[go: up one dir, main page]

JP3977158B2 - Anti-vibration structure of hydraulic system in hydrostatic continuously variable transmission - Google Patents

Anti-vibration structure of hydraulic system in hydrostatic continuously variable transmission Download PDF

Info

Publication number
JP3977158B2
JP3977158B2 JP2002175739A JP2002175739A JP3977158B2 JP 3977158 B2 JP3977158 B2 JP 3977158B2 JP 2002175739 A JP2002175739 A JP 2002175739A JP 2002175739 A JP2002175739 A JP 2002175739A JP 3977158 B2 JP3977158 B2 JP 3977158B2
Authority
JP
Japan
Prior art keywords
relief valve
continuously variable
hydraulic
variable transmission
oil passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002175739A
Other languages
Japanese (ja)
Other versions
JP2004019793A (en
Inventor
安信 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2002175739A priority Critical patent/JP3977158B2/en
Publication of JP2004019793A publication Critical patent/JP2004019793A/en
Application granted granted Critical
Publication of JP3977158B2 publication Critical patent/JP3977158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4183Preventing or reducing vibrations or noise, e.g. avoiding cavitations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/421Motor capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/433Pump capacity control by fluid pressure control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/44Control of exclusively fluid gearing hydrostatic with more than one pump or motor in operation
    • F16H61/448Control circuits for tandem pumps or motors

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Control Of Fluid Gearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油圧装置の防振構造に係り、詳しくは、走行用の静油圧式無段変速装置といった、トラクタ、ホイールローダ等の作業機に用いられる油圧装置の騒音や振動を防止させる技術に関するものである。
【0002】
【従来の技術】
例えば、特開平11−59210号公報に示された走行用の静油圧式無段変速装置には、回路圧の上限を定めるリリーフ弁が設けてあり、泥濘地走行等によって負荷が著しく増大して回路圧が限界を超えると、リリーフ弁が開通して圧を逃がし作動する。このように、油圧装置では、装置保護や最大圧設定等のためにリリーフ弁を装備するのが一般的である。
【0003】
【発明が解決しようとする課題】
前述のように、リリーフ弁が開通作動するのは、回路に上限以上の圧が作用する高圧状態であることから、その開通作動時に「ピー」といった騒音の出ることがある。これは、リリーフ作動する際の脈動的な圧力変動により、弁体、戻しバネといった可動部、或いは弁箱部分等が共振することで騒音を引起しているものと考えられる。
【0004】
そのため、リリーフ弁の各パーツ寸法や重量を変更したり、機能に影響の無い範囲で形状を変更したりするという対策によって、騒音を無くすようにしていたが、このような対策は、騒音が生じた箇所のリリーフ弁毎に専用のものとなっていた。共振を解消するための恒久的な対策はなかなか見つからないものであり、騒音が出た不都合箇所には、試行錯誤による専用の対策を行うしかなく、面倒で効率の芳しくない作業が必要となる問題があった。
【0005】
このように、静油圧式無段変速装置の油圧装置においては、共振に伴って騒音や振動が生じ易い面があり、しかもそれらに対する恒久的な対策も無いため、騒音や振動を有効に防止できる手段が望まれているのが実状であった。そこで、本発明の目的は、油圧装置における前述した「ピー」といった騒音や振動を軽減又は解消する恒久的な対策手段を、大幅なコストアップなく実現して提供する点にある。
【0006】
【課題を解決するための手段】
〔請求項1の構成〕
請求項1の発明の静油圧式無段変速装置における油圧装置の防振構造の構成は、絞り流路と、この絞り流路の断面積よりも大なる断面積を有した状態で前記絞り流路に連通する膨張室とを備えてダンパを構成するとともに、静油圧式無段変速装置の油圧ポンプと油圧モータとを接続する給排油路におけるリリーフ弁への分岐点近傍であって、且つ前記リリーフ弁の導入油路に向かう部位に前記絞り流路を連通接続してあることを特徴とする。
【0007】
〔請求項2の構成〕
請求項2の発明の静油圧式無段変速装置における油圧装置の防振構造の構成は、絞り流路と、この絞り流路の断面積よりも大なる断面積を有した状態で前記絞り流路)に連通する膨張室とを備えてダンパを構成するとともに、静油圧式無段変速装置の油圧ポンプと油圧モータとを接続する給排油路に、給排油路から分岐された導入油路を介してチャージポンプからの吐出側流路を接続し、前記導入油路にリリーフ弁を介装するとともに、給排油路における前記導入油路への分岐点近傍であって、且つ前記リリーフ弁の導入油路に向かう部位に前記絞り流路を連通接続してあることを特徴とする。
【0008】
〔作用、効果〕
請求項1及び2の構成は、静油圧式無段変速装置の油圧ポンプと油圧モータとを接続する給排油路におけるリリーフ弁への分岐点近傍であって、且つ前記リリーフ弁のポートに向かう部位に連通接続される絞り流路と、絞り流路の断面積よりも大なる断面積を有した膨張室とを連通させて成るダンパを設ける手段である。リリーフ弁の作動により生じた脈動的な圧力変動が給排油路におけるリリーフ弁への分岐点に向けて生じてもその振動や脈動が当該分岐点近傍であって、且つ前記リリーフ弁の導入油路に向かう部位に設けた絞り流路を介して膨張室に伝わる際に断面積が一挙に増大するので、共鳴周波数の付近でインピーダンスが小さくなる作用が生まれて振動波が短絡され、それによって固有振動での共振現象を給排油路を介して広く伝播させることなく低減させることができる。
【0009】
この振動低減作用は、ダンパの存在によって必ず発揮させることができるから、ダンパを連通接続するという単一の改造を行うことで、防振作用を得ることが可能である。故に、共振による不都合が生じた部分に種々の対策を施してみて、最良の手段を選択設定するという、面倒で非効率な従来の防振作業を不要にすることができる。
【0010】
その結果、請求項1及び2に記載の静油圧式無段変速装置における油圧装置の防振構造では、絞り流路と膨張室とを備えたダンパにおける絞り流路を、共振現象の生じる給排油路におけるリリーフ弁への分岐点近傍であって、且つ前記リリーフ弁の導入油路に向かう部位に連通接続させるという工夫により、「ピー」という騒音や振動といった共振による不都合を回避することができるので、前記給排油路におけるリリーフ弁への分岐点付近にダンパを接続するだけの簡単で廉価な単一種の対策でありながら、恒久的な防振手段を提供することができた。
【0011】
殊に、ダンパによる振動低減作用により、リリーフ弁が開弁作動した際に、可動弁体やリリーフバネ等の可動部の共振が抑制又は解消されるようになり、共振によってブザーのように「ピー」という騒音を発生することが回避できるようになる。その結果、静油圧式無段変速装置の油圧ポンプと油圧モータとを接続する給排油路におけるリリーフ弁への分岐点近傍であって、且つ前記リリーフ弁の導入油路に向かう部位に接続される絞り流路とこれに連通する膨張室からなる簡単構造なダンパを設けることにより、リリーフ弁がリリーフ作動するときに生じていた騒音を解消することができた。
【0012】
〔構成〕
請求項3の構成は、請求項1または2の構成において、ダンパを、油圧装置を構成するためのケーシングに一体形成してあることを特徴とするものである。
【0013】
〔作用、効果〕
請求項3の構成によれば、静油圧式無段変速装置を構成するための必須部材であるケーシングにダンパを一体形成してあるから、部材の兼用化によってコンパクトに、また経済的に防振構造を提供することができた。例えば、ミッションケース等のように、ケーシングが鋳鉄等の鋳造合金で形成されている場合には、流路や膨張室といった空間部分を一体形成すること容易である。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1に農用トラクタが示されおり、Eはエンジン、1は前輪、2は後輪、3はボンネット、4は運転部、5はエンジン、6は走行用ミッション、7は車体、8は運転座席、9はPTO軸、10は後部作業装置、11は後輪用フェンダ、gはガード部材である。
【0015】
図2、図3に、走行用ミッション6の主要部であるHST12が、そして図4にはその油圧回路図がそれぞれ示されている。このHST12は、入力軸13に入力されたエンジン動力を平ギヤ連動機構14を介して、可変容量型の油圧ポンプPのポンプ軸15に伝動し、油圧ポンプPの圧油によって作動する2個の油圧モータM1,M2それぞれの出力軸16,17をカップリング18(出力合流機構Aの一例)を用いて直結連動してあり、1ポンプ・2モータ型に構成されている。なお、図4において、一点破線で囲まれた部分がミッションケース6cであり、その外側に描かれたもの(チャージポンプ19の吐出側油路19aや後述の電磁切換弁39等)は、外部配管やケース外付け部品となっている。
【0016】
ポンプ軸15には、HST12用のチャージポンプ19が装備されるとともに、その先端をミッションケース6c外に突出させてあり、ライブPTO軸等に利用できる突出先端軸部20としてある。ミッションケース6cは、主として油圧ポンプP及び第1油圧モータM1とを覆う主ケース部21、入力軸13等を軸支する蓋ケース部22、第2油圧モータM2を覆うモータケース部23、及び、主ケース部21とモータケース部23との間に介装される油路ブロック24を有して構成されている。
【0017】
図4に示すように、プランジャ式の油圧ポンプPは可変容量型に、アキシャルピストン式の第1油圧モータM1は定容量型に、そして、アキシャルピストン式の第2油圧モータM2は可変容量型にそれぞれ構成されており、これら2個の油圧モータM1,M2の圧油入力側ポート25,26どうし、及び排油側ポート27,28どうしを連通接続して並列回路hを形成して、一対の給排油路29,30を介して油圧ポンプPに接続してある。34,35は、前進側及び後進側の最大負荷圧を設定する走行用のリリーフ弁であり、36は回路圧の上限を設定する主リリーフ弁である。なお、入力側と排油側各ポート25〜28は、HST12としての出力回転方向が正転のときと逆転のときとでは、その機能が互いに反対となる。
【0018】
油圧ポンプPの斜板操作部33に連動している油圧式の変速シリンダ31を変速バルブ32の切換えによって操作することにより、油圧ポンプPの斜板角が変化して単位時間当たりの圧油の吐出量を変化させ、その吐出された圧油のエネルギーを第1及び第2油圧モータM1,M2によって回転力に変換して、入力軸13からの回転動力を前進側と後進側とに切換え自在であるとともに、前進側と後進側のいずれにおいても無段階に変速して出力軸17から取り出し、図示しない副変速機構等を介して後輪2に伝達するように、HST12が機能する。
【0019】
第2油圧モータM2を、これの斜板角が、第1油圧モータM1における斜板角に等しい第1速度状態と、0度となる第2速度状態との2状態切換型に構成してある。図4に示すように、第2油圧モータM2の斜板37の斜板操作部37aに作用する切換シリンダ38と、この切換シリンダ38を切換え操作する2位置切換え型の電磁切換弁39と、そのボタンスイッチ40とを設けてある。つまり、ボタンスイッチ40を操作して、電磁切換弁39を切換えて切換シリンダ38を伸縮動させることにより、斜板37が傾斜した第1速度状態(図3に示す状態)と、斜板37が垂直に立って傾角が0となる第2速度状態(図2に示す状態)とが選択切換え自在に構成されている。
【0020】
切換シリンダ38は、シリンダ室41aとピストンロッド41bとで成る操作部41と、復帰バネ42aと押しロッド42bとで成る戻し部42とを、モータケース部23内において対向配置して構成されており、シリンダ室41aに圧油を供給して復帰バネ42aの付勢力に抗して強制的にピストンロッド41bを押し出せば図3に示す第1速度状態になり、シリンダ室41aから排油すれば、復帰バネ42aの付勢力によって押しロッド42bが斜板操作部37aを0度位置に押し戻し、図2に示す第2速度状態に自己復帰するのである。
【0021】
第2油圧モータM2は、その出力軸17の軸心が、第1油圧モータM1の出力軸16の軸心Xと一致して一直線上に並ぶように配置されている。従って、モータ部として見た場合は、軸心X方向(前後方向)には長いが、上下及び左右方向にはコンパクトに形成できており、ミッションのスペースが前後に長くなるトラクタ等に好適な配置レイアウトになっている。
【0022】
第1速度状態では、両油圧モータM1,M2が同斜板角となるので、第1油圧モータM1による場合のほぼ2倍のトルクを発生することができる。理論上トルクは2倍になるが、実際には機械的な摩擦損失等のエネルギーロスが存在するので、出力軸17から取り出されるトルクは「ほぼ2倍」になる。従って、この第1速度状態で油圧ポンプPを最低速操作すれば、従来のほぼ2倍の最大トルクを発生できるので、泥濘地におけるプラウ作業等の負荷トルクが非常に大きくなる作業走行に好適なものとなる。また、傾角が0となる第2速度状態では、圧油が第2油圧モータを素通りするような状態となるので、実質的に第1油圧モータM1のみが装備された1モータ状態のHSTとして使用することができる。
【0023】
次に、リリーフ弁作動時の騒音やチャージポンプの吐出脈動を低減させる防振機構Bについて説明する。
【0024】
図4に示すように、各給排油路29,30におけるリリーフ弁34,35への分岐点近くに、それぞれの油路(圧油流路rの一例)に連通する防振機構Bを装備してある。リリーフ弁34,35近くの2個の防振機構B,Bは、リリーフ作動時にリリーフ弁34,35から「ピー」といった騒音の生じることを回避させるものである。
【0025】
図5〜図7に示すように、騒音防止用の防振機構Bは、絞り流路43と、この絞り流路43の断面積よりも大なる断面積を有した状態で絞り流路43に連通する膨張室44とを備えてダンパdを構成するとともに、給排油路(油圧装置における圧油流路の一例)29,30に絞り流路43を連通接続して構成されている。直径1.5mmの細孔で成る絞り流路43と、絞り流路43の数倍の径を有した膨張室44とを鋳鉄製のミッションケース6cに一体形成してあり、膨張室44を密閉するための栓45が螺着された状態では、膨張室44の容積が約1.5立方センチメートルになるように設定してある。
【0026】
一対のリリーフ弁34,35は同じものであり、一方のリリーフ弁34で説明すると、このリリーフ弁34は逆止弁の機能も有しており、一方の流れ方向にはリリーフ作動し、反対側の流れは殆ど抵抗なく通すというチェック作用を発揮する複合弁に構成されている。図5において、46はリリーフバネ、47はダンピング室、48は弁体、49はプラグ、50は弁座、59はリリーフ弁体48をスライド移動自在に内嵌する支持体、60はバネ受け、61は弁体48を極軽く閉じ付勢するための巻きバネである。
【0027】
すなわち、給排油路29に連通される導入油路29bの圧が所定以上になると、リリーフバネ46の付勢力に抗してリリーフ弁34が開弁状態になり、給排油路29の圧が所定圧未満になるまで排出油路29aを介して吐出側油路19aに圧を逃がすリリーフ作用が発揮される。そして、リーク等によってHST12としての作動油が不足してくると、巻きバネ61の極軽い付勢力に抗してリリーフ弁34が開弁状態になり、殆ど抵抗無くチャージ圧をHST12に供給できるのである。
【0028】
絞り流路43は、各導入油路29b,30bを介して各リリーフ弁34,35におけるダンピング室47に連通されている。絞り流路43及び膨張室44は、ミッションケース6cの端からドリリングするといった機械加工によって形成することが可能である。また、リリーフ弁34も、ミッションケース6c(ケーシングの一例)の端からドリリングする機械加工によって形成された穴の内部に構成することができる。
【図面の簡単な説明】
【図1】 トラクタの側面図
【図2】 第2速度状態でのHSTの構造を示す側面図
【図3】 第1速度状態でのHSTの構造を示す側面図
【図4】 HSTの油圧回路図
【図5】 リリーフ弁、及び騒音防止用の防振機構を示す断面図
【図6】 防振機構装着部位におけるミッションケースの正面図
【図7】 防振機構の断面図
【符号の説明】
6c ケーシング
12 静油圧式無段変速装置
19 チャージポンプ
19a 吐出側流路
29、30 給排油路
29b、30b 導入油路
34、35 リリーフ弁
43 絞り流路
44 膨張室
A 出力合流機構
d ダンパ
P ポンプ
M1、M2 モータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration isolating structure for a hydraulic device, and more particularly to a technique for preventing noise and vibration of a hydraulic device used in a working machine such as a tractor and a wheel loader such as a hydrostatic continuously variable transmission for traveling. Is.
[0002]
[Prior art]
For example, the hydrostatic continuously variable transmission for traveling shown in Japanese Patent Application Laid-Open No. 11-59210 is provided with a relief valve for determining the upper limit of circuit pressure, and the load is significantly increased by traveling on muddy ground. When the circuit pressure exceeds the limit, the relief valve opens to release the pressure and operate. As described above, a hydraulic device is generally equipped with a relief valve for device protection, maximum pressure setting, and the like.
[0003]
[Problems to be solved by the invention]
As described above, the relief valve is operated to open in a high pressure state in which a pressure exceeding the upper limit is applied to the circuit. Therefore, noise such as “pea” may be generated during the opening operation. This is considered to be caused by noise caused by resonance of movable parts such as a valve body and a return spring, or a valve box part due to pulsating pressure fluctuations during a relief operation.
[0004]
For this reason, noise has been eliminated by measures such as changing the dimensions and weight of each part of the relief valve or changing the shape within a range that does not affect the function. Each relief valve was dedicated. Permanent countermeasures to eliminate resonance are difficult to find, and inconvenient places where noise is generated, there is no choice but to perform dedicated countermeasures by trial and error, requiring troublesome and inefficient work was there.
[0005]
As described above, the hydraulic device of the hydrostatic continuously variable transmission has a surface in which noise and vibration are likely to occur due to resonance, and since there is no permanent countermeasure against them, noise and vibration can be effectively prevented. It was the actual situation that means were desired. Therefore, an object of the present invention is to provide a permanent countermeasure means that reduces or eliminates the noise and vibration such as the above-mentioned “pea” in the hydraulic apparatus, without realizing a significant cost increase.
[0006]
[Means for Solving the Problems]
[Configuration of Claim 1]
The structure of the vibration isolating structure of the hydraulic device in the hydrostatic continuously variable transmission according to the first aspect of the present invention includes a throttle channel and the throttle flow having a sectional area larger than the sectional area of the throttle channel. A damper comprising an expansion chamber communicating with the passage , and in the vicinity of a branch point to the relief valve in the supply / discharge oil passage connecting the hydraulic pump and the hydraulic motor of the hydrostatic continuously variable transmission , and The throttle channel is connected in communication with a portion of the relief valve toward the introduction oil channel .
[0007]
[Configuration of Claim 2]
The structure of the vibration isolating structure of the hydraulic device in the hydrostatic continuously variable transmission according to claim 2 is characterized in that the throttle flow is in a state of having a throttle channel and a cross-sectional area larger than the cross-sectional area of the throttle channel. Introducing oil branched from the supply / discharge oil path to the supply / discharge oil path connecting the hydraulic pump and the hydraulic motor of the hydrostatic continuously variable transmission A discharge-side flow path from a charge pump is connected via a passage, a relief valve is interposed in the introduction oil passage , and the vicinity of a branch point to the introduction oil passage in the supply / discharge oil passage is provided , and the relief The throttle passage is connected in communication with a portion of the valve that faces the introduction oil passage .
[0008]
(Action, effect)
According to the first and second aspects of the present invention, in the vicinity of the branch point to the relief valve in the supply / discharge oil passage connecting the hydraulic pump and the hydraulic motor of the hydrostatic continuously variable transmission , and toward the port of the relief valve This is a means for providing a damper comprising a throttle channel communicating with a part and an expansion chamber having a cross-sectional area larger than the cross-sectional area of the throttle channel. Even if the pulsating pressure fluctuation caused by the operation of the relief valve occurs toward the branch point to the relief valve in the supply / discharge oil passage, the vibration or pulsation is in the vicinity of the branch point , and the oil introduced into the relief valve Since the cross-sectional area increases at a stroke when it is transmitted to the expansion chamber via the constricted flow path provided at the part toward the path, the action of decreasing the impedance near the resonance frequency is created, and the vibration wave is short-circuited. The resonance phenomenon caused by vibration can be reduced without being propagated widely through the oil supply / discharge path.
[0009]
Since this vibration reduction action can always be exhibited by the presence of the damper, it is possible to obtain a vibration isolation action by performing a single modification in which the damper is connected in communication. Therefore, it is possible to eliminate the troublesome and inefficient conventional anti-vibration work of selecting and setting the best means by applying various measures to the part where the inconvenience due to resonance occurs.
[0010]
As a result, in the vibration isolating structure of the hydraulic device in the hydrostatic continuously variable transmission according to claims 1 and 2, the throttle channel in the damper having the throttle channel and the expansion chamber is supplied to and discharged from the resonance phenomenon. By ingeniously connecting to the portion of the oil passage near the branch point to the relief valve and leading to the introduction oil passage of the relief valve, inconvenience due to resonance such as noise and vibration can be avoided. Therefore, it is possible to provide a permanent vibration isolating means while being a simple and inexpensive single measure simply connecting a damper in the vicinity of the branch point to the relief valve in the supply / discharge oil passage.
[0011]
In particular, when the relief valve is opened due to the vibration reducing action of the damper, the resonance of the movable parts such as the movable valve body and the relief spring is suppressed or eliminated. It is possible to avoid the generation of noise. As a result, it is connected in the vicinity of the branch point to the relief valve in the supply / discharge oil passage connecting the hydraulic pump and the hydraulic motor of the hydrostatic continuously variable transmission , and to the portion of the relief valve toward the introduction oil passage. By providing a damper having a simple structure consisting of a throttle channel and an expansion chamber communicating with the throttle channel, it was possible to eliminate noise that was generated when the relief valve was relief-operated.
[0012]
〔Constitution〕
The structure of claim 3 is characterized in that, in the structure of claim 1 or 2, the damper is formed integrally with a casing for forming the hydraulic device.
[0013]
(Action, effect)
According to the configuration of the third aspect, since the damper is integrally formed with the casing, which is an essential member for constituting the hydrostatic continuously variable transmission, the vibration can be reduced in a compact and economical manner by combining the members. The structure could be provided. For example, when the casing is formed of a cast alloy such as cast iron such as a mission case, it is easy to integrally form a space portion such as a flow path or an expansion chamber.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 shows an agricultural tractor, where E is an engine, 1 is a front wheel, 2 is a rear wheel, 3 is a bonnet, 4 is a driving unit, 5 is an engine, 6 is a traveling mission, 7 is a vehicle body, and 8 is a driving seat. , 9 is a PTO shaft, 10 is a rear working device, 11 is a rear wheel fender, and g is a guard member.
[0015]
2 and 3 show the HST 12 which is the main part of the traveling mission 6, and FIG. 4 shows the hydraulic circuit diagram thereof. The HST 12 transmits engine power input to the input shaft 13 to the pump shaft 15 of the variable displacement hydraulic pump P via the flat gear interlocking mechanism 14 and is operated by the pressure oil of the hydraulic pump P. The output shafts 16 and 17 of the hydraulic motors M1 and M2 are directly coupled using a coupling 18 (an example of the output merging mechanism A), and is configured as a one-pump and two-motor type. In FIG. 4, the portion surrounded by a dashed line is the transmission case 6c, and those drawn on the outside thereof (the discharge side oil passage 19a of the charge pump 19 and the electromagnetic switching valve 39 described later) are external piping. It has become a case external component.
[0016]
The pump shaft 15 is equipped with a charge pump 19 for the HST 12, and its tip protrudes out of the transmission case 6c, and serves as a protruding tip shaft portion 20 that can be used for a live PTO shaft or the like. The transmission case 6c includes a main case portion 21 that mainly covers the hydraulic pump P and the first hydraulic motor M1, a lid case portion 22 that supports the input shaft 13 and the like, a motor case portion 23 that covers the second hydraulic motor M2, and An oil passage block 24 interposed between the main case portion 21 and the motor case portion 23 is provided.
[0017]
As shown in FIG. 4, the plunger type hydraulic pump P is a variable capacity type, the axial piston type first hydraulic motor M1 is a constant capacity type, and the axial piston type second hydraulic motor M2 is a variable capacity type. Each of these two hydraulic motors M1, M2 is connected to the pressure oil input side ports 25, 26 and the oil discharge side ports 27, 28 in communication to form a parallel circuit h. It is connected to a hydraulic pump P via supply / discharge oil passages 29 and 30. 34 and 35 are travel relief valves for setting the maximum load pressure on the forward side and the reverse side, and 36 is a main relief valve for setting the upper limit of the circuit pressure. Note that the functions of the input side and oil drain side ports 25 to 28 are opposite to each other when the output rotation direction as the HST 12 is forward rotation and reverse rotation.
[0018]
By operating the hydraulic speed change cylinder 31 linked to the swash plate operating portion 33 of the hydraulic pump P by switching the speed change valve 32, the swash plate angle of the hydraulic pump P changes and the pressure oil per unit time is changed. The discharge amount is changed, the energy of the discharged pressure oil is converted into rotational force by the first and second hydraulic motors M1, M2, and the rotational power from the input shaft 13 can be switched between the forward side and the reverse side. At the same time, the HST 12 functions so as to shift continuously and take out from the output shaft 17 and transmit it to the rear wheel 2 via a sub transmission mechanism (not shown) on both the forward side and the reverse side.
[0019]
The second hydraulic motor M2 is configured as a two-state switching type between a first speed state in which the swash plate angle is equal to the swash plate angle in the first hydraulic motor M1 and a second speed state in which the swash plate angle is 0 degrees. . As shown in FIG. 4, a switching cylinder 38 acting on the swash plate operating portion 37a of the swash plate 37 of the second hydraulic motor M2, a two-position switching type electromagnetic switching valve 39 for switching the switching cylinder 38, and A button switch 40 is provided. That is, by operating the button switch 40 and switching the electromagnetic switching valve 39 to expand and contract the switching cylinder 38, the first speed state (the state shown in FIG. 3) in which the swash plate 37 is inclined and the swash plate 37 are The second speed state (the state shown in FIG. 2) in which the inclination angle is 0 when standing vertically is configured to be selectively switched.
[0020]
The switching cylinder 38 is configured by disposing an operation portion 41 composed of a cylinder chamber 41a and a piston rod 41b and a return portion 42 composed of a return spring 42a and a push rod 42b in the motor case portion 23 so as to face each other. If pressure oil is supplied to the cylinder chamber 41a and the piston rod 41b is forcibly pushed out against the urging force of the return spring 42a, the first speed state shown in FIG. 3 is reached, and oil is discharged from the cylinder chamber 41a. The push rod 42b pushes the swash plate operating portion 37a back to the 0 degree position by the urging force of the return spring 42a, and self-returns to the second speed state shown in FIG.
[0021]
The second hydraulic motor M2 is disposed so that the axis of the output shaft 17 is aligned with the axis X of the output shaft 16 of the first hydraulic motor M1. Therefore, when viewed as a motor unit, it is long in the axial center X direction (front-rear direction), but can be compactly formed in the vertical and horizontal directions, and is suitable for a tractor or the like that has a long mission space. It has a layout.
[0022]
In the first speed state, both the hydraulic motors M1 and M2 have the same swash plate angle, so that it is possible to generate almost twice as much torque as that by the first hydraulic motor M1. Theoretically, the torque is doubled, but in reality there is an energy loss such as a mechanical friction loss, so the torque extracted from the output shaft 17 is “almost twice”. Accordingly, if the hydraulic pump P is operated at the lowest speed in the first speed state, the maximum torque can be generated almost twice as much as the conventional one, which is suitable for work traveling in which the load torque such as plow work in a muddy area becomes very large. It will be a thing. Further, in the second speed state in which the inclination angle is 0, the pressure oil passes through the second hydraulic motor, so that it is used as an HST in a one-motor state in which only the first hydraulic motor M1 is provided. can do.
[0023]
Next, a description will be given of an anti-vibration mechanism B that reduces noise during operation of the relief valve and discharge pulsation of the charge pump.
[0024]
As shown in FIG. 4, a vibration isolation mechanism B communicating with each oil passage (an example of the pressure oil passage r) is provided near the branch point to the relief valves 34 and 35 in each of the supply / discharge oil passages 29 and 30. It is. The two anti-vibration mechanisms B and B near the relief valves 34 and 35 are configured to avoid the generation of noise such as “pea” from the relief valves 34 and 35 during the relief operation.
[0025]
As shown in FIG. 5 to FIG. 7, the anti-vibration mechanism B for noise prevention includes the throttle channel 43 and the throttle channel 43 in a state having a cross-sectional area larger than the sectional area of the throttle channel 43. The damper d is configured by including an expansion chamber 44 that communicates, and the throttle channel 43 is connected to the supply / discharge oil channel (an example of a pressure oil channel in the hydraulic device) 29 and 30 in communication. A throttle channel 43 composed of pores having a diameter of 1.5 mm and an expansion chamber 44 having a diameter several times that of the throttle channel 43 are integrally formed in a transmission case 6c made of cast iron, and the expansion chamber 44 is sealed. In the state in which the plug 45 is screwed, the volume of the expansion chamber 44 is set to be about 1.5 cubic centimeters.
[0026]
The pair of relief valves 34 and 35 are the same, and the relief valve 34 will be described. The relief valve 34 also has a check valve function. The flow is configured as a composite valve that exerts a check action that allows almost no resistance to pass. In FIG. 5, 46 is a relief spring, 47 is a damping chamber, 48 is a valve body, 49 is a plug, 50 is a valve seat, 59 is a support body in which the relief valve body 48 is slidably fitted, 60 is a spring receiver, 61 Is a winding spring for closing and energizing the valve body 48 very lightly.
[0027]
That is, when the pressure of the introduction oil passage 29b communicated with the supply / discharge oil passage 29 becomes a predetermined value or more, the relief valve 34 is opened against the biasing force of the relief spring 46, and the pressure of the supply / discharge oil passage 29 is increased. Until the pressure becomes less than the predetermined pressure, a relief action is exerted to release the pressure to the discharge side oil passage 19a through the discharge oil passage 29a. If the hydraulic oil as the HST 12 becomes insufficient due to leakage or the like, the relief valve 34 is opened against the extremely light urging force of the winding spring 61, and the charge pressure can be supplied to the HST 12 with almost no resistance. is there.
[0028]
The throttle passage 43 communicates with the damping chamber 47 in each relief valve 34, 35 via the respective introduction oil passages 29b, 30b. The throttle channel 43 and the expansion chamber 44 can be formed by machining such as drilling from the end of the mission case 6c. The relief valve 34 can also be configured inside a hole formed by machining that drills from the end of the mission case 6c (an example of a casing).
[Brief description of the drawings]
FIG. 1 is a side view of a tractor. FIG. 2 is a side view showing a structure of an HST in a second speed state. FIG. 3 is a side view showing a structure of the HST in a first speed state. Fig. 5 is a cross-sectional view showing a relief valve and a vibration isolating mechanism for noise prevention. Fig. 6 is a front view of a mission case at a site where the vibration isolating mechanism is mounted.
6c Casing 12 Hydrostatic continuously variable transmission 19 Charge pump 19a Discharge side passage 29, 30 Supply / discharge oil passage 29b, 30b Introduction oil passage 34, 35 Relief valve 43 Throttle passage 44 Expansion chamber A Output junction mechanism d Damper P Pump M1, M2 Motor

Claims (3)

絞り流路と、この絞り流路の断面積よりも大なる断面積を有した状態で前記絞り流路に連通する膨張室とを備えてダンパを構成するとともに、静油圧式無段変速装置の油圧ポンプと油圧モータとを接続する給排油路におけるリリーフ弁への分岐点近傍であって、且つ前記リリーフ弁の導入油路に向かう部位に前記絞り流路を連通接続してある静油圧式無段変速装置における油圧装置の防振構造。The damper includes a throttle channel and an expansion chamber communicating with the throttle channel in a state having a cross-sectional area larger than the sectional area of the throttle channel. A hydrostatic type in which the throttle passage is connected to a portion of the supply / discharge oil passage connecting the hydraulic pump and the hydraulic motor in the vicinity of the branch point to the relief valve and toward the introduction oil passage of the relief valve. Anti-vibration structure of hydraulic device in continuously variable transmission. 絞り流路と、この絞り流路の断面積よりも大なる断面積を有した状態で前記絞り流路に連通する膨張室とを備えてダンパを構成するとともに、静油圧式無段変速装置の油圧ポンプと油圧モータとを接続する給排油路に、給排油路から分岐された導入油路を介してチャージポンプからの吐出側流路を接続し、前記導入油路にリリーフ弁を介装するとともに、給排油路における前記導入油路への分岐点近傍であって、且つ前記リリーフ弁の導入油路に向かう部位に前記絞り流路を連通接続してある静油圧式無段変速装置における油圧装置の防振構造。The damper includes a throttle channel and an expansion chamber communicating with the throttle channel in a state having a cross-sectional area larger than the sectional area of the throttle channel. A discharge side flow path from the charge pump is connected to the supply / discharge oil path connecting the hydraulic pump and the hydraulic motor via an introduction oil path branched from the supply / discharge oil path, and a relief valve is connected to the introduction oil path. And a hydrostatic continuously variable transmission in which the throttle passage is connected to a portion of the supply / discharge oil passage that is near the branch point to the introduction oil passage and that faces the introduction oil passage of the relief valve. Anti-vibration structure of the hydraulic device in the device. 前記ダンパを、前記静油圧式無段変速装置を構成するためのケーシングに一体形成してある請求項1または2に記載の静油圧式無段変速装置における油圧装置の防振構造。  The vibration isolating structure for a hydraulic device in a hydrostatic continuously variable transmission according to claim 1 or 2, wherein the damper is formed integrally with a casing for constituting the hydrostatic continuously variable transmission.
JP2002175739A 2002-06-17 2002-06-17 Anti-vibration structure of hydraulic system in hydrostatic continuously variable transmission Expired - Lifetime JP3977158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175739A JP3977158B2 (en) 2002-06-17 2002-06-17 Anti-vibration structure of hydraulic system in hydrostatic continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175739A JP3977158B2 (en) 2002-06-17 2002-06-17 Anti-vibration structure of hydraulic system in hydrostatic continuously variable transmission

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007055828A Division JP4653769B2 (en) 2007-03-06 2007-03-06 Hydrostatic continuously variable transmission for tractor

Publications (2)

Publication Number Publication Date
JP2004019793A JP2004019793A (en) 2004-01-22
JP3977158B2 true JP3977158B2 (en) 2007-09-19

Family

ID=31174304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175739A Expired - Lifetime JP3977158B2 (en) 2002-06-17 2002-06-17 Anti-vibration structure of hydraulic system in hydrostatic continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3977158B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248472A (en) * 2004-03-02 2005-09-15 Hitachi Constr Mach Co Ltd Construction machinery
JP4719423B2 (en) * 2004-03-05 2011-07-06 株式会社アイチコーポレーション Pressure control valve
JP4823197B2 (en) * 2007-10-15 2011-11-24 極東開発工業株式会社 Power unit and lifting platform lifting device
JP5121545B2 (en) * 2008-04-15 2013-01-16 住友建機株式会社 Hydraulic circuit for construction machinery

Also Published As

Publication number Publication date
JP2004019793A (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US7143858B2 (en) Transmission for a working vehicle and vehicle
JP4674688B2 (en) Hydraulic drive system
US7237643B2 (en) Pump unit and working vehicle
US6874319B2 (en) Hydrostatic transmission apparatus
US7775309B2 (en) Pump unit
US6131316A (en) Snow thrower machine
US6637294B2 (en) Transmission for vehicle
US7523610B2 (en) Neutral valve structure
JP3977158B2 (en) Anti-vibration structure of hydraulic system in hydrostatic continuously variable transmission
JP4132926B2 (en) Pump unit and work vehicle
EP2093091A2 (en) Hydraulic four-wheel-drive working vehicle
JP4653769B2 (en) Hydrostatic continuously variable transmission for tractor
US20030110766A1 (en) Hydraulic system with improved efficiency
JP5341610B2 (en) Work vehicle transmission case
JP4217549B2 (en) Hydraulic-mechanical transmission
CA1320980C (en) Hydraulic steering systems dampening devices
JP4901789B2 (en) Hydrostatic continuously variable transmission
JP4714926B2 (en) Pumping unit
US4949802A (en) Hydraulic steering systems dampening devices
JP2008157468A5 (en)
JP3678665B2 (en) Work vehicle
KR102680206B1 (en) Transmission system of agricultural work vehicles
KR101767669B1 (en) Hydraulic static transmission
JPH0533843A (en) Hydrostatic transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3977158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

EXPY Cancellation because of completion of term