[go: up one dir, main page]

JP3916340B2 - Thin film forming apparatus and method of manufacturing contact jig thereof - Google Patents

Thin film forming apparatus and method of manufacturing contact jig thereof Download PDF

Info

Publication number
JP3916340B2
JP3916340B2 JP07995399A JP7995399A JP3916340B2 JP 3916340 B2 JP3916340 B2 JP 3916340B2 JP 07995399 A JP07995399 A JP 07995399A JP 7995399 A JP7995399 A JP 7995399A JP 3916340 B2 JP3916340 B2 JP 3916340B2
Authority
JP
Japan
Prior art keywords
elastic
electrode substrate
thin film
pillow body
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07995399A
Other languages
Japanese (ja)
Other versions
JP2000273692A (en
Inventor
徹郎 小川
工 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP07995399A priority Critical patent/JP3916340B2/en
Publication of JP2000273692A publication Critical patent/JP2000273692A/en
Application granted granted Critical
Publication of JP3916340B2 publication Critical patent/JP3916340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、銅成膜装置に代表される薄膜形成装置及びそのコンタクト治具の製造方法の改良に関するものである。
【0002】
【従来の技術】
半導体集積回路に使用されるシリコンウェーハの配線パターンには導電材料としてアルミニウムが一般的に使用されている。しかしながら、このアルミニウムは、導電率が銅の約2/3であり、高抵抗(3〜3.3μΩ・cm)であるため、ICの高速化の妨げとなっている。そこで、配線インピーダンスを低くしてICの高速化を図るため、近年、銅(1.7〜1.9μΩ・cm)を使用する配線パターンが鋭意検討されている。この銅による配線パターンを形成する場合には、第1の工程としてシリコンウェーハの表面に薄い導電皮膜を成膜し、その後、第2の工程として、導電皮膜をカソードとして電解メッキ(電気メッキ)し、電解メッキ層を成膜すれば、シリコンウェーハに所定の銅配線パターンを形成することができる。
【0003】
導電皮膜は、メッキベースとも呼ばれ、シリコンウェーハ表面の銅配線パターン形成予定箇所に蒸着法、イオンプレーティング法、又はスパッタリング法等の乾式メッキ法により成膜される。この導電皮膜は、通常0.2μm〜1μmの範囲で成膜され、電解メッキされる。これは、膜の形成速度と量産性とを考慮したもので、厚膜の形成に伴う所要時間を可能な限り短縮し、電解メッキ層を成膜可能な膜厚として必要な範囲を示したものである。
【0004】
シリコンウェーハの表面には多数の製品が同時に形成されるので、第1、第2の工程を通じ、シリコンウェーハの全表面には均一な厚みの膜を成膜することが要求される。乾式メッキ法によれば、メッキチャンバ内の銅の蒸気圧がシリコンウェーハの面内で均一なので、導電皮膜の厚さにばらつきがほとんどなく、導電皮膜の厚さの管理に際しても、スパッタリングターゲット、電流、又は電圧等を適宜調整すれば良い。これに対し、電解メッキ法では、ケミカル液の温度や濃度の管理だけではなく、メッキすべきパターンの電流密度を均一に制御しなければ、均一な厚さの電解メッキ層を得ることができない。
【0005】
導電皮膜、即ちメッキベースは、上記方法で形成され、きわめて薄く高抵抗であるという特徴がある。したがって、一箇所のみからの給電では電解メッキ層の成膜時に電流密度を均一にすることができず、均一な厚さの電解メッキ層を到底得ることができない。こうした問題を解消するため、シリコンウェーハの導電皮膜の外周縁部における複数の箇所から給電する等の特殊なメッキ治具が開発され、用いられている。このメッキ治具は、特開平5−36698号公報に開示されているように、以下の方法で給電する。
【0006】
同公報には、略リング形の治具に複数の電極を等間隔に埋設してこの複数の電極にはシリコンウェーハの表面に成膜された導電皮膜の外周縁部を接触させ、この外周縁部における複数の接触対応箇所を電極部分とし、この複数の電極部分と電極との間に適切な電位差を与えてカソードである導電皮膜を電解メッキすることにより、シリコンウェーハ面内の電流密度の差異を小さく抑制して銅メッキパターン厚みのばらつきを著しく減少させるメッキ治具が開示されている。このメッキ治具によれば、一箇所から給電する場合に比べ、電流密度の差異を小さく抑制することが可能であるとされる。しかしながら、同治具では、導電皮膜の電極部分から離れた箇所で電流密度に差異が生じるので、銅メッキパターン厚みのばらつきを招くこととなる。
【0007】
また、同公報には、略リング形の治具上に同形の電極を周設してこの電極の平坦面にはシリコンウェーハの表面に成膜された導電皮膜の外周縁部を搭載支持させ、この導電皮膜の外周縁部を電極部分とし、この電極部分と電極との間に電位差を与えて電解メッキする例が開示されている。しかし、この例の場合には、電極に平坦面を形成することが実に困難である。また、電極を薄膜として導電皮膜の外周縁部に対する接触性を向上させる場合、電極が容易に変形しやすく、変形防止のために細心の注意を払わなければならない。さらに、電極が変形すると、接触部分が不均一になるので、電流密度に差異が生じ、銅メッキパターン厚みのばらつきが発生する。
【0008】
一方、特開昭58−181898号公報には、シリコーンゴム等を用いてリング形の弾性体を成形し、この弾性体に銅製で同形の電極を周設してこの断面円形の電極をウェーハの表面に成膜された導電皮膜の外周縁部に接触させ、この導電皮膜の外周縁部を電極部分とし、この電極部分と電極との間に適切な電位差を与えてカソードである導電皮膜を電解メッキする給電装置が開示されている。しかしながら、この給電装置では、電極の断面方向のみならず、線方向においても、電極と導電皮膜の外周縁部とが点接触になるので、電極をリング形に形成した意味がなく、電流密度に差異が生じ、銅メッキパターン厚みのばらつきが発生することになる。
【0009】
【発明が解決しようとする課題】
従来のメッキ治具や給電装置は、以上のように構成されているので、電流密度に差異が生じ、銅メッキパターン厚みのばらつきが大きくなるという問題があった。
【0010】
本発明は、上記問題に鑑みなされたもので、電流密度の差異を抑制防止し、メッキパターン厚みのばらつきを小さくすることのできる薄膜形成装置及びそのコンタクト治具の製造方法を提供することを目的としている。
【0011】
【課題を解決するための手段】
請求項1記載の発明においては、上記課題を達成するため、エンドレスのコンタクト治具にウェーハの外周部を接触させ、このウェーハの表面を電解メッキして薄膜を形成するものであって、
上記コンタクト治具は、エンドレスの電極基板と、この電極基板上に設けられるエンドレスの弾性まくら体と、該電極基板上に少なくとも一端部が接合されて該弾性まくら体の周方向に並べ設けられるとともに、少なくとも該弾性まくら体の内外いずれか一方の下部から弾性まくら体の上部付近まで伸びて支持される複数の導電線材と、該弾性まくら体と該複数の導電線材とを被覆して上記ウェーハの表面外周部を支持し、かつ各導電線材の上部を露出させて該ウェーハの表面外周部に接触させるエンドレスのシール弾性体とを含んでなることを特徴としている。
【0012】
なお、上記電極基板上に上記複数の導電線材の両端部をそれぞれ接合して各導電線材に上記弾性まくら体を跨がせ、該各導電線材の上部を上記シール弾性体の表面から突出させることができる。
また、上記電極基板上に上記複数の導電線材の一端部をそれぞれ接合して他端の上端部を上記シール弾性体の表面から突出させることもできる。
【0013】
また、請求項4記載の発明においては、上記課題を達成するため、表面に薄膜が電解メッキにより形成されるウェーハの表面外周部をシール弾性体に支持させ、該ウェーハの表面外周部に該シール弾性体の表面から突出した複数の導電線材の上部をそれぞれ接触させる薄膜形成装置のコンタクト治具を製造する方法であって、
エンドレスの電極基板上に成形材料を注型硬化させて断面略半円形の弾性まくら体をエンドレスに成形する工程と、
該電極基板上に上記複数の導電線材の少なくとも一端部をそれぞれ接合して該弾性まくら体の周方向に並べ設け、各導電線材を少なくとも該弾性まくら体の内外いずれか一方の下部から弾性まくら体の上部付近まで伸ばす工程と、
該電極基板上に成形材料を注型硬化させて該弾性まくら体及び上記複数の導電線材を被覆する上記シール弾性体をエンドレスに成形し、このシール弾性体の表面から上記各導電線材の上部を露出させる工程とを含んでなることを特徴としている。
なお、超音波ワイヤボンディング法と抵抗溶接法のいずれかの方法を用いて上記電極基板上に上記各導電線材の少なくとも一端部を接合すると良い。
【0014】
ここで、特許請求の範囲におけるウェーハには、Siウェーハ、GaPウェーハ、又は各種のウェーハが含まれる。また、電極基板には印刷配線基板等の各種の種類があるが、おおよそこの分野で使用される一切の基板が含まれる。また、弾性まくら体とシール弾性体とは、JIS硬度A20°〜60°、好ましくはJIS硬度A20°〜40°で水密機能、弾性機能、及び又は圧縮永久歪み特性等に優れるフッ素系ゴムやシリコーンゴム等を使用して成形することができる。また、断面略半円形には、断面半円形、おおよそ断面半円形、断面半楕円形、おおよそ断面半楕円形、又はこれらに類似する形状が含まれる。
【0015】
複数の導電線材の配列ピッチは、0.03mm〜1mmピッチ、望ましくは0.03mm〜0.05mmピッチが良い。この複数の導電線材は、弾性まくら体の周方向に一定ピッチで並べ設けて電流密度の均一性を向上させても良いし、そうでなくても良い。各導電線材としては、打ち抜いた細長い導電板やワイヤ等があげられる。また、超音波ワイヤボンディング法には、超音波ワイヤボンディング法、超音波併用熱圧着ワイヤボンディング法、又は超音波加熱法等の種類があるが、いずれのボンディング法でも良い。さらに、薄膜形成装置は、銅メッキする装置でも、他の金属薄膜を成膜する装置でも良い。
【0016】
請求項1又は4記載の発明によれば、弾性まくら体の周方向に並べられた複数の導電線材の上部がシール弾性体の表面からそれぞれ露出し、この複数の導電線材の上部がウェーハの表面外周部に接触し、電解メッキ時における電流密度を均一化する。この際、弾性まくら体は、ガイドとして機能するとともに、導電線材の弾性力を補強する。また、剛性の高い導電線材が使用される場合、高さ精度の制御や姿勢の確保に困難を生じるおそれがあるが、弾性まくら体がガイドとして機能するので、高さ精度を容易に制御することができ、かつ導電線材の姿勢を所定の姿勢に維持することができる。さらに、シール弾性体が弾性まくら体及び複数の導電線材の上部以外の部分を水密保護するので、メッキ液と導電線材との接触に伴いウェーハの表面外周部とコンタクト治具との接触抵抗にばらつきが生じるのを抑制あるいは防止することが可能になる。さらにまた、シール弾性体が導電線材の弾性を補助し、接触圧力を維持できるよう復元力を導電線材に与える。
【0017】
また、請求項2記載の発明によれば、電極基板上に弾性まくら体を跨ぐ複数の導電線材の両端部をそれぞれ接合するので、導電線材をばね弾性を有する形状に形成することができ、弾性まくら体に導電線材を安定的、弾性的、かつ有効に支持させることができる。また、弾性まくら体の周方向に各導電線材が不必要に動いたり、位置ずれするのを抑制あるいは防止することができる。
また、請求項3記載の発明によれば、電極基板上に複数の導電線材の一端部のみをそれぞれ接合し、弾性まくら体に導電線材を巻きかけるので、導電線材をばね弾性を有する形状に加工することができ、弾性まくら体に導電線材を安定的、弾性的、かつ有効に保持させることができる。また、導電線材の両端部をそれぞれ接合する場合に比べ、導電線材の使用量を減少させることが可能になる。
【0018】
さらに、請求項5記載の発明によれば、超音波ワイヤボンディング法を用いる場合には、ワイヤを常温や低温で接合したり、接合面積を小さくしたり、あるいは高密度な接続ピッチに対応等することができる。
また、抵抗溶接(resistance welding)法を選択した場合、溶接箇所に大電流を流し、ここに発生する電気抵抗熱(ジュール熱)により溶解し、圧力を加えて接合するので、例え導電線材の溶融温度が高く、硬い等の理由で超音波ワイヤボンディング法を用いることができない場合でも、電極基板上に導電線材の少なくとも一端部を安定、かつ強固に接合することが可能になる。
【0019】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態を説明するが、本発明は以下の実施形態になんら限定されるものではない。
本実施形態における薄膜形成装置は、図1や図2等に示すように、メッキチャンバ1と、このメッキチャンバ用の押さえ蓋4と、メッキチャンバ1の開口上部に周設されてシリコンウェーハWの全表面に成膜された薄いシード層Cの外周縁部Pを搭載支持する不溶性のコンタクト治具7とを備え、接触メッキ法、即ちぼうこうメッキにより、シリコンウェーハWのシード層Cを電解メッキして銅による配線パターンを形成するようにしている。
【0020】
メッキチャンバ1は、図1に示すように、例えばPVC、PP、FRP、ステンレス鋼、又はチタン等と補強用の金属部材とを組み合わせて有底筒形に成形され、複数の薬剤を含むケミカル液2を貯えている。このメッキチャンバ1の内部には、底部に位置するポンプ等からなる噴射機構(図示せず)と銅のアノード(図示せず)とがそれぞれ配設され、噴射機構からアノード、及び図示しないディフューザを順次通過して対向するシリコンウェーハWのシード層Cにケミカル液2が一定速度で噴流接触するよう機能する(図1の矢印参照)。メッキチャンバ1の開口上部の内周縁にはリング形の支持フランジ3が水平に周設され、この支持フランジ3上にリング形のコンタクト治具7が設置される。また、押さえ蓋4は、シリコンウェーハWよりも縮径のウインド5を備え、メッキチャンバ1の開口上部に複数の締結具6を介し着脱自在に覆着されて直下のシリコンウェーハWをコンタクト治具7に圧接するとともに、シリコンウェーハWのがたつきを防止する。
【0021】
コンタクト治具7は、図1や図2に示すように、メッキチャンバ1の支持フランジ3上に搭載されるリング形の電極基板8を備え、この電極基板8上に弾性まくら体9、複数のワイヤ10及びシール弾性体11が組み合わせて配設される。電極基板8は、絶縁性樹脂基板に銅箔を接着した印刷配線基板等からなり、ケミカル液2と接触する可能性のある部分には不純物の混入防止の観点から白金がメッキされる。この電極基板8の外周部からは図示しない接続部が半径外方向に向けて突出し、この接続部が図示しない単一のメッキ用直流電源(例えば、大電流低電圧の整流器やシリコン整流器等)にコネクタを介して接続される。また、弾性まくら体9は、JIS硬度A20°〜40°のフッ素ゴムを用いて断面半円形のリング形に成形され、電極基板8上に設置される。
【0022】
複数のワイヤ10は、図2に示すように、弾性を有する金製のワイヤからなり、電極基板8上の内外両端部に両端部が電気的に超音波ワイヤボンディングされた後、導電性に優れる白金がメッキされる。この複数のワイヤ10は、弾性まくら体9の周方向に0.03mm〜0.5mmの一定ピッチで並設され、弾性まくら体9を跨いでその表面に巻装接触状態で弾性支持される。また、シール弾性体11は、JIS硬度A20°〜40°のフッ素ゴムを用いて断面略逆凹字形に成形され、電極基板8上に設置されて弾性まくら体9及び複数のワイヤ10の非上部を上方から被包する。そして、各ワイヤ10の湾曲上部10aのみを平坦な表面11aから僅かに露出させ、この湾曲上部10a、換言すれば、カソード電極部分をシリコンウェーハWのシード層Cの外周縁部Pに突出接触させるよう機能する。
【0023】
さらに、シリコンウェーハWは、表面に絶縁膜の形成、絶縁膜エッチングによる配線パターンの形成、プレクリーンによる自然酸化膜の除去、及びTa、TaNによる銅のバリア層の形成が順次行われ、このバリア層上に銅のシード層Cが成膜されている。この銅のシード層Cは、良好な電流パスとなり、その後の銅のグレイン成長を促進する。
【0024】
次に、図3(a)、(b)、(c)に基づいてコンタクト治具7の製造方法について説明する。
先ず、電極基板8上の内外両端部に図示しないけがき線をそれぞれ引き、この複数のけがき線間に液状のフッ素ゴムを図示しない型を介し注型して加熱硬化させ、断面半円形の弾性まくら体9をリング形に突出成形する(図3(a)参照)。電極基板8とフッ素ゴムとの間に濡れ性や表面張力等のばらつきがあっても、各けがき線がフッ素ゴムの液だれに伴う幅のばらつきを抑制防止するので、弾性まくら体9の形が安定する。
【0025】
次いで、電極基板8上の内外両端部に複数のワイヤ10の両端部をそれぞれ超音波ワイヤボンディングして弾性まくら体9の周方向に一定ピッチで順次並設し、各ワイヤ10に弾性まくら体9を跨がせてその表面に各ワイヤ10を巻装接触状態で弾性支持させ、複数のワイヤ10を電極基板8と共に白金でメッキする(図3(b)参照)。そして、電極基板8上に液状のフッ素ゴムを図示しない型を介し注型して加熱硬化させ、弾性まくら体9及び白金メッキされた複数のワイヤ10の非上部を上方から被包するシール弾性体11をリング形に成形し、このシール弾性体11の表面11aから各ワイヤ10の湾曲上部10aを僅かに露出させれば、簡易な構成のコンタクト治具7を製造することができる(図3(c)参照)。こうして製造されたコンタクト治具7は、メッキチャンバ1の支持フランジ3上に搭載され、メッキ用直流電源にコネクタを介して接続される。
【0026】
上記構成において、銅による配線パターンを形成する場合には、コンタクト治具7の平坦なシール弾性体11上にシリコンウェーハWのシード層Cの外周縁部Pを搭載支持させ、メッキチャンバ1の開口上部に押さえ蓋4を締結具6を介し覆着してシリコンウェーハWをコンタクト治具7に密着状態に圧接する。そして、薄膜形成装置を動作させ、シリコンウェーハWをカソードとしてアノードとの間に電位差を与え、かつ噴射機構でシード層Cにケミカル液2を接触させれば、メッキ反応によりシリコンウェーハWのシード層Cに電解メッキ層が成膜される。そしてその後、CMP等により平坦化処理すれば、シリコンウェーハWに所定の銅配線パターンを形成することができる。
【0027】
上記構成によれば、弾性まくら体9の周方向に一定ピッチで整列した複数のワイヤ10がシード層Cの外周縁部Pに接触するので、電流密度に差異が生じるのをきわめて有効に抑制防止することができ、銅メッキパターン厚みのばらつきを招くことがない。また、コンタクト治具7の周方向において、コンタクト治具7とシード層Cの外周縁部Pとの接触点を多数とすることができるので、電流密度に相違が生じ、銅メッキパターン厚みのばらつきが発生する事態を実に有効に防止することができる。また、1本毎のワイヤ10の導体抵抗が低いので、電流密度に差異が生じるのをきわめて有効に抑制防止することが可能になる。
【0028】
また、各ワイヤ10が金よりも剛性の高い白金でメッキされるので、簡単に変形することがなく、変形防止のために細心の注意を払う必要性もない。特に、金線をそのまま使用する場合に比べ、メッキに対する不純物混入のおそれを抑制あるいは防止することが可能になる。また、硬い白金を使用する場合、高さの精度の制御やループ形状の確保に困難を生じるが、弾性まくら体9がガイドや土台として機能するので、ループ高さの精度をきわめて容易に制御することができるとともに、所定のループ形状を簡易に確保することができる。また、弾性まくら体9がワイヤ10の弾性力をも補強するので、まくら体9にワイヤ10が埋没することがなく、繰り返しの使用でも安定した接続が大いに期待できる。また、シール弾性体11がワイヤ10のばね弾性を補助し、接触圧力を保持できるよう復元力をワイヤ10に付与するので、繰り返し使用しても、安定して接続することができる。
【0029】
また、シール弾性体11が弾性まくら体9及び白金メッキされた複数のワイヤ10の非上部を保護するので、ケミカル液2とワイヤ10との接触に伴いシード層Cの外周縁部Pとコンタクト治具7との接触抵抗にばらつきの生じることがなく、電流密度を著しく均一化することができる。また、シール弾性体11を成形法で構成するので、シール弾性体11の表面11aを簡単に平坦化することができる。また、弾性まくら体9とシール弾性体11とがそれぞれ20°〜40°と低硬度なので、水密機能を維持するための押圧力が電極基板8やシリコンウェーハWに対するストレス等となるのを抑制防止することが可能になる。
【0030】
さらに、弾性まくら体9とシール弾性体11とがフッ素ゴムでそれぞれ成形されるので、耐熱性、耐油性、耐薬品性、耐溶剤性、耐候性、及び又は耐オゾン性等に優れた効果が期待できる。この点に関し、シリコーンゴムで成形する場合には、加硫後においても低分子がオリゴマーとしてブリードしてしまい、メッキ作業中に不純物として作用したり、後工程で不具合を招く等の問題が考えられるが、フッ素ゴムで成形するので、そのような問題を解消することができる。さらにまた、弾性まくら体9の表面に角部がないので、複数のワイヤ10に対するストレスの抑制防止が期待できる。
【0031】
次に、図4は本発明の第2の実施形態を示すもので、この場合には、電極基板8上の外側端部に複数のワイヤ10の一端部を超音波ワイヤボンディングしてその他端の上端部10bを弾性まくら体9の表面上部に伸長位置させ、各ワイヤ10の上端部10b、即ちカソード電極部分をシール弾性体11の表面11aから僅かに露出させてシリコンウェーハWのシード層Cの外周縁部Pに突出接触させるようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、ワイヤ10の一端部のみを超音波ワイヤボンディングするので、ボンディングの作業時間の短縮が期待できるのは明らかである。
【0032】
次に、図5は本発明の第3の実施形態を示すもので、この場合には、電極基板8上の内外両端部に複数のワイヤ10の一端部をそれぞれ超音波ワイヤボンディングしてこの複数のワイヤ10を周方向に千鳥状に配置し、各ワイヤ10の他端の上端部10bを弾性まくら体9の表面上部付近に伸長位置させ、各ワイヤ10の上端部10bをシール弾性体11の表面11a(図示しないが、図4と同様である)から僅かに露出させてシリコンウェーハWのシード層Cの外周縁部Pに突出接触させるようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
【0033】
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、ワイヤ10の使用量の大幅な削減が期待できるとともに、電極基板8の内外両端部方向における接触面積の拡大を図ることができるのは明白である。
【0034】
次に、図6は本発明の第4の実施形態を示すもので、この場合には、第3の実施形態におけるワイヤ10の代わりに細長い白金製の導電板12を使用し、かつ超音波ワイヤボンディング法の代わりに抵抗溶接法を採用するようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、コンタクト治具7の周方向において、シード層Cの外周縁部Pとコンタクト治具7との接触面積の大幅な拡大を図ることができる。また、導電線材を融点1768℃、沸点3827℃、比重21.45、比抵抗10.6×10-6Ω・cm(0℃)、モース硬さ4.3、銀よりも硬く、化学的に安定な白金製とするので、不溶性の電極として実に好適であり、メッキに対して拡散係数が小さく、メッキに対する不純物混入のおそれが少ない。
【0035】
次に、図7は本発明の第5の実施形態を示すもので、この場合には、第4の実施形態における複数の導電板12の全部又は一部の導電板12の上端部12aを二股に分岐形成し、この上端部12a、即ちカソード電極部分をシール弾性体11の表面11a(図示しないが、図4と同様である)から僅かに露出させてシリコンウェーハWのシード層Cの外周縁部Pに突出接触させるようにしている。その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、シード層Cの外周縁部Pとコンタクト治具7との接触圧力を高め、安定性や上縁端部のフレキシブル性を著しく向上させ、被接触部分とより一層均一に接触させることが可能になる。
【0036】
なお、上記実施形態では図1のメッキチャンバ1を単に示したが、このメッキチャンバ1の構成を適宜変更することができる。例えば、支持フランジ3を断面略すり鉢形としてその開口下部の内周縁部にシリコンウェーハW等のウェーハを搭載支持させることもできる。また、メッキチャンバ1に加熱装置、冷却装置、ろ過装置、かくはん装置、及び又は排気装置等を適宜設けることができる。また、メッキチャンバ1にシリコンウェーハWを自動的にセットする搬送装置等を設けることもできる。また、電流密度の均一度等に応じ、電極基板8の外周部から複数の接続部を突出させ、各接続部をメッキ用直流電源に接続しても良い。メッキ用直流電源は、共用電源でも良いし、複数の専用電源でも良い。
【0037】
また、弾性まくら体9を断面方形、断面多角形、又は断面略半小判形等に成形することもできる。また、弾性まくら体9の表面上部の近傍付近にワイヤ10の上部を伸長位置させても良い。また、ワイヤ10と導電板12とを併用することもできる。また、導電板12の二股の上端部12aを上方に少々傾斜させることもできる。さらに、各導電板12の上端部12aを三つ又等に適宜分岐形成しても良い。さらにまた、シール弾性体11を硬度20°〜60°のフッ素ゴムとし、既存のデータ、経験則、及び又は実験結果等から複数のワイヤ10を小さな0.03mm〜1mmピッチで並べれば、シード層Cの外周縁部Pに対する複数のワイヤ10の接触点が均一に増加し、電流密度の均一性が向上する。
【0038】
【実施例】
以下、本発明に係るコンタクト治具7の製造方法の実施例について説明する。実施例1
先ず、電極基板8、注型用の型、SIFEL(信越化学工業社製 フッ素ゴム)、及び超音波ワイヤボンダ装置を用意した。電極基板8は、その外周部から単一の接続部が突出するようパターニングされた銅張り印刷配線基板(ガラス・エポキシ基材)からなる。パターンは、ニッケル下地で金メッキ処理が施されている。また、超音波ワイヤボンダ装置で使用するワイヤ10は50μmの金線とした。
【0039】
先ず、電極基板8上にSIFELを型を介し注型して加熱硬化させ、断面半円形(高さ1.0mm、幅1.0mm)の弾性まくら体9をリング形に突出成形した。次いで、電極基板8上の内外両端部にワイヤ10の両端部をそれぞれ超音波−加熱法によりワイヤボンディングして弾性まくら体9の周方向に0.5mmの一定ピッチで順次並設し、各ワイヤ10に弾性まくら体9を跨がせてその表面に各ワイヤ10を巻装接触状態で弾性支持させ、電極基板8の電極パターンと複数のワイヤ10とを白金メッキした。
【0040】
そしてその後、電極基板8上にSIFELを型を介し注型して加熱硬化させ、弾性まくら体9及び白金メッキされた複数のワイヤ10の非上部を上方から被包するシール弾性体11をリング形に成形し、このシール弾性体11の表面11aから各ワイヤ10の湾曲上部10aを僅かに露出させ、コンタクト治具7を製造した。
【0041】
実施例2
先ず、電極基板8を厚さ0.3mmの4−2アロイ板により作製し、この4−2アロイ板には金メッキ処理を施した。この電極基板8上にSIFELを型を介し注型して加熱硬化させ、断面半円形(高さ1.0mm、幅1.0mm)の弾性まくら体9をリング形に突出成形した。次いで、電極基板8上の内外両端部にワイヤ10の両端部をそれぞれ超音波−加熱法によりワイヤボンディングして弾性まくら体9の周方向に0.5mmの一定ピッチで順次並設し、各ワイヤ10に弾性まくら体9を跨がせてその表面に各ワイヤ10を巻装接触状態で弾性支持させ、電極基板8と複数のワイヤ10とを白金メッキした。
【0042】
そしてその後、電極基板8上にSIFELを型を介し注型して加熱硬化させ、弾性まくら体9、白金メッキされた複数のワイヤ10、及びこの複数のワイヤ10の内周側でケミカル液2に接触される部分を上方から被包するシール弾性体11をリング形に成形し、このシール弾性体11の表面11aから各導電線材の上部を僅かに露出させ、コンタクト治具7を製造した。
【0043】
実施例3
先ず、電極基板8を厚さ0.3mmのSUS304板により作製し、このSUS304板上に間隔1.0mmとなるよう複数のけがき線を引き、各けがき線の外側に浸出しないよう、複数のけがき線間にSIFELを型を介し注型して加熱硬化させ、断面半円形(高さ1.0mm、幅1.0mm)の弾性まくら体9をリング形に突出成形した。
【0044】
次いで、弾性まくら体9に厚さ0.2mm、幅1.0mmで白金製の導電板12を横断するよう沿わせて電極基板8と接触する位置で抵抗溶接し、この導電板12を2.0mmのピッチで順次並設してカソード電極部分とした。そしてその後、電極基板8上にSIFELを型を介し注型して加熱硬化させ、弾性まくら体9及び複数の導電板12の非上部を上方から被包するシール弾性体11をリング形に成形し、このシール弾性体11の表面11aから各導電板12の上端部12aを僅かに露出させ、コンタクト治具7を製造した。
【0045】
実施例4
先ず、電極基板8を厚さ0.3mmのSUS304板により製作し、このSUS304板上に間隙1.0mmとなるよう複数のけがき線を引き、各けがき線の外側に浸出しないよう、複数のけがき線間にSIFELを型を介し注型して加熱硬化させ、断面半円形(高さ1.0mm、幅1.0mm)の弾性まくら体9をリング形に突出成形した。
【0046】
次いで、弾性まくら体9に厚さ0.2mm、幅1.0mmで、上端部12aが二股分岐形成された白金製の導電板12を横断するよう沿わせて電極と接触する位置で抵抗溶接し、この導電板12を2.0mmのピッチで順次並設してカソード電極部分とした。そしてその後、電極基板8上にSIFELを型を介し注型して加熱硬化させ、弾性まくら体9及び二股分岐の上端部12aを有する複数の導電板12の非上部を上方から被包するシール弾性体11をリング形に成形し、このシール弾性体11の表面11aから各導電板12の上端部12aを僅かに露出させ、コンタクト治具7を製造した。
【0047】
上記各コンタクト治具7を使用して成膜した電解メッキ層を形成した結果、電解メッキ層の厚さのばらつきは、シリコンウェーハWの表面内のいずれの箇所においても0.2μm以下であった。さらに、コンタクト治具7を1万回使用しても初期の特性を維持することができ、しかも、電解メッキ層の厚さのばらつきも、シリコンウェーハWの表面内のいずれの箇所においても0.2μm以下であった。
【0048】
【発明の効果】
以上のように本発明によれば、ウェーハに流れる電流密度の差異を抑制あるいは防止し、メッキパターンの厚さのばらつきを小さくすることができるという効果がある。
【図面の簡単な説明】
【図1】本発明に係る薄膜形成装置の実施形態を示す概略断面説明図である。
【図2】本発明に係る薄膜形成装置のコンタクト治具の製造方法の実施形態を示す概略断面説明図である。
【図3】本発明に係る薄膜形成装置のコンタクト治具の製造方法の実施形態を示す断面説明図で、(a)図は電極基板上に弾性まくら体を成形した状態を示す断面説明図、(b)図は弾性まくら体の表面にワイヤを巻装状態で弾性支持させた状態を示す断面説明図、(c)図は弾性まくら体及び複数のワイヤの非上部を上方から被包するシール弾性体を成形した状態を示す断面説明図である。
【図4】本発明に係る薄膜形成装置のコンタクト治具の製造方法における第2の実施形態を示す断面説明図である。
【図5】本発明に係る薄膜形成装置のコンタクト治具の製造方法における第3の実施形態を示す部分斜視説明図である。
【図6】本発明に係る薄膜形成装置のコンタクト治具の製造方法における第4の実施形態を示す部分斜視説明図である。
【図7】本発明に係る薄膜形成装置のコンタクト治具の製造方法における第5の実施形態を示す部分斜視説明図である。
【符号の説明】
1 メッキチャンバ
2 ケミカル液
3 支持フランジ
4 押さえ蓋
7 コンタクト治具
8 電極基板
9 弾性まくら体
10 ワイヤ(導電線材)
10a 湾曲上部(上部)
10b 上端部
11 シール弾性体
12 導電板(導電線材)
12a 上端部
C シード層
P 外周縁部(外周部)
W シリコンウェーハ(ウェーハ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a method of manufacturing a thin film forming apparatus represented by a copper film forming apparatus and a contact jig thereof.
[0002]
[Prior art]
Aluminum is generally used as a conductive material for wiring patterns of silicon wafers used in semiconductor integrated circuits. However, this aluminum has an electrical conductivity of about 2/3 that of copper and a high resistance (3 to 3.3 μΩ · cm), which hinders the speeding up of the IC. Therefore, in recent years, a wiring pattern using copper (1.7 to 1.9 μΩ · cm) has been intensively studied in order to reduce the wiring impedance and increase the speed of the IC. When forming this copper wiring pattern, a thin conductive film is formed on the surface of the silicon wafer as the first step, and then, as a second step, electrolytic plating (electroplating) is performed using the conductive film as a cathode. By forming an electrolytic plating layer, a predetermined copper wiring pattern can be formed on the silicon wafer.
[0003]
The conductive film is also referred to as a plating base, and is formed by a dry plating method such as a vapor deposition method, an ion plating method, or a sputtering method at a location where a copper wiring pattern is to be formed on the silicon wafer surface. This conductive film is usually formed in the range of 0.2 μm to 1 μm and electroplated. This is because the film formation speed and mass productivity are taken into consideration, and the required time for forming the thick film is shortened as much as possible, and the required range for the film thickness that can form the electrolytic plating layer is shown. It is.
[0004]
Since many products are simultaneously formed on the surface of the silicon wafer, it is required to form a film having a uniform thickness on the entire surface of the silicon wafer through the first and second steps. According to the dry plating method, since the vapor pressure of copper in the plating chamber is uniform within the surface of the silicon wafer, there is almost no variation in the thickness of the conductive film, and even when managing the thickness of the conductive film, the sputtering target, Alternatively, the voltage or the like may be adjusted as appropriate. On the other hand, in the electroplating method, an electrolytic plating layer having a uniform thickness cannot be obtained unless the current density of the pattern to be plated is controlled uniformly, as well as the temperature and concentration of the chemical solution.
[0005]
The conductive film, i.e., the plating base, is formed by the above method, and is characterized by being extremely thin and having high resistance. Therefore, when the power is supplied from only one place, the current density cannot be made uniform when the electrolytic plating layer is formed, and an electrolytic plating layer having a uniform thickness cannot be obtained at all. In order to solve such problems, special plating jigs such as power feeding from a plurality of locations on the outer peripheral edge of the conductive film of the silicon wafer have been developed and used. This plating jig supplies power by the following method as disclosed in JP-A-5-36698.
[0006]
In this publication, a plurality of electrodes are embedded in a substantially ring-shaped jig at equal intervals, and the outer peripheral edge portion of the conductive film formed on the surface of the silicon wafer is brought into contact with the plurality of electrodes. The difference in current density in the silicon wafer surface is obtained by electroplating the conductive film, which is the cathode, with a plurality of contact-corresponding portions in the part as electrode portions and applying an appropriate potential difference between the plurality of electrode portions and the electrodes. A plating jig that significantly reduces the variation in the thickness of the copper plating pattern while suppressing the above is disclosed. According to this plating jig, it is possible to suppress a difference in current density to a smaller extent than when power is supplied from one place. However, in this jig, a difference occurs in the current density at a position away from the electrode portion of the conductive film, which causes a variation in the thickness of the copper plating pattern.
[0007]
In the same publication, an electrode having the same shape is provided on a substantially ring-shaped jig, and the outer peripheral edge of the conductive film formed on the surface of the silicon wafer is mounted and supported on the flat surface of the electrode. An example is disclosed in which the outer peripheral edge of the conductive film is used as an electrode portion and electrolytic plating is performed by applying a potential difference between the electrode portion and the electrode. However, in this example, it is very difficult to form a flat surface on the electrode. Moreover, when improving the contact property with respect to the outer periphery part of an electrically conductive film by using an electrode as a thin film, an electrode is easy to deform | transform easily and you must pay careful attention for deformation prevention. Further, when the electrode is deformed, the contact portion becomes non-uniform, so that a difference occurs in the current density and a variation in the thickness of the copper plating pattern occurs.
[0008]
On the other hand, in Japanese Patent Laid-Open No. 58-181898, a ring-shaped elastic body is formed using silicone rubber and the like, and an electrode of the same shape made of copper is provided around the elastic body. The outer peripheral edge of the conductive film deposited on the surface is brought into contact with the outer peripheral edge of the conductive film as an electrode part, and an appropriate potential difference is applied between the electrode part and the electrode to electrolyze the conductive film as the cathode. A power supply device for plating is disclosed. However, in this power feeding device, the electrode and the outer peripheral edge of the conductive film are in point contact not only in the cross-sectional direction of the electrode but also in the line direction. Differences occur and variations in the copper plating pattern thickness occur.
[0009]
[Problems to be solved by the invention]
Since conventional plating jigs and power feeding devices are configured as described above, there is a problem in that a difference occurs in current density and variation in copper plating pattern thickness increases.
[0010]
The present invention has been made in view of the above problems, and it is an object of the present invention to provide a thin film forming apparatus and a method for manufacturing a contact jig thereof that can suppress and prevent a difference in current density and reduce variations in plating pattern thickness. It is said.
[0011]
[Means for Solving the Problems]
In the invention of claim 1, in order to achieve the above-mentioned object, the outer peripheral portion of the wafer is brought into contact with an endless contact jig, and the surface of this wafer is electrolytically plated to form a thin film,
The contact jig includes an endless electrode substrate, an endless elastic pillow body provided on the electrode substrate, and at least one end joined on the electrode substrate so as to be arranged in the circumferential direction of the elastic pillow body. A plurality of conductive wires supported at least from the lower part of either the inner or outer portion of the elastic pillow body to the vicinity of the upper portion of the elastic pillow body, and the elastic pillow body and the plurality of conductive wire materials are coated to cover the wafer. And an endless sealing elastic body that supports the outer peripheral portion of the surface and exposes the upper portion of each conductive wire to be in contact with the outer peripheral portion of the surface of the wafer.
[0012]
In addition, both ends of the plurality of conductive wires are joined to the electrode substrate, the elastic pillows are straddled over the conductive wires, and the upper portions of the conductive wires are protruded from the surface of the seal elastic body. Can do.
Further, one end portions of the plurality of conductive wires can be joined to the electrode substrate, and the upper end portion of the other end can be protruded from the surface of the seal elastic body.
[0013]
According to a fourth aspect of the present invention, in order to achieve the above object, the outer peripheral portion of the wafer having a thin film formed on the surface by electrolytic plating is supported by a seal elastic body, and the seal is formed on the outer peripheral portion of the wafer. A method of manufacturing a contact jig of a thin film forming apparatus for contacting upper portions of a plurality of conductive wires protruding from the surface of an elastic body,
A process of casting and curing a molding material on an endless electrode substrate to form an elastic pillow body having a substantially semicircular cross section in an endless manner;
At least one end of each of the plurality of conductive wire members is joined to the electrode substrate and arranged in the circumferential direction of the elastic pillow body, and each of the conductive wire members is provided from at least the lower part of the elastic pillow body inside or outside the elastic pillow body. Extending to near the top of the
The molding material is cast-cured on the electrode substrate to form the seal elastic body that covers the elastic pillow body and the plurality of conductive wires in an endless manner, and the upper portion of each conductive wire is formed from the surface of the seal elastic body. And a step of exposing.
In addition, it is good to join at least one end part of each said conductive wire on the said electrode board | substrate using the method of either an ultrasonic wire bonding method or a resistance welding method.
[0014]
Here, the wafer in the claims includes a Si wafer, a GaP wafer, or various types of wafers. In addition, there are various types of electrode substrates such as a printed wiring substrate, but almost all substrates used in this field are included. In addition, the elastic pillow body and the seal elastic body have a JIS hardness A20 ° to 60 °, preferably a JIS hardness A20 ° to 40 °, and are excellent in watertight function, elastic function, and / or compression set characteristics. It can be molded using rubber or the like. The substantially semicircular cross section includes a semicircular cross section, a semicircular cross section, a semielliptical cross section, a semielliptical cross section, or a similar shape.
[0015]
The arrangement pitch of the plurality of conductive wires is 0.03 mm to 1 mm, preferably 0.03 mm to 0.05 mm. The plurality of conductive wires may be arranged at a constant pitch in the circumferential direction of the elastic pillow body to improve current density uniformity or not. Examples of each conductive wire include a punched and slender conductive plate and a wire. The ultrasonic wire bonding method includes an ultrasonic wire bonding method, an ultrasonic combined thermocompression wire bonding method, and an ultrasonic heating method, and any bonding method may be used. Furthermore, the thin film forming apparatus may be a copper plating apparatus or an apparatus for forming another metal thin film.
[0016]
According to the first or fourth aspect of the invention, the upper portions of the plurality of conductive wires arranged in the circumferential direction of the elastic pillow body are exposed from the surface of the seal elastic body, and the upper portions of the plurality of conductive wire materials are the surface of the wafer. It contacts the outer periphery, and equalizes the current density during electrolytic plating. At this time, the elastic pillow body functions as a guide and reinforces the elastic force of the conductive wire. In addition, when a highly rigid conductive wire is used, there is a risk of difficulty in controlling the height accuracy and securing the posture, but the elastic pillow functions as a guide, so the height accuracy can be controlled easily. And the attitude of the conductive wire can be maintained in a predetermined attitude. In addition, since the seal elastic body protects the elastic pillow body and the portions other than the upper part of the plurality of conductive wires, the contact resistance between the outer peripheral portion of the wafer and the contact jig varies with the contact between the plating solution and the conductive wires. Can be suppressed or prevented. Furthermore, the seal elastic body assists the elasticity of the conductive wire, and gives a restoring force to the conductive wire so that the contact pressure can be maintained.
[0017]
Further, according to the invention described in claim 2, since both ends of the plurality of conductive wires straddling the elastic pillow body are respectively joined on the electrode substrate, the conductive wires can be formed in a shape having spring elasticity, and elastic. The pillow can support the conductive wire in a stable, elastic and effective manner. Further, it is possible to suppress or prevent each conductive wire from unnecessarily moving or being displaced in the circumferential direction of the elastic pillow body.
According to the invention described in claim 3, since only one end of each of the plurality of conductive wires is joined onto the electrode substrate and the conductive wire is wound around the elastic pillow body, the conductive wire is processed into a shape having spring elasticity. The conductive pillow can be stably, elastically and effectively held in the elastic pillow body. Moreover, it becomes possible to reduce the usage-amount of a conductive wire compared with the case where the both ends of a conductive wire are each joined.
[0018]
Furthermore, according to the fifth aspect of the invention, when the ultrasonic wire bonding method is used, the wires are bonded at room temperature or low temperature, the bonding area is reduced, or a high-density connection pitch is supported. be able to.
In addition, when the resistance welding method is selected, a large current is passed through the welding point, melting is caused by the electric resistance heat (joule heat) generated here, and joining is performed by applying pressure. Even when the ultrasonic wire bonding method cannot be used for reasons such as high temperature and hardness, it is possible to stably and firmly bond at least one end of the conductive wire on the electrode substrate.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
As shown in FIGS. 1 and 2, the thin film forming apparatus according to the present embodiment is provided around the plating chamber 1, a holding lid 4 for the plating chamber, and the upper opening of the plating chamber 1. An insoluble contact jig 7 for mounting and supporting the outer peripheral edge P of the thin seed layer C formed on the entire surface is provided, and the seed layer C of the silicon wafer W is electrolytically plated by contact plating, that is, bladder plating. Thus, a wiring pattern made of copper is formed.
[0020]
As shown in FIG. 1, the plating chamber 1 is formed into a bottomed cylindrical shape by combining, for example, PVC, PP, FRP, stainless steel, or titanium and a reinforcing metal member, and includes a chemical liquid containing a plurality of chemicals. 2 is stored. Inside the plating chamber 1, an injection mechanism (not shown) composed of a pump or the like located at the bottom and a copper anode (not shown) are respectively disposed. An anode and a diffuser (not shown) are arranged from the injection mechanism. The chemical liquid 2 functions so as to come into jet contact at a constant speed with the seed layer C of the silicon wafer W that passes through and sequentially faces (see the arrow in FIG. 1). A ring-shaped support flange 3 is horizontally provided around the inner periphery of the upper opening of the plating chamber 1, and a ring-shaped contact jig 7 is installed on the support flange 3. The presser lid 4 includes a window 5 having a diameter smaller than that of the silicon wafer W, and is detachably attached to the upper portion of the opening of the plating chamber 1 via a plurality of fasteners 6 so as to contact the silicon wafer W directly below the contact jig. 7 and the rattling of the silicon wafer W is prevented.
[0021]
As shown in FIGS. 1 and 2, the contact jig 7 includes a ring-shaped electrode substrate 8 mounted on the support flange 3 of the plating chamber 1. An elastic pillow body 9 and a plurality of pillows 9 are mounted on the electrode substrate 8. The wire 10 and the seal elastic body 11 are disposed in combination. The electrode substrate 8 is formed of a printed wiring board in which a copper foil is bonded to an insulating resin substrate, and platinum is plated on a portion that may come into contact with the chemical liquid 2 from the viewpoint of preventing impurities from being mixed. A connecting portion (not shown) protrudes radially outward from the outer peripheral portion of the electrode substrate 8, and this connecting portion is connected to a single plating DC power source (for example, a large current low voltage rectifier or a silicon rectifier). Connected via connector. The elastic pillow body 9 is formed into a ring shape with a semicircular cross section using a fluoro rubber having a JIS hardness of A20 ° to 40 °, and is installed on the electrode substrate 8.
[0022]
As shown in FIG. 2, the plurality of wires 10 are made of a gold wire having elasticity, and are excellent in conductivity after both ends are electrically ultrasonically bonded to inner and outer ends on the electrode substrate 8. Platinum is plated. The plurality of wires 10 are juxtaposed at a constant pitch of 0.03 mm to 0.5 mm in the circumferential direction of the elastic pillow body 9, and are elastically supported in a wound contact state on the surface across the elastic pillow body 9. Further, the seal elastic body 11 is formed in a substantially inverted concave shape using a fluoro rubber having a JIS hardness A of 20 ° to 40 °, and is placed on the electrode substrate 8 so as not to be attached to the elastic pillow body 9 and the plurality of wires 10. Is encapsulated from above. Then, only the curved upper portion 10a of each wire 10 is slightly exposed from the flat surface 11a, and the curved upper portion 10a, in other words, the cathode electrode portion is protruded and contacted with the outer peripheral edge portion P of the seed layer C of the silicon wafer W. It works as follows.
[0023]
Further, the silicon wafer W is formed by sequentially forming an insulating film on the surface, forming a wiring pattern by etching the insulating film, removing a natural oxide film by pre-cleaning, and forming a copper barrier layer by Ta and TaN. A copper seed layer C is formed on the layer. This copper seed layer C provides a good current path and promotes subsequent copper grain growth.
[0024]
Next, a method for manufacturing the contact jig 7 will be described with reference to FIGS. 3 (a), 3 (b), and 3 (c).
First, marking lines (not shown) are drawn at both the inner and outer ends on the electrode substrate 8, and liquid fluororubber is cast between the marking lines through a mold (not shown) to be heat-cured. The elastic pillow body 9 is protruded into a ring shape (see FIG. 3 (a)). Even if there are variations in wettability, surface tension, etc. between the electrode substrate 8 and the fluororubber, each marking line prevents and suppresses the variation in the width due to the dripping of the fluororubber. Is stable.
[0025]
Next, both end portions of the plurality of wires 10 are ultrasonically wire-bonded to both the inner and outer end portions on the electrode substrate 8 and sequentially arranged at a constant pitch in the circumferential direction of the elastic pillow body 9. The wires 10 are elastically supported on the surface in a wound contact state, and a plurality of wires 10 are plated with platinum together with the electrode substrate 8 (see FIG. 3B). Then, a liquid elastic rubber is cast on the electrode substrate 8 through a mold (not shown) and is heat-cured, and the elastic elastic body 9 and the non-upper portions of the platinum-plated wires 10 are encapsulated from above. 11 is formed in a ring shape, and the curved upper portion 10a of each wire 10 is slightly exposed from the surface 11a of the seal elastic body 11, whereby the contact jig 7 having a simple configuration can be manufactured (FIG. 3 ( c)). The contact jig 7 manufactured in this way is mounted on the support flange 3 of the plating chamber 1 and connected to a DC power supply for plating via a connector.
[0026]
In the above configuration, when a wiring pattern made of copper is formed, the outer peripheral edge P of the seed layer C of the silicon wafer W is mounted and supported on the flat seal elastic body 11 of the contact jig 7, and the opening of the plating chamber 1 is formed. The presser lid 4 is covered on the upper part via the fastener 6, and the silicon wafer W is pressed against the contact jig 7 in close contact. Then, if the thin film forming apparatus is operated, a potential difference is applied between the anode of the silicon wafer W and the anode, and the chemical liquid 2 is brought into contact with the seed layer C by an injection mechanism, the seed layer of the silicon wafer W is obtained by a plating reaction. An electrolytic plating layer is formed on C. Then, a predetermined copper wiring pattern can be formed on the silicon wafer W by performing a planarization process by CMP or the like.
[0027]
According to the above configuration, since the plurality of wires 10 aligned at a constant pitch in the circumferential direction of the elastic pillow body 9 are in contact with the outer peripheral edge portion P of the seed layer C, it is extremely effective to suppress and prevent the difference in current density from occurring. And there is no variation in the thickness of the copper plating pattern. Further, since the number of contact points between the contact jig 7 and the outer peripheral edge P of the seed layer C can be increased in the circumferential direction of the contact jig 7, a difference occurs in the current density, and the copper plating pattern thickness varies. It is possible to effectively prevent the occurrence of. Further, since the conductor resistance of each wire 10 is low, it is possible to very effectively suppress and prevent a difference in current density.
[0028]
In addition, since each wire 10 is plated with platinum having a higher rigidity than gold, it does not easily deform, and there is no need to pay close attention to prevent deformation. In particular, compared to the case where the gold wire is used as it is, it is possible to suppress or prevent the possibility of contamination of the plating. In addition, when using hard platinum, it is difficult to control the accuracy of the height and to secure the loop shape. However, since the elastic pillow body 9 functions as a guide and a base, the accuracy of the loop height can be controlled very easily. And a predetermined loop shape can be easily ensured. Further, since the elastic pillow body 9 also reinforces the elastic force of the wire 10, the wire 10 is not buried in the pillow body 9, and stable connection can be greatly expected even after repeated use. In addition, since the seal elastic body 11 assists the spring elasticity of the wire 10 and gives a restoring force to the wire 10 so that the contact pressure can be maintained, stable connection can be achieved even when used repeatedly.
[0029]
Further, since the seal elastic body 11 protects the elastic pillow body 9 and the non-upper portions of the plurality of platinum-plated wires 10, contact with the outer peripheral edge P of the seed layer C and contact treatment with the contact between the chemical liquid 2 and the wire 10 is achieved. There is no variation in the contact resistance with the tool 7, and the current density can be made extremely uniform. Moreover, since the sealing elastic body 11 is comprised by a shaping | molding method, the surface 11a of the sealing elastic body 11 can be planarized easily. In addition, since the elastic pillow body 9 and the seal elastic body 11 have a low hardness of 20 ° to 40 °, respectively, the pressing force for maintaining the watertight function is prevented from being a stress on the electrode substrate 8 and the silicon wafer W. It becomes possible to do.
[0030]
Further, since the elastic pillow body 9 and the seal elastic body 11 are respectively formed of fluororubber, an effect excellent in heat resistance, oil resistance, chemical resistance, solvent resistance, weather resistance, and / or ozone resistance is obtained. I can expect. In this regard, when molding with silicone rubber, low molecules bleed as oligomers even after vulcanization, which may cause problems during the plating operation or cause problems in subsequent processes. However, since it molds with fluororubber, such a problem can be solved. Furthermore, since there are no corners on the surface of the elastic pillow body 9, it can be expected to prevent the stress on the plurality of wires 10 from being suppressed.
[0031]
Next, FIG. 4 shows a second embodiment of the present invention. In this case, one end portion of a plurality of wires 10 is ultrasonically wire-bonded to the outer end portion on the electrode substrate 8 and the other end portion is attached. The upper end portion 10b is extended to the upper surface of the elastic pillow body 9, and the upper end portion 10b of each wire 10, that is, the cathode electrode portion is slightly exposed from the surface 11a of the seal elastic body 11, so that the seed layer C of the silicon wafer W is formed. The outer peripheral edge P is projected and contacted. The other parts are the same as those in the above embodiment, and the description thereof is omitted.
In this embodiment, the same effect as the above embodiment can be expected, and since only one end portion of the wire 10 is subjected to ultrasonic wire bonding, it is obvious that the bonding work time can be shortened.
[0032]
Next, FIG. 5 shows a third embodiment of the present invention. In this case, one end of a plurality of wires 10 is ultrasonically bonded to both inner and outer end portions on the electrode substrate 8, respectively. The wires 10 are arranged in a zigzag pattern in the circumferential direction, the upper end portion 10 b of the other end of each wire 10 is extended near the upper surface of the elastic pillow body 9, and the upper end portion 10 b of each wire 10 is connected to the seal elastic body 11. It is slightly exposed from the surface 11a (not shown, but the same as in FIG. 4) so as to protrude and contact the outer peripheral edge P of the seed layer C of the silicon wafer W. The other parts are the same as those in the above embodiment, and the description thereof is omitted.
[0033]
In the present embodiment, the same effect as the above embodiment can be expected, and the amount of the wire 10 used can be greatly reduced, and the contact area in the inner and outer end portions of the electrode substrate 8 can be increased. It is obvious that it can be done.
[0034]
Next, FIG. 6 shows a fourth embodiment of the present invention. In this case, an elongated platinum conductive plate 12 is used in place of the wire 10 in the third embodiment, and an ultrasonic wire is used. The resistance welding method is adopted instead of the bonding method. The other parts are the same as those in the above embodiment, and the description thereof is omitted.
In this embodiment, the same effect as that of the above embodiment can be expected, and the contact area between the outer peripheral edge P of the seed layer C and the contact jig 7 can be greatly increased in the circumferential direction of the contact jig 7. Can be planned. Further, the conductive wire has a melting point of 1768 ° C., a boiling point of 3827 ° C., a specific gravity of 21.45, and a specific resistance of 10.6 × 10. -6 Ω · cm (0 ° C), Mohs hardness 4.3, harder than silver, and made of chemically stable platinum. There is little possibility of contamination with impurities.
[0035]
Next, FIG. 7 shows a fifth embodiment of the present invention. In this case, all or a part of the plurality of conductive plates 12 according to the fourth embodiment are bifurcated. The upper end portion 12a, that is, the cathode electrode portion is slightly exposed from the surface 11a of the seal elastic body 11 (not shown, but the same as in FIG. 4), and the outer peripheral edge of the seed layer C of the silicon wafer W is formed. The part P is projected and contacted. The other parts are the same as those in the above embodiment, and the description thereof is omitted.
Also in this embodiment, the same effect as the above embodiment can be expected, and the contact pressure between the outer peripheral edge P of the seed layer C and the contact jig 7 is increased, and the stability and the flexibility of the upper edge portion are improved. It is possible to remarkably improve and to make contact with the contacted part even more uniformly.
[0036]
In the above embodiment, the plating chamber 1 of FIG. 1 is simply shown, but the configuration of the plating chamber 1 can be changed as appropriate. For example, the supporting flange 3 can be formed in a substantially mortar shape in cross section, and a wafer such as a silicon wafer W can be mounted and supported on the inner peripheral edge of the lower portion of the opening. The plating chamber 1 can be appropriately provided with a heating device, a cooling device, a filtration device, a stirring device, and / or an exhaust device. Further, a transfer device or the like that automatically sets the silicon wafer W in the plating chamber 1 can be provided. Further, a plurality of connecting portions may be protruded from the outer peripheral portion of the electrode substrate 8 in accordance with the uniformity of the current density and the like, and each connecting portion may be connected to a plating DC power source. The DC power source for plating may be a common power source or a plurality of dedicated power sources.
[0037]
Further, the elastic pillow body 9 can be formed into a square cross section, a polygonal cross section, or a substantially semi-oval cross section. Further, the upper portion of the wire 10 may be extended near the vicinity of the upper surface of the elastic pillow body 9. Further, the wire 10 and the conductive plate 12 can be used in combination. Further, the bifurcated upper end portion 12a of the conductive plate 12 can be slightly inclined upward. Further, the upper end portion 12a of each conductive plate 12 may be appropriately branched into three or the like. Further, if the seal elastic body 11 is made of fluoro rubber having a hardness of 20 ° to 60 ° and a plurality of wires 10 are arranged at a small pitch of 0.03 mm to 1 mm from existing data, empirical rules, and experimental results, the seed layer The contact points of the plurality of wires 10 with respect to the outer peripheral edge P of C are increased uniformly, and the uniformity of current density is improved.
[0038]
【Example】
Examples of the method for manufacturing the contact jig 7 according to the present invention will be described below. Example 1
First, an electrode substrate 8, a casting mold, SIFEL (Fluorine rubber manufactured by Shin-Etsu Chemical Co., Ltd.), and an ultrasonic wire bonder were prepared. The electrode substrate 8 is made of a copper-clad printed wiring board (glass / epoxy base material) patterned so that a single connection portion protrudes from the outer peripheral portion thereof. The pattern is gold plated on a nickel base. The wire 10 used in the ultrasonic wire bonder was a 50 μm gold wire.
[0039]
First, SIFEL was cast on the electrode substrate 8 through a mold and cured by heating, and an elastic pillow 9 having a semicircular cross section (height: 1.0 mm, width: 1.0 mm) was formed into a ring shape. Next, both ends of the wire 10 are wire-bonded to the inner and outer ends on the electrode substrate 8 by an ultrasonic-heating method, and are arranged in parallel at a constant pitch of 0.5 mm in the circumferential direction of the elastic pillow body 9. The elastic pillow body 9 was straddled on 10 and each wire 10 was elastically supported on the surface in a wound contact state, and the electrode pattern of the electrode substrate 8 and the plurality of wires 10 were plated with platinum.
[0040]
After that, SIFEL is cast on the electrode substrate 8 through a mold and cured by heating, and the elastic elastic body 9 and the seal elastic body 11 encapsulating the non-upper portions of the plurality of platinum-plated wires 10 from above are formed in a ring shape. The curved upper portion 10a of each wire 10 was slightly exposed from the surface 11a of the seal elastic body 11, and the contact jig 7 was manufactured.
[0041]
Example 2
First, the electrode substrate 8 was made of a 4-2 alloy plate having a thickness of 0.3 mm, and the 4-2 alloy plate was subjected to a gold plating process. SIFEL was cast on this electrode substrate 8 through a mold and heat-cured, and an elastic pillow 9 having a semicircular cross section (height: 1.0 mm, width: 1.0 mm) was protruded into a ring shape. Next, both ends of the wire 10 are wire-bonded to the inner and outer ends on the electrode substrate 8 by an ultrasonic-heating method, and are arranged in parallel at a constant pitch of 0.5 mm in the circumferential direction of the elastic pillow body 9. 10, the elastic pillow body 9 was straddled and each wire 10 was elastically supported on the surface in a wound contact state, and the electrode substrate 8 and the plurality of wires 10 were plated with platinum.
[0042]
Then, SIFEL is cast on the electrode substrate 8 through a mold and cured by heating. The elastic pillow 9, the plurality of platinum-plated wires 10, and the chemical liquid 2 on the inner peripheral side of the plurality of wires 10 are formed. The seal elastic body 11 encapsulating the contacted portion from above was formed into a ring shape, and the upper portion of each conductive wire was slightly exposed from the surface 11a of the seal elastic body 11, whereby the contact jig 7 was manufactured.
[0043]
Example 3
First, the electrode substrate 8 is made of a SUS304 plate having a thickness of 0.3 mm, a plurality of marking lines are drawn on the SUS304 plate so as to have a spacing of 1.0 mm, and a plurality of marking lines are formed so as not to leach outside each marking line. SIFEL was cast between the marking lines through a mold and cured by heating, and an elastic pillow 9 having a semicircular cross section (height: 1.0 mm, width: 1.0 mm) was formed into a ring shape.
[0044]
Next, resistance welding is performed on the elastic pillow body 9 at a position in contact with the electrode substrate 8 so as to cross the platinum conductive plate 12 having a thickness of 0.2 mm and a width of 1.0 mm. A cathode electrode portion was formed by sequentially arranging them at a pitch of 0 mm. Then, SIFEL is cast on the electrode substrate 8 through a mold and heated and cured, and the elastic seal body 9 and the sealing elastic body 11 encapsulating the non-upper portions of the plurality of conductive plates 12 from above are formed into a ring shape. The contact jig 7 was manufactured by slightly exposing the upper end 12a of each conductive plate 12 from the surface 11a of the seal elastic body 11.
[0045]
Example 4
First, the electrode substrate 8 is manufactured from a SUS304 plate having a thickness of 0.3 mm, a plurality of marking lines are drawn on the SUS304 plate so as to have a gap of 1.0 mm, and a plurality of marking lines are prevented from leaching outside the marking lines. SIFEL was cast between the marking lines through a mold and cured by heating, and an elastic pillow 9 having a semicircular cross section (height: 1.0 mm, width: 1.0 mm) was formed into a ring shape.
[0046]
Next, resistance welding is performed at a position where the elastic pillow body 9 is in contact with the electrode along the platinum conductive plate 12 having a thickness of 0.2 mm, a width of 1.0 mm, and an upper end portion 12a that is bifurcated. The conductive plates 12 were successively arranged at a pitch of 2.0 mm to form a cathode electrode portion. After that, SIFEL is cast on the electrode substrate 8 through a mold and heat-cured to seal the elastic pillow body 9 and the non-upper portions of the plurality of conductive plates 12 having the bifurcated upper ends 12a from above. The body 11 was molded into a ring shape, and the upper end portion 12a of each conductive plate 12 was slightly exposed from the surface 11a of the seal elastic body 11 to manufacture the contact jig 7.
[0047]
As a result of forming the electrolytic plating layer formed using each of the contact jigs 7, the thickness variation of the electrolytic plating layer was 0.2 μm or less at any location on the surface of the silicon wafer W. . Furthermore, even if the contact jig 7 is used 10,000 times, the initial characteristics can be maintained, and the variation in the thickness of the electrolytic plating layer can be reduced to 0. 0 at any location on the surface of the silicon wafer W. It was 2 μm or less.
[0048]
【The invention's effect】
As described above, according to the present invention, it is possible to suppress or prevent the difference in current density flowing through the wafer and to reduce the variation in the thickness of the plating pattern.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional explanatory view showing an embodiment of a thin film forming apparatus according to the present invention.
FIG. 2 is a schematic cross-sectional explanatory view showing an embodiment of a method for manufacturing a contact jig of a thin film forming apparatus according to the present invention.
FIG. 3 is a cross-sectional explanatory view showing an embodiment of a method for manufacturing a contact jig of a thin film forming apparatus according to the present invention, wherein FIG. (b) is a cross-sectional explanatory view showing a state in which the wire is elastically supported on the surface of the elastic pillow body in a wound state. It is sectional explanatory drawing which shows the state which shape | molded the elastic body.
FIG. 4 is a cross-sectional explanatory view showing a second embodiment in the method for manufacturing a contact jig of the thin film forming apparatus according to the present invention.
FIG. 5 is a partial perspective explanatory view showing a third embodiment of the method for manufacturing a contact jig of the thin film forming apparatus according to the present invention.
FIG. 6 is a partial perspective explanatory view showing a fourth embodiment in the method for manufacturing a contact jig of the thin film forming apparatus according to the present invention.
FIG. 7 is a partial perspective explanatory view showing a fifth embodiment in the method for manufacturing a contact jig of the thin film forming apparatus according to the present invention.
[Explanation of symbols]
1 Plating chamber
2 Chemical liquid
3 Support flange
4 Holding lid
7 Contact jig
8 Electrode substrate
9 Elastic pillow body
10 wire (conductive wire)
10a Curved upper part (upper part)
10b Upper end
11 Seal elastic body
12 Conductive plate (conductive wire)
12a Upper end
C seed layer
P outer periphery (outer periphery)
W Silicon wafer (wafer)

Claims (5)

エンドレスのコンタクト治具にウェーハの外周部を接触させ、このウェーハの表面を電解メッキして薄膜を形成する薄膜形成装置であって、
上記コンタクト治具は、エンドレスの電極基板と、この電極基板上に設けられるエンドレスの弾性まくら体と、該電極基板上に少なくとも一端部が接合されて該弾性まくら体の周方向に並べ設けられるとともに、少なくとも該弾性まくら体の内外いずれか一方の下部から弾性まくら体の上部付近まで伸びて支持される複数の導電線材と、該弾性まくら体と該複数の導電線材とを被覆して上記ウェーハの表面外周部を支持し、かつ各導電線材の上部を露出させて該ウェーハの表面外周部に接触させるエンドレスのシール弾性体とを含んでなることを特徴とする薄膜形成装置。
A thin film forming apparatus for forming a thin film by bringing the outer periphery of a wafer into contact with an endless contact jig and electrolytically plating the surface of the wafer.
The contact jig includes an endless electrode substrate, an endless elastic pillow body provided on the electrode substrate, and at least one end joined on the electrode substrate so as to be arranged in the circumferential direction of the elastic pillow body. A plurality of conductive wires supported at least from the lower part of either the inner or outer portion of the elastic pillow body to the vicinity of the upper portion of the elastic pillow body, and the elastic pillow body and the plurality of conductive wire materials are coated to cover the wafer. A thin film forming apparatus comprising: an endless seal elastic body that supports the outer peripheral portion of the surface and exposes the upper portion of each conductive wire to be in contact with the outer peripheral portion of the surface of the wafer.
上記電極基板上に上記複数の導電線材の両端部をそれぞれ接合して各導電線材に上記弾性まくら体を跨がせ、該各導電線材の上部を上記シール弾性体の表面から突出させた請求項1記載の薄膜形成装置。The both ends of the plurality of conductive wires are joined to the electrode substrate, the elastic pillows are straddled over the conductive wires, and the upper portions of the conductive wires are protruded from the surface of the seal elastic body. The thin film forming apparatus according to 1. 上記電極基板上に上記複数の導電線材の一端部をそれぞれ接合して他端の上端部を上記シール弾性体の表面から突出させた請求項1記載の薄膜形成装置。The thin film forming apparatus according to claim 1, wherein one end portions of the plurality of conductive wires are joined to the electrode substrate, and an upper end portion of the other end is projected from the surface of the seal elastic body. 表面に薄膜が電解メッキにより形成されるウェーハの表面外周部をシール弾性体に支持させ、該ウェーハの表面外周部に該シール弾性体の表面から突出した複数の導電線材の上部をそれぞれ接触させる薄膜形成装置のコンタクト治具を製造する方法であって、
エンドレスの電極基板上に成形材料を注型硬化させて断面略半円形の弾性まくら体をエンドレスに成形する工程と、
該電極基板上に上記複数の導電線材の少なくとも一端部をそれぞれ接合して該弾性まくら体の周方向に並べ設け、各導電線材を少なくとも該弾性まくら体の内外いずれか一方の下部から弾性まくら体の上部付近まで伸ばす工程と、
該電極基板上に成形材料を注型硬化させて該弾性まくら体及び上記複数の導電線材を被覆する上記シール弾性体をエンドレスに成形し、このシール弾性体の表面から上記各導電線材の上部を露出させる工程とを含んでなることを特徴とする薄膜形成装置のコンタクト治具の製造方法。
A thin film in which a surface elastic part of a wafer on which a thin film is formed by electrolytic plating is supported on a surface by a seal elastic body, and upper portions of a plurality of conductive wires protruding from the surface of the seal elastic body are in contact with the surface outer peripheral part of the wafer A method of manufacturing a contact jig of a forming apparatus,
A process of casting and curing a molding material on an endless electrode substrate to form an elastic pillow body having a substantially semicircular cross section in an endless manner;
At least one end of each of the plurality of conductive wire members is joined to the electrode substrate and arranged in the circumferential direction of the elastic pillow body, and each of the conductive wire members is provided from at least the lower part of the elastic pillow body inside or outside the elastic pillow body. Extending to near the top of the
The molding material is cast-cured on the electrode substrate to form the seal elastic body that covers the elastic pillow body and the plurality of conductive wires in an endless manner, and the upper portion of each conductive wire is formed from the surface of the seal elastic body. A method for manufacturing a contact jig for a thin film forming apparatus.
超音波ワイヤボンディング法と抵抗溶接法のいずれかの方法を用いて上記電極基板上に上記各導電線材の少なくとも一端部を接合するようにした請求項4記載の薄膜形成装置のコンタクト治具の製造方法。5. The manufacturing method of a contact jig for a thin film forming apparatus according to claim 4, wherein at least one end of each conductive wire is joined to the electrode substrate using any one of an ultrasonic wire bonding method and a resistance welding method. Method.
JP07995399A 1999-03-24 1999-03-24 Thin film forming apparatus and method of manufacturing contact jig thereof Expired - Fee Related JP3916340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07995399A JP3916340B2 (en) 1999-03-24 1999-03-24 Thin film forming apparatus and method of manufacturing contact jig thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07995399A JP3916340B2 (en) 1999-03-24 1999-03-24 Thin film forming apparatus and method of manufacturing contact jig thereof

Publications (2)

Publication Number Publication Date
JP2000273692A JP2000273692A (en) 2000-10-03
JP3916340B2 true JP3916340B2 (en) 2007-05-16

Family

ID=13704687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07995399A Expired - Fee Related JP3916340B2 (en) 1999-03-24 1999-03-24 Thin film forming apparatus and method of manufacturing contact jig thereof

Country Status (1)

Country Link
JP (1) JP3916340B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6540899B2 (en) * 2001-04-05 2003-04-01 All Wet Technologies, Inc. Method of and apparatus for fluid sealing, while electrically contacting, wet-processed workpieces
JP3509794B2 (en) 2001-08-10 2004-03-22 株式会社半導体先端テクノロジーズ Plating equipment
JP4839777B2 (en) * 2005-10-31 2011-12-21 カシオ計算機株式会社 Plating jig and plating method using the same

Also Published As

Publication number Publication date
JP2000273692A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JP2836881B2 (en) Bump plating equipment and plating method
US6201292B1 (en) Resin-sealed semiconductor device, circuit member used therefor
JP2873954B2 (en) Manufacturing method of chip size semiconductor package
US5024746A (en) Fixture and a method for plating contact bumps for integrated circuits
KR100386714B1 (en) Apparatus for electro chemical deposition of copper metallization with the capability of in-situ thermal annealing
KR200349916Y1 (en) Contact ring with embedded flexible contacts
KR20010051653A (en) Conductive biasing member for metal layering
TWI332039B (en) Plating uniformity control by contact ring shaping
JP2009293134A (en) Electro-chemical deposition system
CN111032925B (en) Electroplating chuck
CN101218670A (en) Semiconductor device and method for manufacturing same
JP2021005739A (en) Semiconductor device substrate and manufacturing method thereof, and semiconductor device
JP3916340B2 (en) Thin film forming apparatus and method of manufacturing contact jig thereof
TW200908833A (en) Metal plugged substrates with no adhesive between metal and polyimide
JP2005244033A (en) Electrode package and semiconductor device
JP3257668B2 (en) Electrode assembly, cathode device and plating device
JP2000277460A (en) Thin film forming device and manufacture of its contact jig
JP2001323397A (en) Thin film forming device and method for manufacturing its contact jig
JP2006278914A (en) Semiconductor device manufacturing method, semiconductor device, and resin encapsulant
JP2000144497A (en) Jig for plating, and its manufacture
JPH05243183A (en) Manufacture of semiconductor device
JP2003209069A (en) Method for manufacturing semiconductor device
JPH11135462A (en) Semiconductor manufacturing device
JP2882416B2 (en) Method of forming metal element by electrolytic plating
JP6846484B2 (en) Substrates for semiconductor devices and their manufacturing methods, semiconductor devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees