997-04-21 DE DE69719085T patent/DE69719085T2/de not_active Expired - Lifetime
- 1997-04-21 EP EP97922362A patent/EP0976087B1/en not_active Expired - Lifetime
- 1997-04-21 WO PCT/US1997/006583 patent/WO1997048067A1/en active IP Right Grant
- 1997-04-21 ES ES97922362T patent/ES2189958T3/es not_active Expired - Lifetime
- 1997-04-21 CA CA002256672A patent/CA2256672C/en not_active Expired - Fee Related
- 1997-06-06 AR ARP970102470A patent/AR007516A1/es unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CA2256672C (en) | 2006-06-20 |
| DE69719085D1 (de) | 2003-03-20 |
| WO1997048067A1 (en) | 1997-12-18 |
| KR20000016451A (ko) | 2000-03-25 |
| AU2805597A (en) | 1998-01-07 |
| AR007516A1 (es) | 1999-11-10 |
| US5892838A (en) | 1999-04-06 |
| JP2000512047A (ja) | 2000-09-12 |
| BR9709670A (pt) | 2000-05-09 |
| CA2256672A1 (en) | 1997-12-18 |
| EP0976087B1 (en) | 2003-02-12 |
| KR100447023B1 (ko) | 2004-11-06 |
| EP0976087A1 (en) | 2000-02-02 |
| ES2189958T3 (es) | 2003-07-16 |
| DE69719085T2 (de) | 2003-07-31 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP3975248B2 (ja) | ニューラルネットワーク分類を使用する生物測定認識 | |
| US4896363A (en) | Apparatus and method for matching image characteristics such as fingerprint minutiae | |
| Hong | Automatic personal identification using fingerprints | |
| Adeoye | A survey of emerging biometric technologies | |
| US7474769B1 (en) | Bioindex mechanism for increasing the relative speed of biometric identification against large population samples | |
| JPS6341989A (ja) | 像相関を用いて正体を確認する方法および装置 | |
| CN110326001A (zh) | 使用利用移动设备捕捉的图像执行基于指纹的用户认证的系统和方法 | |
| Majekodunmi et al. | A review of the fingerprint, speaker recognition, face recognition and iris recognition based biometric identification technologies | |
| Ross | Information fusion in fingerprint authentication | |
| JP2006500662A (ja) | 掌紋認証方法及び装置 | |
| Charity et al. | A bimodal biometrie student attendance system | |
| KR20020022295A (ko) | 3차원 정보를 이용한 얼굴 인식 장치 및 방법 | |
| Jea | Minutiae-based partial fingerprint recognition | |
| Deriche | Trends and challenges in mono and multi biometrics | |
| Sanchez-Avila et al. | Multiscale analysis for iris biometrics | |
| EP0300167A2 (en) | Apparatus and method for matching image characteristics such as fingerprint minutiae | |
| Trabelsi et al. | A bi-modal palmvein palmprint biometric human identification based on fusing new CDSDP features | |
| Methani | Camera based palmprint recognition | |
| Savov et al. | Signature verification via “hand-pen” motion investigation | |
| Burghardt | Inside iris recognition | |
| Zin et al. | Portable Fingerprint-Based Attendance Recording & Monitoring System | |
| Olabode et al. | A signature identification system with principal component analysis and Stentiford thinning algorithms | |
| Atmakuri | A study of authentication techniques for mobile cloud computing | |
| Gil et al. | Human identification based on motoric features | |
| DESTA | FINGERPRINT IDENTIFICATION AND VERIFICATION USING MINUTIAE EXTRACTION FOR CRIME INVESTIGATION |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040413 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040413 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060620 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20060919 |
|
| A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20061106 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061220 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070417 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070517 |
|
| A72 | Notification of change in name of applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A721 Effective date: 20070517 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 3 |
|
| R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 3 |
|
| R154 | Certificate of patent or utility model (reissue) |
Free format text: JAPANESE INTERMEDIATE CODE: R154 |