[go: up one dir, main page]

JP3909950B2 - Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability - Google Patents

Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability Download PDF

Info

Publication number
JP3909950B2
JP3909950B2 JP09523398A JP9523398A JP3909950B2 JP 3909950 B2 JP3909950 B2 JP 3909950B2 JP 09523398 A JP09523398 A JP 09523398A JP 9523398 A JP9523398 A JP 9523398A JP 3909950 B2 JP3909950 B2 JP 3909950B2
Authority
JP
Japan
Prior art keywords
temperature
holding
less
stage
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09523398A
Other languages
Japanese (ja)
Other versions
JPH11269553A (en
Inventor
雅人 鈴木
浩次 面迫
昭史 平松
勝之 飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP09523398A priority Critical patent/JP3909950B2/en
Publication of JPH11269553A publication Critical patent/JPH11269553A/en
Application granted granted Critical
Publication of JP3909950B2 publication Critical patent/JP3909950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、伸びフランジ性に優れた中・高炭素鋼板を得るための製造方法に関するものである。
【0002】
【従来の技術】
鋼中のC含有量が概ね0.1〜0.8質量%の、いわゆる中・高炭素鋼板は、焼入れ強化が可能であるとともに、焼入れ前の焼鈍状態ではある程度の加工性も有しているため、自動車部品をはじめ各種機械部品や軸受け部品の素材として広く使用されている。部品の製造にあたっては、一般的には打抜加工や曲げ成形が施され、さらに比較的軽度な絞り加工,伸びフランジ成形が施されることもある。また、部品形状が複雑な場合は、二ないし三部品を溶接して製造される場合も多い。そしてこれらの加工部品は熱処理を経て各種用途の部品に仕上げられていく。
【0003】
ところが近年、部品の製造コストを低減すべく、部品の一体成形や、部品加工の工程簡略化が進められている。このことは素材側から見ればより加工率の高い(=塑性変形量の大きい)加工に耐えなくてはならないことを意味する。つまり、加工技術の高度化に伴い、素材である中・高炭素鋼板自体にもより高い加工性が要求されるようになってきた。特に昨今では、打抜加工や曲げ加工のみならず、伸びフランジ成形加工(例えば穴拡げ加工等)といった局所的な延性が要求される高度な加工にも耐え得る鋼板素材のニーズが高まりつつある。
【0004】
こうした中、特公昭61−15930号公報,特公平5−70685号公報,および特開平4−333527号公報には、加工方法あるいは熱処理方法を工夫することによって棒鋼中の炭化物を球状化し、棒鋼線材の加工性を改善する技術が紹介されている。しかし、これらはいずれも棒鋼線材を対象とするものであり、素材が板材である場合に問題となる伸びフランジ性や穴拡げ性の改善方法は明らかにされていない。
【0005】
また、特開平8−3687号公報には、Cを0.3mass%以上含有し、炭化物の占める面積率が20%以下で、粒径1.5μm以上の炭化物の割合が30%以上である加工用高炭素鋼板が示されており、その製造方法として仕上熱延機出側温度を750〜810℃とし、10℃/sec以下で冷却して仕上温度とコイル巻取り温度との差を300℃以下として巻取り、720℃×20時間の球状化焼鈍を施し、26℃/Hrの冷却速度で100℃まで冷却した後空冷して常温まで冷却する方法が開示されている。しかし、この技術は鋼板の加工性を改善するものであるが、伸びフランジ性といった局部的な延性が要求される高度な加工性を改善する方法については明らかにされていない。また、炭化物粒径を1.5μm以上に粗大化させるため、部品加工後の焼入れ処理におけるオーステナイト温度域の加熱で炭素を十分固溶させるには長時間を要する。このため、例えば高周波焼入れのような短時間加熱による焼入れ処理の適用が難しくなる。
【0006】
さらに特開平8−120405号公報には、C:0.20〜0.60%の他、Si,Al,N,B,Ca等の黒鉛化を促進する元素を含有し、C含有量の10〜50%が黒鉛化しており、断面の鋼組織が3μm以上の黒鉛粒子を特定量含んだ球状化セメンタイトの分散したフェライト相になっている加工性に優れた薄鋼板が示されている。その製造方法として、仕上温度750〜900℃で熱間圧延し、450〜650℃で巻取り、冷間圧延後に600〜720℃で焼鈍する方法等が示されている。この薄鋼板は穴拡げ性と二次加工性に優れているという。しかし、含有炭素の黒鉛化を利用するものであるから、黒鉛化を促進する元素の添加が必要となり、一般的な市販の中・高炭素鋼種に広く適用できるものではない。加えて3μm以上の粗大な黒鉛粒子の存在は、先の例と同様、部品加工後の焼入れ処理の加熱において炭素の十分な固溶化を遅らせ、短時間加熱による焼入れ処理の適用を困難にする。
【0007】
【発明が解決しようとする課題】
以上のように、加工性の中でも特に「伸びフランジ性」を改善した中・高炭素鋼板のニーズが高いにもかかわらず、一般的な中・高炭素鋼種の鋼板素材においてそれらの特性を改善する手法は明らかにされていない。そこで本発明は、特殊な元素を添加しない一般的な中・高炭素鋼の鋼種において、「伸びフランジ性」を安定的に改善することができる中・高炭素鋼板素材の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的は、請求項1の発明、すなわち、質量%において、C: 0.1 0.8 %,Si: 0.40 %以下,Mn: 0.3 1.0 %,Cr: 1.2 %以下,Mo: 0 0.3 %(無添加を含む),Cu: 0 0.3 %(無添加を含む),Ni: 0 2.0 %(無添加を含む)を含有し、Pを 0.03 %以下,Sを 0.01 %以下,T . Alを 0.1 %以下に制限し、残部がFeおよび不可避的不純物からなる鋼からなり、初析フェライト面積率(%)が下記(1)式により定まるF値以上である初析フェライト+パーライト組織の熱延鋼板に、650℃から「Ac1〜Ac1+100℃」の範囲の温度までの昇温速度を5〜80℃/hにコントロールする昇温と、「Ac1〜Ac1+100℃」の温度範囲で0.5〜20時間保持する1段目の加熱保持と、1段目の保持温度から「Ar1−80℃〜Ar1」の範囲の温度までの降温速度を5〜30℃/hにコントロールする降温と、「Ar1−80℃〜Ar1」の温度範囲で2〜60時間保持する2段目の加熱保持を連続して行う焼鈍を施す、伸びフランジ性に優れた中・高炭素鋼板の製造方法によって達成される。
F=0.4×(1−質量%C/0.8)×100 ・・(1)
ここで、Ac1は昇温過程における鋼のA1変態点(℃)、Ar1は降温過程におけるA1変態点(℃)を意味する。「初析フェライト面積率(%)」は当該熱延鋼板中に存在する初析フェライト量を顕微鏡観察等の手段により実測して求まる値である。一方、「F値」は鋼板のC含有量(質量%)の値を(1)式右辺に代入して計算により定まる値である。
【0009】
請求項2の発明は、請求項1の発明において、冷間圧延工程を付加したものである。すなわち、熱延鋼板に15%以上の冷間圧延を施し、次いで焼鈍を施すことを特徴とする。
【0010】
請求項3の発明は、請求項2の発明において、特に冷間圧延率を15〜50%の範囲に規定したものである。
【0014】
【発明の実施の形態】
本発明者らは、一般的な組成の中・高炭素鋼について、加工性を改善する手段を種々検討してきた。その結果、次のようなことが明らかになった。▲1▼一般的な打抜加工性や曲げ加工性が向上する場合でも、伸びフランジ性が改善されるとは限らないこと、▲2▼炭化物を単に球状化させるだけでは伸びフランジ性の安定した改善は図れないこと、▲3▼伸びフランジ性は、鋼板中における炭化物の分散形態に大きく依存し、具体的には炭化物のより一層の球状化と、平均炭化物粒径を大きくすること(平均炭化物間距離を大きくすること)によって改善し得ること。
さらに、冷間加工工程を経た場合でも、焼入性を阻害しない炭化物粒径の範囲で伸びフランジ性が改善できることも明らかになった。
【0015】
伸びフランジ性の改善挙動が、他の加工性の挙動と必ずしも一致しない理由について現時点では不明な点が多いが、次のようなことが考えられる。すなわち、伸びフランジ性は一般に穴拡げ試験で評価される特性であり、具体的には例えば、円板に予め設けた直径d0の穴にポンチを押し込んで穴を押し拡げていき、穴縁に板厚を貫通する割れが発生したときの穴直径dを測定し、そのときの穴径拡大率(d−d0)/d0で評価することのできる特性である。穴径拡大率は穴縁の円周方向ひずみの公称値を意味することから、伸びフランジ性は、穴縁に「くびれ」あるいは「割れ」が発生し始めるときの円周方向ひずみの限界値によって評価し得る特性である。つまり、伸びフランジ性は、局部的に高い応力が集中する場合の成形性を表していることになる。伸びフランジ性が他の一般的な加工性と異なる挙動を示すのは、一般的な加工性には影響を及ぼさないようなミクロ的な欠陥が、伸びフランジ性に対しては敏感に影響するためであると推察される。
【0016】
上記の「くびれ」や「割れ」は、加工変形中に生じるミクロ的な欠陥、すなわちミクロボイドが連結して成長したような、極めて微少な欠陥によって引き起こされるものと考えられる。中・高炭素鋼板においては、炭化物(セメンタイト)がミクロボイドの生成起点になると考えれれる。したがって、中・高炭素鋼板の伸びフランジ性を改善するには、ミクロボイドの生成・連結が起こりにくいような炭化物の分布形態にコントロールすることが重要となる。
【0017】
本発明者らの詳細な研究により、加工に供する鋼板中の平均炭化物間距離を長くすれば、個々の炭化物を起点として生成したミクロボイドの連結が抑制でき、伸びフランジ性が向上することが確認されている。また、個々の炭化物の球状化率を高めることもミクロボイドの生成を抑制する効果があることが確認されている。以下、本発明を特定するための事項について説明する。
【0018】
本発明では、C:0.1〜0.8質量%を含有する鋼を対象とする。C含有量は鋼の焼入れ硬さおよび炭化物量に大きく影響する。C含有量が0.1質量%以下の鋼では、各種機械構造用部品に適用するうえで十分な焼入れ硬さが得られない。一方、C含有量が0.8質量%を超えると、熱間圧延後の靭性が低下して鋼帯の製造性・取扱い性が悪くなるとともに、焼鈍後においても十分な延性が得られないため、加工度の高い部品への適用が困難になる。したがって、本発明では適度な焼入れ硬さと加工性を兼ね備えた素材鋼板を提供する観点から、C含有量が0.1〜0.8質量%の範囲の鋼を対象とする。なお、C含有量が低くなるほど伸びフランジ性は一層改善される。このため、伸びフランジ性を特に重視する用途ではC含有量が0.1〜0.5質量%の鋼を使用することが望ましい。
【0019】
Sは、MnS系介在物を形成する元素である。この介在物の量が多くなると局部延性が劣化するので、鋼中のS含有量はできるだけ低減することが望ましい。本発明ではS含有量を特別に低減していない一般的な市販鋼に対しても伸びフランジ性の向上効果は得られる。しかし、C含有量が0.8質量%近くまで高くなった場合でも、後述するElv値およびλ値がそれぞれ例えば35%以上,40%以上といった高い伸びフランジ性を安定して確保するためには、S含有量を0.01質量%以下に低減した鋼を使用することが望ましい。さらにElv値およびλ値をそれぞれ40%以上,55%以上にまで高めた非常に優れた伸びフランジ性を有する鋼板素材を安定して得るためには、C含有量を0.1〜0.5質量%としたうえで、S含有量を0.005質量%以下に低減した鋼を用いるのがよい。
【0020】
Pは、延性や靭性を劣化させるので、0.03質量%以下の含有量とすることが望ましい。
【0021】
Alは溶鋼の脱酸剤として添加されるが、鋼中のT.Al量が0.1質量%を超えると鋼の清浄度が損なわれて鋼板に表面疵が発生しやすくなるので、T.Al含有量は0.1質量%以下とすることが望ましい。
【0022】
Siは、局部延性に対して影響の大きい元素の1つである。Siを過剰に添加すると固溶強化作用によりフェライトが硬化し、成形加工時に割れ発生の原因となる。またSi含有量が増加すると製造過程で鋼板表面にスケール疵が発生する傾向を示し、表面品質の低下を招く。Siを添加する場合は0.40質量%以下の含有量に抑えるのがよい。加工性を特に重視する用途ではSi含有量は0.1質量%以下とすることが望ましい。
【0023】
Mnは、鋼板の焼入れ性を高め、強靭化にも有効な添加元素である。十分な焼入れ性を得るためには0.3質量%以上の含有が望ましい。しかし、1.0質量%を超えて多量に含有させるとフェライトが硬化し、加工性の劣化を招く。そこで、Mnは0.3〜1.0質量%の範囲で含有させることが望ましい。
【0024】
Crは、焼入れ性を改善するとともに焼戻し軟化抵抗を大きくする元素である。しかし、1.2質量%を超える多量のCrが含まれると後述の本発明の焼鈍を施しても軟質化しにくく焼入れ前のプレス成形性や加工性が劣化する場合がある。したがってCrを添加する場合は1.2質量%以下の範囲とするのがよい。
【0025】
Moは、少量の添加でCrと同様に焼入れ性・焼戻し軟化抵抗の改善に寄与する。しかし、0.3質量%を超える多量のMoが含まれると本発明の焼鈍を施しても軟質化しにくく焼入れ前のプレス成形性や加工性が劣化する場合がある。したがってMoを添加する場合は0.3質量%以下の範囲とするのがよい。
【0026】
Cuは、熱延中に生成する酸化スケールの剥離性を向上させるので、鋼板の表面性状の改善に有効である。しかし、0.3質量%以上含有させると溶融金属脆化により鋼板表面に微細なクラックが生じやすくなるので、Cuを添加する場合は0.3質量%以下の範囲とするのがよい。Cu含有量の好ましい範囲は0.10〜0.15質量%である。
【0027】
Niは、焼入れ性を改善するとともに低温脆性を防止する元素である。またNiは、Cu添加によって問題となる溶融金属脆化の悪影響を打ち消す作用を示すので、特にCuを約0.2%以上添加する場合にはCu添加量と同程度のNiを添加することが極めて効果的である。しかし、2.0質量%を超える多量のNiが含まれると本発明の焼鈍を施しても軟質化しにくく焼入れ前のプレス成形性や加工性が劣化する場合がある。したがってNiを添加する場合は2.0質量%以下の範囲とするのがよい。
【0028】
次に、熱処理による炭化物形態のコントロールについて説明する。
一般的に、鋼をAc1点以上の温度に加熱すると炭化物のうち微細なものはオーステナイト中に固溶し、その後Ar1点以下の温度に冷却すると再び炭化物として析出する。その際、Ac1点以上で未溶解炭化物をある程度多く残存させることが可能であれば、Ar1点以下への降温速度を遅くしたとき、オーステナイト中に固溶したCはパーライトを生成せずに未溶解炭化物を核として析出するので、焼鈍後の炭化物の球状化率は高くなる。またこの場合、Ac1点以上における未溶解炭化物の数は焼鈍前より減少しており、降温速度が遅いと新たに核生成しないので、焼鈍後の炭化物数は焼鈍前より減少することになり、結果的に炭化物間距離は長くなる。
【0029】
しかしながら、Ac1点以上の温度域は、平衡的には鋼の炭化物がすべて固溶する領域である。このため、一般的な焼鈍ではAc1点以上で未溶解炭化物をある程度多く残存させることは困難である。結局、析出核の数が不足し、Ar1点以下への冷却過程で、オーステナイト中に固溶したCはラメラ間隔の広い再生パーライトとして析出することになる。その結果、炭化物の球状化率は極めて低くなり、伸びフランジ性の優れた鋼板は得られない。
本発明は、Ac1点以上の温度への昇温過程をも含めた熱処理過程全体において、伸びフランジ性が向上する炭化物分散形態を実現しようというものである。
【0030】
〔1段目の保持温度への昇温速度〕
本発明では、昇温過程において、650℃からAc1点以上の1段目の保持温度に到達するまでの昇温速度を、5〜80℃/hにコントロールする。このように昇温速度を遅くすることによって、熱延で生成したパーライトがその昇温過程で分断され、炭化物粒径は比較的細かいものの、球状化が進むため炭化物単位面積当たりの表面積が減少する。その結果、続く1段目の加熱保持過程において、炭化物/オーステナイト界面面積が減少し、炭化物の固溶を遅らせることができ、未溶解炭化物を適度に残存させることができる。昇温過程で未だ温度が650℃に達していない間は、昇温速度を遅くしても熱延パーライトの分断・球状化はあまり進まない。したがって、650℃以上の温度域での昇温速度をコントロールする。ただし、その昇温速度を5℃/hより遅くしても得られる効果は小さく、工業的メリットがない。また、その昇温速度が80℃/hを超えると炭化物の球状化が十分に進まない。
【0031】
〔1段目の加熱保持〕
1段目の加熱保持の目的は、鋼板をAc1点以上の温度に保持し、オーステナイト化した部分において微細な炭化物を固溶・消失させるとともに比較的大きな球状炭化物を未溶解のまま残すこと、および、フェライトが存在する場合にはその部分の炭化物をオストワルド成長させることである。つまり、続く2段目の加熱保持で炭化物析出の核となるべき未溶解炭化物の、数および分散状態を決定付ける過程である。保持温度がAc1点未満ではオーステナイトが生成しない。一方、Ac1+100℃の温度を超えると、昇温速度のコントロールによって炭化物が球状化されていても、その多くはオーステナイト中に固溶・消失し、未溶解炭化物の数が少なくなりすぎるか、または存在しなくなる。そうなると2段目の保持温度への冷却過程で再生パーライトが生成し、伸びフランジ性を十分改善するに足る高い炭化物球状化率と大きい平均炭化物粒径が実現できない。加熱保持時間が0.5時間未満ではオーステナイト中への微細炭化物の固溶が不十分であり、20時間を超える長時間加熱ではより平衡状態に近づくため未溶解炭化物の数が減少しすぎる。したがって、1段目の加熱保持過程ではAc1〜Ac1+100℃の温度範囲で0.5〜20時間保持する。
【0032】
〔1段目の保持温度から2段目の保持温度への降温速度〕
この降温速度が速いとオーステナイトの過冷度が大きくなり、再生パーライトが生成しやすくなる。再生パーライトの生成を十分抑制するためには降温速度を30℃/h以下とする必要がある。一方、降温速度を5℃/hより遅くしても再生パーライト抑制効果は飽和し、工業的メリットがない。したがって、当該降温速度は5〜30℃/hに規定する。
【0033】
〔2段目の加熱保持〕
2段目の加熱保持の目的は、1段目の加熱保持を経た鋼板をAr1点以下の温度に保持し、1段目の温度からの冷却でオーステナイト→フェライト変態に伴ってオーステナイトから吐き出されるCを未溶解炭化物を核として析出させるとともに、これらの炭化物をオストワルド成長させることである。つまり、炭化物の数は1段目の加熱保持で残存させた未溶解炭化物の数をほぼそのまま維持し、かつ炭化物の球状化率を高める過程である。保持温度がAr1点以下でないとオーステナイト→フェライト変態が起こらない。また、保持温度がAr1−80℃より低温の場合や、保持時間が2時間未満では、オストワルド成長が十分進まない。ただし、保持時間が60時間を超えてもその効果が飽和し、工業的なメリットはない。したがって、2段目の加熱保持過程ではAr1−80℃〜Ar1の温度範囲で2〜60時間保持する。
【0034】
次に、熱延鋼板の金属組織について説明する。本発明において、熱延鋼板の金属組織は、実質的にフェライト+パーライト組織、すなわち、ベイナイトを含まない初析フェライト+パーライト組織であることが望ましい。これは、1段目の保持温度への昇温過程において、ベイナイトはパーライトに比べて炭化物粒径がより微細になり、1段目の加熱保持で残留する未溶解炭化物の数が不足するためである。
【0035】
熱延鋼板の初析フェライト面積率(%)を高くすることも、1段目の加熱保持で未溶解炭化物を適正量残留させるうえで有利である。初析フェライト面積率(%)が高くなると、パーライトコロニー全体でのC濃度が高くなるので、パーライト中のセメンタイトラメラが厚くなり、1段目の保持温度への昇温過程で炭化物粒径を比較的大きくすることができるからである。実験の結果、熱延鋼板における初析フェライト面積率(%)が、下記(1)式で定まるF値以上の値になるように調製されているとき、より良好な伸びフランジ性が得られることがわかった。
F=0.4×(1−質量%C/0.8)×100 ・・(1)
ここで、「(1−質量%C/0.8)×100」は、平衡論的に析出する初析フェライト面積率である。(1)式は、実際に存在する熱延鋼板中の初析フェライト量が、平衡論的な初析フェライト量の40%以上の量であることが望ましいことを意味する。熱延鋼板中の初析フェライト面積率(%)は、鋼板断面の金属組織観察(例えば走査電子顕微鏡観察)において、観察視野内の初析フェライト面積を測定し、観察視野面積に占める初析フェライト面積の割合として求めることができる。
【0036】
加工用素材の各種板厚要求に対応するためには、冷間圧延工程の採用が非常に有利となる。また、一般的に熱延鋼板を焼鈍前に冷間圧延すると、導入された加工ひずみによって焼鈍時に再結晶が促進され、冷間圧延を施さなかった場合に比べ軟質なものが得られる。本発明では、この軟質化の効果を享受することができる他、特に1段目の保持温度への昇温過程において、加工ひずみによりパーライト中の炭化物の分断・球状化が促進されるメリットもある。ただし、本発明者らの調査によると、冷間圧延率が10%程度のときには、冷間圧延を施さなかった場合(以下、「冷間圧延率が0%」という)よりむしろ焼鈍後の硬度が上昇する現象がみられた。冷間圧延率が15%になると、ようやく冷間圧延率が0%のものとほぼ同等の硬度にもどり、さらに冷間圧延率を増すと冷間圧延率0%のものより大幅に軟質なものが得られる。しかし、冷間圧延率が30%を超えると軟質化の程度は少しずつ小さくなり、50%を超えるとフェライト結晶粒径が微細となり、硬さが上昇し、延性の低下も懸念される。したがって、熱延鋼板に対して冷間圧延を施す場合には、少なくとも15%以上の冷間圧延率とする必要があるが、50%以下の範囲とすることが望ましい。
【0037】
以上のようにして、伸びフランジ性の高い中・高炭素鋼板が得られる。具体的には本発明の焼鈍後の金属組織が、例えば、炭化物の球状化率が90%以上であり、平均炭化物粒径が0.4〜1.0μmの範囲となることが望ましい。本発明によってこのような望ましい金属組織を得ることが可能である。
【0038】
ここで、炭化物の球状化率は、鋼板断面の金属組織観察(例えば走査電子顕微鏡観察)において炭化物の最大長さaとその直角方向における最大長さbの比(a/b)が3未満のものを「球状化した炭化物」としてカウントし、測定炭化物総数に対する前記「球状化した炭化物」の割合で表したものを意味する。ただし、観察視野は炭化物総数が300個以上となる領域とする。
【0039】
平均炭化物粒径は、鋼板断面の金属組織観察において、観察視野内の個々の炭化物について測定した円相当径を全測定炭化物について平均した値を意味する。ただし、観察視野は炭化物総数が300個以上となる領域とする。
【0040】
【実施例】
〔実施例1〕
表1に、供試鋼板の化学成分,Ac1変態点,Ar1変態点,および焼入れ硬さを示す。Ac1変態点およびAr1変態点は、直径5mm×長さ10mmの供試鋼試験片を「10℃/hで昇温→900℃で10分間保持して完全にオーステナイト化→10℃/hで冷却」というヒートパターンで加熱・冷却しながら試験片の収縮・膨張を測定し、その収縮・膨張曲線の変化から求めた。焼入れ硬さは、熱延材をそのままAc1変態点以上である900℃で5分間保持した後水焼入れした場合の硬さを示した。この焼入れ硬さは一般的な焼入れ処理によって鋼材本来の硬度を比較したものであり、本発明に係る焼鈍後の焼入性を示すものではない。
【0041】
【表1】

Figure 0003909950
【0042】
表1のうちA鋼は、C含有量が0.07質量%と低いので、焼入れ後の硬さが低く、機械部品として必要な硬度が得られないものであった。そこで、A鋼を除く鋼について、熱間圧延を施し、走査電子顕微鏡により熱延鋼板C-断面の金属組織観察を行って初析フェライト面積率(%)を測定した。表2に、熱延条件,初析フェライト面積率(%)の測定値,および前記(1)式で定まるF値を示す。
【0043】
【表2】
Figure 0003909950
【0044】
これらの熱延鋼板に対して種々の条件で焼鈍を施し、焼鈍後の鋼板(板厚2.3mm)について、引張試験,切欠引張試験,穴拡げ試験を実施した。
引張試験は、JIS 5号引張試験片を用い、平行部の標点間距離を50mmとして行った。
切欠引張試験は、JIS 5号引張試験片の平行部長手方向中央位置における幅方向両サイドに開き角45°,深さ2mmのVノッチを形成した試験片を用いて引張試験を行う方法で行った。Vノッチ部を挟む標点間距離5mmに対する伸び率を破断後に求め、その伸び率を切欠引張伸びElvとした。
穴拡げ試験は、150mm角の鋼板の中央部にクリアランス20%にて10mm(d0)の穴を打抜いた後、その穴部について、50mmφ球頭ポンチにて押し上げる方法で行い、穴周囲に板厚を貫通する亀裂が発生した時点での穴径dを測定して、次式で定義される穴拡げ率λ(%)を求めた。
λ=(d−d0)/d0×100
これらElv値およびλ値は局部延性を表す指標であり、伸びフランジ性を定量的に評価し得るものである。
これらの試験結果を焼鈍条件と併せて表3に示す。表3中の供試鋼板の記号は、表2のサンプル記号に対応している。
【0045】
【表3】
Figure 0003909950
【0046】
C含有量が0.91質量%と本発明規定範囲を超えているG鋼板は、冷延,焼鈍条件を本発明で規定する範囲内としても、Elv値27%,λ値31%と低く、伸びフランジ性は劣っていた(No.6)。C含有量が本発明規定範囲内でも、初析フェライト面積率がF値未満であったものはElv値,λ値が低く、高い伸びフランジ性は得られなかった(No.2,12)。これに対し、C含有量、および初析フェライト面積率がともに本発明規定範囲内のものは、本発明で規定する条件で焼鈍を施した場合、いずれもElv値36%以上,λ値40%以上と、優れた伸びフランジ性を示した(No.1,3〜5,7〜11,13〜15)。C含有量が本発明規定範囲にあり、かつS含有量が0.01質量%以下に抑えられているE鋼(No.9)は、C含有量が同等であるC鋼(No.7)と比べてもさらに高いElv値・λ値を示しており、非常に優れた伸びフランジ性を有することがわかる。
【0047】
次に、C含有量が本発明規定範囲であるB鋼(No.16〜21)を例に、焼鈍条件の影響について述べる。1段目への昇温速度が本発明規定範囲より速い場合(No,16)、1段目の保持温度が本発明規定範囲より高い場合(No.17)、および1段目の加熱時間が本発明規定範囲より長い場合(No.18)は、いずれも1段目の加熱保持終了時点での未溶解炭化物が極めて少なくなり、その結果再生パーライトが生成したため、Elv値,λ値ともに低くなった。1段目の保持温度から2段目の保持温度への降温速度が本発明の規定より速い場合(No.19)、および2段目の保持温度が本発明規定範囲より高い場合(No.20)でも、再生パーライトが生成したため、Elv値,λ値ともに低くなった。2段目の保持温度が本発明規定範囲より低い場合(No.21)は、2段目の加熱保持過程で炭化物の球状化が進まなかったため、Elv値,λ値ともに低くなった。
以上のように、本発明に係るものは比較例のものよりElv値およびλ値が顕著に向上している。
【0048】
〔実施例2〕
表2のB-1サンプルを用いて、冷間圧延工程を経た場合の、Elv値,λ値に及ぼす冷間圧延率の影響を調査した。板厚はいずれも2.3mmとし、冷間圧延後に本発明規定範囲の条件で焼鈍に供した。その結果を表4に示す。
【0049】
【表4】
Figure 0003909950
【0050】
冷間圧延率が10%の場合(No.32)は、冷間圧延を施さなかった場合(No.31)と比較しても、Elv値,λ値はほとんど変わらない。冷間圧延率が15%以上と本発明規定範囲のもの(No.33,34)は、冷間圧延を行っていないもの(No.31)より、Elv値,λ値が一層向上した。
【0051】
〔実施例3〕
次に、焼鈍後の金属組織(炭化物球状化率,平均炭化物粒径)の及ぼすElv値,λ値,高周波焼入れ性への影響を調べた一例を示す。サンプルとして、表3のNo.1(発明例),No.13(発明例),No.17(比較例)を用い、焼鈍後の鋼板断面の金属組織の走査電子顕微鏡観察し、先に述べた手法で炭化物球状化率および平均炭化物粒径を求めた。高周波焼入れ性は、焼鈍後の鋼板を高周波加熱により900℃で10秒間保持した後、水焼入れし、硬さを測定して評価した。この焼入れ硬さによって、部品加工後の焼入れ性が評価できると考えて良い。結果は次のとおりであった。
・(No.1)炭化物球状化率:90%,平均炭化物粒径:0.52μm,Elv値:40%,λ値:58%,高周波焼入れ硬さ:Hv 715。
・(No.13)炭化物球状化率:95%,平均炭化物粒径:0.68μm,Elv値:42%,λ値:61%,高周波焼入れ硬さ:Hv 712。
・(No.17)炭化物球状化率:64%,平均炭化物粒径:0.38μm,Elv値:30%,λ値:39%,高周波焼入れ硬さ:Hv 718。
これらの結果は、炭化物の球状化率が高く、かつ平均炭化物粒径が大きいほど、伸びフランジ性が向上することを示している。また、本発明によって高周波焼入れ性にも優れるものが得られることを示している。
【0052】
【発明の効果】
本発明によれば、伸びフランジ性に優れた加工用中・高炭素鋼板が安定的に造れるようになった。すなわち、伸びフランジ加工等の厳しい加工に耐え得る中・高炭素鋼板を、多くの用途に容易に適用することができるようになった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a production method for obtaining a medium / high carbon steel sheet excellent in stretch flangeability.
[0002]
[Prior art]
So-called medium and high carbon steel sheets with a C content of 0.1 to 0.8% by mass in steel can be hardened and have a certain degree of workability in the annealed state before quenching. It is widely used as a material for various machine parts and bearing parts. In manufacturing parts, generally, punching and bending are performed, and relatively mild drawing and stretch flange molding may be performed. Further, when the part shape is complicated, it is often produced by welding two or three parts. These processed parts are finished into parts for various uses through heat treatment.
[0003]
However, in recent years, in order to reduce the manufacturing cost of parts, the integral molding of parts and the simplification of parts processing are being promoted. This means that when viewed from the material side, it must withstand processing with a higher processing rate (= a large amount of plastic deformation). In other words, with the advancement of processing technology, higher workability has been required for medium and high carbon steel plates themselves. In particular, in recent years, there is an increasing need for a steel plate material that can withstand not only punching and bending, but also advanced processing that requires local ductility such as stretch flange forming (for example, hole expansion).
[0004]
Under these circumstances, Japanese Patent Publication No. 61-15930, Japanese Patent Publication No. 5-70685, and Japanese Patent Application Laid-Open No. 4-333527 disclose that the carbide in the steel bar is spheroidized by devising the processing method or heat treatment method, and the steel bar wire The technology to improve the workability of is introduced. However, all of these are intended for steel bar wires, and a method for improving stretch flangeability and hole expandability, which is a problem when the material is a plate material, has not been clarified.
[0005]
Japanese Patent Laid-Open No. 8-3687 discloses a processing height that contains 0.3 mass% or more of C, the area ratio of carbides is 20% or less, and the ratio of carbides having a particle size of 1.5 μm or more is 30% or more. Carbon steel sheet is shown, and as the manufacturing method, finish hot rolling machine outlet side temperature is set to 750-810 ° C, cooling at 10 ° C / sec or less, and difference between finishing temperature and coil winding temperature is set to 300 ° C or less A method is disclosed in which winding, spheroidizing annealing at 720 ° C. for 20 hours, cooling to 100 ° C. at a cooling rate of 26 ° C./Hr, air cooling, and cooling to room temperature. However, although this technique improves the workability of the steel sheet, a method for improving the high workability that requires local ductility such as stretch flangeability has not been clarified. Further, in order to coarsen the carbide particle size to 1.5 μm or more, it takes a long time to sufficiently dissolve carbon by heating in the austenite temperature range in the quenching process after parts processing. For this reason, for example, it becomes difficult to apply a quenching process by short-time heating such as induction hardening.
[0006]
Furthermore, in JP-A-8-120405, in addition to C: 0.20 to 0.60%, it contains elements that promote graphitization such as Si, Al, N, B, and Ca, and 10 to 50% of the C content is A thin steel sheet excellent in workability, which is graphitized and has a ferrite phase in which spheroidized cementite containing a specific amount of graphite particles having a cross-sectional steel structure of 3 μm or more is dispersed is shown. As its manufacturing method, a method of hot rolling at a finishing temperature of 750 to 900 ° C., winding at 450 to 650 ° C., and annealing at 600 to 720 ° C. after cold rolling is shown. This thin steel plate is said to be excellent in hole expansibility and secondary workability. However, since it uses graphitization of contained carbon, it is necessary to add an element that promotes graphitization, and it is not widely applicable to general commercially available medium and high carbon steel types. In addition, the presence of coarse graphite particles of 3 μm or more, as in the previous example, delays sufficient solid solution of carbon in the heating of the quenching process after parts processing, and makes it difficult to apply the quenching process by heating for a short time.
[0007]
[Problems to be solved by the invention]
As described above, despite the high need for medium- and high-carbon steel sheets with improved stretch flangeability, the characteristics of general medium- and high-carbon steel sheet materials are improved. The method has not been clarified. Therefore, the present invention provides a method for producing a medium / high carbon steel sheet material capable of stably improving the “stretch flangeability” in a general medium / high carbon steel grade that does not contain a special element. With the goal.
[0008]
[Means for Solving the Problems]
The object is the invention of claim 1, that is, in mass%, C: 0.1 to 0.8 %, Si: 0.40 % or less, Mn: 0.3 to 1.0 %, Cr: 1.2 % or less, Mo: 0 to 0.3 % (none Cu: 0 to 0.3 % (including no addition), Ni: 0 to 2.0 % (including no addition), P is 0.03 % or less, S is 0.01 % or less, T. Al is contained . Hot rolling of pro-eutectoid ferrite + pearlite structure, which is limited to 0.1 % or less, the balance is made of steel consisting of Fe and inevitable impurities , and the pro-eutectoid ferrite area ratio (%) is more than the F value determined by the following formula (1) the steel sheet, the temperature range of the temperature increase to control the "Ac 1 ~Ac 1 + 100 ℃" the heating rate to a temperature in the range of 5 to 80 ° C. / h, "Ac 1 ~Ac 1 + 100 ℃" from 650 ° C. in the first stage and the heating holding the holding 0.5 to 20 hours, a temperature in the range from the first stage holding temperature "Ar 1 -80 ° C. to Ar 1 ' Cooling and to control the cooling rate to 5 to 30 ° C. / h in the performed continuously annealed 2 to 60 hours 2-stage heating and holding for holding in the temperature range of "Ar 1 -80 ℃ ~Ar 1" This is achieved by a method for producing a medium / high carbon steel sheet having excellent stretch flangeability.
F = 0.4 x (1-mass% C / 0.8) x 100 (1)
Here, Ac 1 means the A 1 transformation point (° C.) of the steel in the temperature raising process, and Ar 1 means the A 1 transformation point (° C.) in the temperature lowering process. “Proeutectoid ferrite area ratio (%)” is a value obtained by actually measuring the amount of proeutectoid ferrite present in the hot-rolled steel sheet by means such as microscopic observation. On the other hand, the “F value” is a value determined by calculation by substituting the value of C content (% by mass) of the steel sheet into the right side of the equation (1).
[0009]
Invention of Claim 2 adds the cold rolling process in invention of Claim 1. That is, the hot-rolled steel sheet is subjected to cold rolling of 15% or more, and then annealed.
[0010]
The invention of claim 3 is the invention of claim 2, in which the cold rolling rate is specified in the range of 15 to 50%.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The inventors have studied various means for improving the workability of medium and high carbon steels having a general composition. As a result, the following became clear. (1) Even if general punching workability and bending workability are improved, stretch flangeability is not always improved. (2) Stretch flangeability is stable by simply spheroidizing carbide. (3) Stretch flangeability depends greatly on the dispersion form of carbides in the steel sheet. Specifically, the spheroidization of carbides and the increase in average carbide particle size (average carbides) It can be improved by increasing the distance.
Furthermore, it has also been clarified that the stretch flangeability can be improved in the range of the carbide particle diameter that does not impair the hardenability even after the cold working process.
[0015]
Although there are many unclear points at present regarding the reason why the improvement behavior of stretch flangeability does not necessarily match the behavior of other workability, the following can be considered. That is, stretch flangeability is a characteristic that is generally evaluated by a hole expansion test. Specifically, for example, a punch is pushed into a hole having a diameter d 0 provided in advance in a disk to expand the hole, and the hole edge is expanded. This is a characteristic that can be evaluated by measuring the hole diameter d when a crack penetrating the plate thickness occurs and evaluating the hole diameter enlargement ratio (d−d 0 ) / d 0 at that time. Since the hole diameter enlargement ratio means the nominal value of the circumferential strain of the hole edge, stretch flangeability depends on the limit value of the circumferential strain at which “necking” or “cracking” begins to occur at the hole edge. It is a characteristic that can be evaluated. That is, the stretch flangeability represents the formability when high stress is concentrated locally. Stretch flangeability behaves differently from other general workability because micro defects that do not affect general workability have a sensitive effect on stretch flangeability. It is guessed that.
[0016]
The above-mentioned “necking” and “cracking” are considered to be caused by microscopic defects generated during processing deformation, that is, extremely small defects such as microvoids growing together. In medium and high carbon steel sheets, carbide (cementite) is considered to be the starting point of microvoid formation. Therefore, in order to improve the stretch flangeability of medium and high carbon steel sheets, it is important to control the distribution of carbides so that the formation and connection of microvoids hardly occur.
[0017]
Detailed studies by the present inventors confirmed that if the average distance between carbides in the steel sheet to be processed is increased, the connection of microvoids generated from individual carbides can be suppressed, and the stretch flangeability is improved. ing. It has also been confirmed that increasing the spheroidization rate of individual carbides also has the effect of suppressing the formation of microvoids. Hereinafter, matters for specifying the present invention will be described.
[0018]
In the present invention, steel containing C: 0.1 to 0.8% by mass is targeted. The C content greatly affects the quenching hardness and carbide content of the steel. Steel with a C content of 0.1% by mass or less cannot provide sufficient quenching hardness when applied to various machine structural parts. On the other hand, if the C content exceeds 0.8% by mass, the toughness after hot rolling deteriorates and the manufacturability and handleability of the steel strip deteriorates, and sufficient ductility cannot be obtained even after annealing. It becomes difficult to apply to high-precision parts. Therefore, in the present invention, steel with a C content in the range of 0.1 to 0.8% by mass is targeted from the viewpoint of providing a raw steel plate having both appropriate quenching hardness and workability. In addition, stretch flangeability is further improved, so that C content becomes low. For this reason, it is desirable to use steel having a C content of 0.1 to 0.5% by mass in applications where stretch flangeability is particularly important.
[0019]
S is an element that forms MnS inclusions. Since the local ductility deteriorates when the amount of inclusions increases, it is desirable to reduce the S content in the steel as much as possible. In the present invention, the effect of improving stretch flangeability can be obtained even for general commercial steels in which the S content is not particularly reduced. However, even when the C content increases to near 0.8% by mass, in order to stably ensure high stretch flangeability such as an Elv value and a λ value described below of 35% or more and 40% or more, respectively, S It is desirable to use steel with a content reduced to 0.01% by mass or less. Furthermore, in order to stably obtain a steel plate material having very excellent stretch flangeability in which the Elv value and the λ value are increased to 40% or more and 55% or more, the C content is set to 0.1 to 0.5% by mass. In addition, it is preferable to use steel with the S content reduced to 0.005 mass% or less.
[0020]
Since P deteriorates ductility and toughness, the content is preferably 0.03% by mass or less.
[0021]
Al is added as a deoxidizer for molten steel, but if the amount of T.Al in the steel exceeds 0.1% by mass, the cleanliness of the steel is impaired and surface flaws are likely to occur on the steel sheet. The amount is desirably 0.1% by mass or less.
[0022]
Si is one of the elements having a great influence on the local ductility. If Si is added excessively, the ferrite is hardened by the solid solution strengthening action, which causes cracks during molding. Further, when the Si content is increased, scale flaws tend to be generated on the surface of the steel sheet during the production process, leading to a reduction in surface quality. When adding Si, it is good to suppress to 0.40 mass% or less content. In applications where workability is particularly important, the Si content is preferably 0.1% by mass or less.
[0023]
Mn is an additive element that enhances the hardenability of the steel sheet and is effective for toughening. In order to obtain sufficient hardenability, the content is preferably 0.3% by mass or more. However, if it is contained in a large amount exceeding 1.0% by mass, the ferrite is cured and the workability is deteriorated. Therefore, it is desirable to contain Mn in the range of 0.3 to 1.0% by mass.
[0024]
Cr is an element that improves hardenability and increases temper softening resistance. However, if a large amount of Cr exceeding 1.2% by mass is contained, it is difficult to soften even if the annealing of the present invention described later is performed, and press formability and workability before quenching may deteriorate. Therefore, when adding Cr, it is good to set it as the range of 1.2 mass% or less.
[0025]
Mo contributes to the improvement of hardenability and temper softening resistance in the same manner as Cr when added in a small amount. However, if a large amount of Mo exceeding 0.3% by mass is contained, even if the annealing of the present invention is performed, it is difficult to soften and press formability and workability before quenching may deteriorate. Therefore, when adding Mo, it is good to set it as the range of 0.3 mass% or less.
[0026]
Cu improves the surface properties of the steel sheet because it improves the peelability of the oxide scale produced during hot rolling. However, if it is contained in an amount of 0.3% by mass or more, fine cracks are likely to be generated on the surface of the steel sheet due to the molten metal embrittlement. A preferable range of the Cu content is 0.10 to 0.15% by mass.
[0027]
Ni is an element that improves hardenability and prevents low temperature brittleness. In addition, since Ni has an action to counteract the adverse effect of molten metal embrittlement which is a problem due to the addition of Cu, especially when adding about 0.2% or more of Cu, it is extremely effective to add Ni of the same amount as Cu addition. Is. However, if a large amount of Ni exceeding 2.0% by mass is contained, even if the annealing of the present invention is performed, it is difficult to soften and press formability and workability before quenching may deteriorate. Therefore, when adding Ni, it is good to set it as the range of 2.0 mass% or less.
[0028]
Next, control of the carbide form by heat treatment will be described.
Generally, when steel is heated to a temperature of Ac 1 point or higher, fine ones of carbides are dissolved in austenite, and then cooled to a temperature of Ar 1 point or lower to precipitate again as carbides. At that time, if it is possible to leave a certain amount of undissolved carbide at a point of Ac 1 or higher, C dissolved in austenite will not generate pearlite when the temperature lowering rate to Ar 1 or lower is slowed. Since undissolved carbides are deposited as nuclei, the spheroidization rate of the carbides after annealing is increased. Also, in this case, the number of undissolved carbides at Ac 1 point or higher is reduced from that before annealing, and if the cooling rate is slow, new nucleation will not occur, so the number of carbides after annealing will be reduced from that before annealing. As a result, the distance between carbides becomes longer.
[0029]
However, the temperature range of Ac 1 point or higher is a region where all of the carbides of steel are in solid solution in equilibrium. For this reason, in general annealing, it is difficult to leave a large amount of undissolved carbide at Ac 1 or more. Eventually, the number of precipitation nuclei is insufficient, and C dissolved in austenite is precipitated as regenerated pearlite with a wide lamellar interval in the cooling process to Ar 1 or less. As a result, the spheroidization rate of the carbide is extremely low, and a steel sheet having excellent stretch flangeability cannot be obtained.
The present invention is intended to realize a carbide dispersion form in which stretch flangeability is improved in the entire heat treatment process including a temperature raising process to a temperature of Ac 1 point or higher.
[0030]
[Temperature increase rate to the first stage holding temperature]
In the present invention, in the temperature raising process, the rate of temperature rise from 650 ° C. until reaching the first stage holding temperature of Ac 1 point or higher is controlled to 5 to 80 ° C./h. By slowing the heating rate in this way, the pearlite generated by hot rolling is divided in the heating process, and the particle size of the carbide is relatively fine, but the surface area per unit area of the carbide decreases because the spheroidization proceeds. . As a result, in the subsequent heating and holding process of the first stage, the carbide / austenite interface area decreases, the solid solution of the carbide can be delayed, and the undissolved carbide can be left appropriately. While the temperature has not yet reached 650 ° C during the temperature raising process, even if the temperature raising rate is slowed down, the hot-rolled pearlite does not divide or spheroidize much. Therefore, the temperature increase rate in the temperature range of 650 ° C. or higher is controlled. However, even if the rate of temperature rise is slower than 5 ° C./h, the effect obtained is small and there is no industrial merit. In addition, when the temperature rising rate exceeds 80 ° C./h, the spheroidization of the carbide does not proceed sufficiently.
[0031]
[First stage heating and holding]
The purpose of the first stage of heating and holding is to keep the steel sheet at a temperature of Ac 1 point or more, to dissolve / disappear fine carbides in the austenitized portion and to leave relatively large spherical carbides undissolved, And when ferrite exists, it is Ostwald growth of the carbide of the part. That is, it is a process of determining the number and dispersion state of undissolved carbides that should become the nuclei of carbide precipitation in the subsequent second stage heating and holding. If the holding temperature is less than Ac 1 point, austenite is not generated. On the other hand, when the temperature exceeds Ac 1 + 100 ° C., even if the carbides are spheroidized by controlling the heating rate, many of them are dissolved / disappeared in the austenite, and the number of undissolved carbides becomes too small. Or disappear. Then, regenerated pearlite is generated in the cooling process to the second stage holding temperature, and a high carbide spheroidization ratio and a large average carbide particle size sufficient to sufficiently improve stretch flangeability cannot be realized. If the heating and holding time is less than 0.5 hours, the solid carbide is not sufficiently dissolved in the austenite, and if the heating is continued for more than 20 hours, the number of undissolved carbides decreases too much because it approaches an equilibrium state. Accordingly, in the first stage heating and holding process, the temperature is held in the temperature range of Ac 1 to Ac 1 + 100 ° C. for 0.5 to 20 hours.
[0032]
[Temperature drop rate from the first stage holding temperature to the second stage holding temperature]
When this temperature decrease rate is high, the degree of supercooling of austenite increases, and regenerated pearlite is easily generated. In order to sufficiently suppress the generation of regenerated pearlite, the temperature lowering rate needs to be 30 ° C./h or less. On the other hand, even if the cooling rate is lower than 5 ° C./h, the reproduction pearlite suppressing effect is saturated and there is no industrial merit. Therefore, the said temperature fall rate is prescribed | regulated to 5-30 degrees C / h.
[0033]
[Second stage heating and holding]
The purpose of the second stage heating and holding is to hold the steel sheet that has passed the first stage heating and holding at a temperature of Ar 1 point or lower, and to be discharged from austenite with austenite → ferrite transformation by cooling from the first stage temperature. C is precipitated with undissolved carbides as nuclei, and these carbides are Ostwald grown. That is, the number of carbides is a process in which the number of undissolved carbides left by the first stage heating and holding is maintained almost as it is and the spheroidization rate of the carbides is increased. If the holding temperature is not lower than Ar 1 point, austenite → ferrite transformation does not occur. Further, when the holding temperature is lower than Ar 1 -80 ° C. or when the holding time is less than 2 hours, the Ostwald growth does not proceed sufficiently. However, even if the holding time exceeds 60 hours, the effect is saturated and there is no industrial merit. Therefore, in the second stage of heating and holding process to hold 2 to 60 hours at a temperature range of Ar 1 -80 ℃ ~Ar 1.
[0034]
Next, the metal structure of the hot rolled steel sheet will be described. In the present invention, it is desirable that the metal structure of the hot-rolled steel sheet is substantially a ferrite + pearlite structure, that is, a pro-eutectoid ferrite + pearlite structure not containing bainite. This is because, in the process of raising the temperature to the first stage holding temperature, bainite has a finer carbide particle size than pearlite, and the number of undissolved carbide remaining in the first stage heating and holding is insufficient. is there.
[0035]
Increasing the pro-eutectoid ferrite area ratio (%) of the hot-rolled steel sheet is also advantageous for leaving an appropriate amount of undissolved carbide by heating and maintaining the first stage. When the proeutectoid ferrite area ratio (%) increases, the C concentration in the entire pearlite colony increases, so the cementite tramera in the pearlite becomes thicker and the carbide particle size is compared in the process of raising the temperature to the first stage holding temperature. This is because it can be made larger. As a result of the experiment, when the pro-eutectoid ferrite area ratio (%) in the hot-rolled steel sheet is adjusted to be equal to or greater than the F value determined by the following formula (1), better stretch flangeability can be obtained. I understood.
F = 0.4 x (1-mass% C / 0.8) x 100 (1)
Here, “(1−mass% C / 0.8) × 100” is the pro-eutectoid ferrite area ratio precipitated in equilibrium. The formula (1) means that the amount of pro-eutectoid ferrite in the hot-rolled steel sheet that is actually present is preferably 40% or more of the equilibrium pro-eutectoid ferrite amount. The pro-eutectoid ferrite area ratio (%) in the hot-rolled steel sheet is determined by measuring the pro-eutectoid ferrite area in the observation field in the observation of the metal structure of the cross-section of the steel sheet (for example, observation with a scanning electron microscope). It can be determined as a percentage of the area.
[0036]
In order to meet various plate thickness requirements for processing materials, it is very advantageous to employ a cold rolling process. In general, when a hot-rolled steel sheet is cold-rolled before annealing, recrystallization is promoted at the time of annealing due to the introduced work strain, and a softer one can be obtained than when cold-rolling is not performed. In the present invention, in addition to being able to enjoy this softening effect, there is also a merit that the division and spheroidization of carbides in pearlite is promoted by processing strain, particularly in the temperature rising process to the first stage holding temperature. . However, according to the investigation by the present inventors, when the cold rolling rate is about 10%, the hardness after annealing rather than the case where the cold rolling is not performed (hereinafter, “the cold rolling rate is 0%”). There was a phenomenon of rising. When the cold rolling rate reaches 15%, it finally returns to almost the same hardness as the cold rolling rate of 0%, and when the cold rolling rate is further increased, it is much softer than the cold rolling rate of 0%. Is obtained. However, when the cold rolling rate exceeds 30%, the degree of softening gradually decreases, and when it exceeds 50%, the ferrite crystal grain size becomes fine, the hardness increases, and the ductility may be lowered. Therefore, when performing cold rolling on a hot-rolled steel sheet, it is necessary to set the cold rolling rate to at least 15% or more, but it is desirable to set the range to 50% or less.
[0037]
As described above, a medium / high carbon steel sheet having high stretch flangeability is obtained. Specifically, it is desirable that the annealed metal structure of the present invention has, for example, a carbide spheroidization rate of 90% or more and an average carbide particle size in the range of 0.4 to 1.0 μm. According to the present invention, such a desirable metal structure can be obtained.
[0038]
Here, the spheroidization rate of the carbide is such that the ratio (a / b) of the maximum length a of carbide and the maximum length b in the direction perpendicular thereto is less than 3 in the metallographic observation (for example, scanning electron microscope observation) of the cross section of the steel sheet. This means that the product is counted as “spheroidized carbide” and expressed as a ratio of the “spheroidized carbide” to the total number of measured carbides. However, the observation visual field is an area where the total number of carbides is 300 or more.
[0039]
The average carbide particle size means a value obtained by averaging the equivalent circle diameters measured for individual carbides within the observation field for all the measured carbides in the observation of the metal structure of the cross section of the steel sheet. However, the observation visual field is an area where the total number of carbides is 300 or more.
[0040]
【Example】
[Example 1]
Table 1 shows the chemical composition, Ac 1 transformation point, Ar 1 transformation point, and quenching hardness of the test steel sheet. The Ac 1 transformation point and the Ar 1 transformation point are as follows: a test steel specimen having a diameter of 5 mm and a length of 10 mm was heated at 10 ° C./h → held at 900 ° C. for 10 minutes to completely austenite → 10 ° C./h The shrinkage / expansion of the test piece was measured while heating / cooling with a heat pattern of “cooled by” and obtained from the change of the shrinkage / expansion curve. The quenching hardness indicates the hardness when the hot-rolled material is kept as it is at 900 ° C., which is equal to or higher than the Ac 1 transformation point, for 5 minutes and then water-quenched. This quenching hardness is a comparison of the original hardness of steel materials by a general quenching process, and does not indicate the hardenability after annealing according to the present invention.
[0041]
[Table 1]
Figure 0003909950
[0042]
In Table 1, steel A had a low C content of 0.07% by mass, so the hardness after quenching was low, and the hardness required for machine parts could not be obtained. Therefore, hot rolling was performed on the steels other than Steel A, and the microstructure of the pro-eutectoid ferrite (%) was measured by observing the metal structure of the hot-rolled steel sheet C-section with a scanning electron microscope. Table 2 shows hot rolling conditions, measured values of pro-eutectoid ferrite area ratio (%), and F value determined by the above equation (1).
[0043]
[Table 2]
Figure 0003909950
[0044]
These hot-rolled steel sheets were annealed under various conditions, and the annealed steel sheets (thickness 2.3 mm) were subjected to a tensile test, a notch tensile test, and a hole expansion test.
The tensile test was performed using a JIS No. 5 tensile test piece and setting the distance between the parallel marks to 50 mm.
The notch tensile test is performed by a method in which a tensile test is performed using a test piece in which a V-notch having an opening angle of 45 ° and a depth of 2 mm is formed on both sides in the width direction at the central position in the longitudinal direction of the parallel part of a JIS No. 5 tensile test piece. It was. The elongation for a distance of 5 mm between the gauge marks sandwiching the V-notch portion was obtained after fracture, and the elongation was defined as the notch tensile elongation Elv.
The hole expansion test was performed by punching a 10mm (d 0 ) hole in the center of a 150mm square steel plate with a clearance of 20%, and then pushing the hole with a 50mmφ spherical head punch. The hole diameter d at the time when a crack penetrating the plate thickness occurred was measured, and the hole expansion ratio λ (%) defined by the following equation was obtained.
λ = (d−d 0 ) / d 0 × 100
These Elv value and λ value are indices representing local ductility, and the stretch flangeability can be quantitatively evaluated.
These test results are shown in Table 3 together with the annealing conditions. The symbols of the test steel plates in Table 3 correspond to the sample symbols in Table 2.
[0045]
[Table 3]
Figure 0003909950
[0046]
G steel sheet with a C content of 0.91% by mass and exceeding the specified range of the present invention has a low Elv value of 27% and a λ value of 31%, even if the cold rolling and annealing conditions are within the range specified by the present invention. The sex was inferior (No. 6). Even when the C content was within the specified range of the present invention, those having a pro-eutectoid ferrite area ratio of less than F value had low Elv and λ values, and high stretch flangeability was not obtained (No. 2, 12). In contrast, when both the C content and the pro-eutectoid ferrite area ratio are within the specified range of the present invention, when annealed under the conditions specified in the present invention, the Elv value is 36% or more and the λ value is 40%. As described above, excellent stretch flangeability was exhibited (No. 1, 3 to 5, 7 to 11, 13 to 15). Steel E (No. 9), whose C content is within the specified range of the present invention and whose S content is suppressed to 0.01% by mass or less, is compared with Steel C (No. 7), which has the same C content. However, even higher Elv values and λ values are shown, and it can be seen that the film has very excellent stretch flangeability.
[0047]
Next, the influence of annealing conditions will be described by taking as an example B steel (No. 16 to 21) whose C content is within the range specified in the present invention. When the rate of temperature rise to the first stage is faster than the specified range of the present invention (No, 16), when the first stage holding temperature is higher than the specified range of the present invention (No. 17), and the heating time of the first stage When the length is longer than the specified range of the present invention (No. 18), the undissolved carbide at the end of the first stage of heating and holding is extremely small, and as a result, regenerated pearlite is generated, so both the Elv value and λ value are low. It was. When the rate of temperature decrease from the first stage holding temperature to the second stage holding temperature is faster than specified in the present invention (No. 19), and when the second stage holding temperature is higher than the specified range of the present invention (No. 20) However, since the reproduction perlite was generated, both the Elv value and the λ value were low. When the second stage holding temperature was lower than the specified range of the present invention (No. 21), the spheroidization of carbide did not progress during the second stage heating and holding process, so both the Elv value and the λ value were low.
As described above, the Elv value and the λ value are significantly improved in the invention according to the comparative example.
[0048]
[Example 2]
Using the B-1 sample in Table 2, the influence of the cold rolling rate on the Elv value and the λ value when the cold rolling process was performed was investigated. All the plate thicknesses were 2.3 mm, and were subjected to annealing under the conditions specified in the present invention after cold rolling. The results are shown in Table 4.
[0049]
[Table 4]
Figure 0003909950
[0050]
When the cold rolling rate is 10% (No. 32), the Elv value and the λ value are hardly changed even when the cold rolling is not performed (No. 31). The cold rolling rate of 15% or more and those within the scope of the present invention (No. 33, 34) were further improved in Elv value and λ value than those not subjected to cold rolling (No. 31).
[0051]
Example 3
Next, an example in which the influence of the microstructure (carbide spheroidization ratio, average carbide particle size) on the Elv value, λ value, and induction hardenability after annealing is shown. As samples, No. 1 (invention example), No. 13 (invention example), and No. 17 (comparative example) in Table 3 were used, and the metallographic structure of the cross-section of the steel sheet after annealing was observed with a scanning electron microscope. The carbide spheroidization rate and the average carbide particle size were determined by the above-described methods. Induction hardenability was evaluated by holding the annealed steel sheet at 900 ° C. for 10 seconds by induction heating, followed by water quenching and measuring the hardness. It may be considered that the quenchability after processing the parts can be evaluated by this quenching hardness. The results were as follows.
(No. 1) Carbide spheroidization rate: 90%, average carbide particle size: 0.52 μm, Elv value: 40%, λ value: 58%, induction hardening hardness: Hv 715.
(No. 13) Carbide spheroidization rate: 95%, average carbide particle size: 0.68 μm, Elv value: 42%, λ value: 61%, induction hardening hardness: Hv 712.
(No. 17) Carbide spheroidization rate: 64%, average carbide particle size: 0.38 μm, Elv value: 30%, λ value: 39%, induction hardening hardness: Hv 718.
These results indicate that stretch flangeability improves as the spheroidization rate of the carbide is higher and the average carbide particle size is larger. Moreover, it has been shown that the present invention can provide a material with excellent induction hardenability.
[0052]
【The invention's effect】
According to the present invention, a medium / high carbon steel sheet for processing excellent in stretch flangeability can be stably produced. That is, a medium / high carbon steel plate that can withstand severe processing such as stretch flange processing can be easily applied to many applications.

Claims (3)

質量%において、C: 0.1 0.8 %,Si: 0.40 %以下,Mn: 0.3 1.0 %,Cr: 1.2 %以下,Mo: 0 0.3 %(無添加を含む),Cu: 0 0.3 %(無添加を含む),Ni: 0 2.0 %(無添加を含む)を含有し、Pを 0.03 %以下,Sを 0.01 %以下,T . Alを 0.1 %以下に制限し、残部がFeおよび不可避的不純物からなる鋼からなり、初析フェライト面積率(%)が下記(1)式により定まるF値以上である初析フェライト+パーライト組織の熱延鋼板に、650℃から「Ac1〜Ac1+100℃」の範囲の温度までの昇温速度を5〜80℃/hにコントロールする昇温と、「Ac1〜Ac1+100℃」の温度範囲で0.5〜20時間保持する1段目の加熱保持と、1段目の保持温度から「Ar1−80℃〜Ar1」の範囲の温度までの降温速度を5〜30℃/hにコントロールする降温と、「Ar1−80℃〜Ar1」の温度範囲で2〜60時間保持する2段目の加熱保持を連続して行う焼鈍を施す、伸びフランジ性に優れた中・高炭素鋼板の製造方法。
F=0.4×(1−質量%C/0.8)×100 ・・(1)
In mass%, C: 0.1 to 0.8 %, Si: 0.40 % or less, Mn: 0.3 to 1.0 %, Cr: 1.2 % or less, Mo: 0 to 0.3 % (including no addition), Cu: 0 to 0.3 % ( including no addition), Ni:. 0 contained to 2.0% (including no addition), 0.03% of P, 0.01% of S or less, T Al was limited to 0.1% or less, the balance being Fe and unavoidable specifically made of steel consisting of impurities, the hot-rolled steel sheet pro-eutectoid ferrite area ratio (%) of pro-eutectoid ferrite + pearlite structure is at least F value determined by the following equation (1), "Ac 1 to Ac 1 from 650 ° C. Heating up to a temperature in the range of “+ 100 ° C.” to control the temperature rising rate to 5-80 ° C./h, and heating in the first stage for 0.5-20 hours in the temperature range of “Ac 1 -Ac 1 + 100 ° C.” and holding, control from the first-stage retaining temperature lowering rate to a temperature in the range of "Ar 1 -80 ° C. to Ar 1" to 5 to 30 ° C. / h Cooling and "Ar 1 -80 ℃ ~Ar 1" subjected to annealing continuously performed 2-60 hours 2-stage heating and holding for holding in the temperature range of the high carbon steel sheet, in which excellent stretch flangeability that Manufacturing method.
F = 0.4 x (1-mass% C / 0.8) x 100 (1)
質量%において、C: 0.1 0.8 %,Si: 0.40 %以下,Mn: 0.3 1.0 %,Cr: 1.2 %以下,Mo: 0 0.3 %(無添加を含む),Cu: 0 0.3 %(無添加を含む),Ni: 0 2.0 %(無添加を含む)を含有し、Pを 0.03 %以下,Sを 0.01 %以下,T . Alを 0.1 %以下に制限し、残部がFeおよび不可避的不純物からなる鋼からなり、初析フェライト面積率(%)が下記(1)式により定まるF値以上である初析フェライト+パーライト組織の熱延鋼板に、15%以上の冷間圧延を施し、次いで、650℃から「Ac1〜Ac1+100℃」の範囲の温度までの昇温速度を5〜80℃/hにコントロールする昇温と、「Ac1〜Ac1+100℃」の温度範囲で0.5〜20時間保持する1段目の加熱保持と、1段目の保持温度から「Ar1−80℃〜Ar1」の範囲の温度までの降温速度を5〜30℃/hにコントロールする降温と、「Ar1−80℃〜Ar1」の温度範囲で2〜60時間保持する2段目の加熱保持を連続して行う焼鈍を施す、伸びフランジ性に優れた中・高炭素鋼板の製造方法。
F=0.4×(1−質量%C/0.8)×100 ・・(1)
In mass%, C: 0.1 to 0.8 %, Si: 0.40 % or less, Mn: 0.3 to 1.0 %, Cr: 1.2 % or less, Mo: 0 to 0.3 % (including no addition), Cu: 0 to 0.3 % ( including no addition), Ni:. 0 contained to 2.0% (including no addition), 0.03% of P, 0.01% of S or less, T Al was limited to 0.1% or less, the balance being Fe and unavoidable specifically made of steel consisting of impurities, the hot-rolled steel sheet pro-eutectoid ferrite area ratio (%) of pro-eutectoid ferrite + pearlite structure is at least F value determined by the following equation (1), subjected to cold rolling at least 15% then, the temperature range of the temperature increase to control the "Ac 1 ~Ac 1 + 100 ℃" the heating rate to a temperature in the range of 5 to 80 ° C. / h, "Ac 1 ~Ac 1 + 100 ℃" from 650 ° C. in the first stage and the heating holding the holding 0.5 to 20 hours, to a temperature range of "Ar 1 -80 ° C. to Ar 1 'from the first stage holding temperature And cooling to control the cooling rate to 5 to 30 ° C. / h, is carried out by continuous annealing 2 to 60 hours 2-stage heating and holding for holding in the temperature range of "Ar 1 -80 ℃ ~Ar 1" is subjected, Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability.
F = 0.4 x (1-mass% C / 0.8) x 100 (1)
熱延鋼板に施す冷間圧延率が15〜50%の範囲である、請求項2に記載の伸びフランジ性に優れた中・高炭素鋼板の製造方法。  The manufacturing method of the medium and high carbon steel plate excellent in stretch flangeability of Claim 2 whose cold rolling rate given to a hot-rolled steel plate is 15 to 50% of range.
JP09523398A 1998-03-25 1998-03-25 Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability Expired - Fee Related JP3909950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09523398A JP3909950B2 (en) 1998-03-25 1998-03-25 Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09523398A JP3909950B2 (en) 1998-03-25 1998-03-25 Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability

Publications (2)

Publication Number Publication Date
JPH11269553A JPH11269553A (en) 1999-10-05
JP3909950B2 true JP3909950B2 (en) 2007-04-25

Family

ID=14132052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09523398A Expired - Fee Related JP3909950B2 (en) 1998-03-25 1998-03-25 Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability

Country Status (1)

Country Link
JP (1) JP3909950B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050199322A1 (en) 2004-03-10 2005-09-15 Jfe Steel Corporation High carbon hot-rolled steel sheet and method for manufacturing the same
JP2005256897A (en) * 2004-03-10 2005-09-22 Ntn Corp Machine element and its manufacturing method
JP3974115B2 (en) 2004-03-10 2007-09-12 Ntn株式会社 Wheel bearing device
JP4600196B2 (en) * 2005-07-26 2010-12-15 Jfeスチール株式会社 High carbon cold-rolled steel sheet with excellent workability and manufacturing method thereof
JP5302009B2 (en) 2005-12-26 2013-10-02 ポスコ High carbon steel sheet with excellent formability and method for producing the same
JP5292698B2 (en) 2006-03-28 2013-09-18 Jfeスチール株式会社 Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP4963918B2 (en) * 2006-09-29 2012-06-27 山陽特殊製鋼株式会社 Method for annealing low carbon steel containing Cr
JP2007271081A (en) * 2007-03-26 2007-10-18 Ntn Corp Wheel bearing device
CN102365380B (en) 2009-03-25 2013-11-20 新日本制铁株式会社 Electric resistance welded steel pipe having excellent workability and excellent post-quenching fatigue properties
JP6023493B2 (en) * 2012-07-25 2016-11-09 Ntn株式会社 Method of manufacturing bearing ring, bearing ring and rolling bearing
JP6059569B2 (en) * 2013-03-15 2017-01-11 株式会社神戸製鋼所 Manufacturing method of steel material excellent in cold workability and machinability
KR101988153B1 (en) 2015-05-26 2019-06-12 닛폰세이테츠 가부시키가이샤 Steel sheet and manufacturing method thereof
JP6119923B1 (en) * 2015-05-26 2017-04-26 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
BR112017024957A2 (en) * 2015-05-26 2018-07-31 Nippon Steel & Sumitomo Metal Corporation A steel plate and a manufacturing method for the same
CN105238994A (en) * 2015-11-25 2016-01-13 山东钢铁股份有限公司 Steels for train buffers and preparation method thereof

Also Published As

Publication number Publication date
JPH11269553A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
CN101410544B (en) Ultra-soft high-carbon hot-rolled steel sheet and manufacturing method thereof
JP5302009B2 (en) High carbon steel sheet with excellent formability and method for producing the same
JP3909949B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JP3909950B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JP2007277696A (en) Extremely soft high carbon hot-rolled steel sheet and method for producing the same
JP5640931B2 (en) Medium carbon cold-rolled steel sheet excellent in workability and hardenability and its manufacturing method
JP4465057B2 (en) High carbon steel sheet for precision punching
JP4425368B2 (en) Manufacturing method of high carbon steel sheet with excellent local ductility
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP6569845B1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2001073033A (en) Production of medium-high carbon steel sheet excellent in local ductility
JP3889765B2 (en) High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method
JP4696853B2 (en) Method for producing high-carbon cold-rolled steel sheet with excellent workability and high-carbon cold-rolled steel sheet
JP2006097109A (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP3909939B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JP7368692B2 (en) Manufacturing method of medium carbon steel plate
JP5489497B2 (en) Method for producing boron steel sheet with excellent hardenability
JP4964492B2 (en) Medium carbon steel sheet and method for producing the same
JPH11256268A (en) Steel sheet excellent in local ductility and heat threatability
JP2002155339A (en) Medium and high carbon steel having excellent deep drawability
JP7444096B2 (en) Hot rolled steel sheet and its manufacturing method
JP7334868B2 (en) steel parts
JPH1088237A (en) Manufacturing method of high carbon cold rolled steel strip
JP4289714B2 (en) Manufacturing method of medium and high carbon cold rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees