[go: up one dir, main page]

JP3918304B2 - Hollow fiber membrane processing equipment - Google Patents

Hollow fiber membrane processing equipment Download PDF

Info

Publication number
JP3918304B2
JP3918304B2 JP15237098A JP15237098A JP3918304B2 JP 3918304 B2 JP3918304 B2 JP 3918304B2 JP 15237098 A JP15237098 A JP 15237098A JP 15237098 A JP15237098 A JP 15237098A JP 3918304 B2 JP3918304 B2 JP 3918304B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
water
membrane module
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15237098A
Other languages
Japanese (ja)
Other versions
JPH11342321A (en
Inventor
利次 尾上
雅英 谷口
宏道 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP15237098A priority Critical patent/JP3918304B2/en
Publication of JPH11342321A publication Critical patent/JPH11342321A/en
Application granted granted Critical
Publication of JP3918304B2 publication Critical patent/JP3918304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃水処理等に利用する中空糸膜処理装置に関する。
【0002】
【従来の技術】
膜分離技術は、逆浸透膜や限外ろ過膜、精密ろ過膜を用いて、海水・かん水の脱塩、半導体洗浄用の超純水の製造、食品の分離または濃縮等のように高品位な水が必要とされる用途を中心に研究が進められてきた。しかし、最近では環境保全の観点から、廃水処理にも膜分離技術を適用しようとする研究が進められている。
【0003】
廃水処理では、多くの場合、沈殿による固液分離を伴うため、その代替として膜分離技術が実施できれば、高品位な処理水が得られるだけでなく、広大な沈殿池の省略あるいは縮小ができ、スペースメリットが非常に大きい。廃水処理では、活性汚泥と呼ばれる微生物により、廃水中の有機物を分解した後に、フロック化した汚泥と処理水を分離する活性汚泥処理プロセスが広く用いられている。
【0004】
この活性汚泥処理プロセスでは、処理効率を上げるために、活性汚泥を高濃度化すると、分解処理が進む一方で、後段の沈殿池において汚泥の沈降性不良を生じる場合があり、水質の悪化を防止するための管理作業が煩雑であった。
【0005】
この汚泥と処理水との固液分離に膜分離技術を利用することで、高濃度活性汚泥処理を行なった場合にも、水質の悪化を伴わず、更に沈殿池を省略でき非常に省スペースとなる。このような点から、高濃度(MLSS 約7,000〜20,000mg/L)活性汚泥混合液の固液分離用途に向けての膜分離技術の研究が行われている。
【0006】
ところで、分離膜には主に平膜、管状膜、中空糸膜等があり、使用される方式により適した分離膜モジュールが開発されている。
【0007】
高濃度の固液分離は分離膜モジュールに原水を循環供給し、膜面に付着する汚れを、循環流でかきとりながら分離するクロスフロー方式が行われており、この方式に合わせた平膜や管状膜モジュールが主として用いられてきた。
【0008】
しかし、この方式は高濃度の活性汚泥を分離膜モジュール内へ供給することが困難にであることに加えて、膜面に付着する汚泥をかきとるために、常に膜面に原水を循環供給する必要があり、動力コストが高価であった。このため、再利用水など廃水処理の中でも一部の高度な処理を要する分野に使用は限定されていた。
【0009】
近年になり、水槽内に分離膜モジュールを浸漬してモジュールの透過側をポンプで吸引、あるいはサイホン等のように水位差を利用して処理水を得る、省エネルギーな浸漬タイプの分離膜モジュールの研究が行われている。活性汚泥処理では通常、好気性の微生物を飼育するための曝気が行われており、この浸漬タイプは膜面を曝気により水槽内に形成される旋回流を利用して、汚れをかきとりながら固液分離を行うことができ、非常に低コストで運転が可能である。
【0010】
平膜モジュールでは、特公平4−70958号公報に記載のような装置が試用されつつあるが、高濃度の活性汚泥を分離する際には、単位膜面積当りの処理水量を大きく取ると膜面に汚泥の付着が急速に進むため、大量処理には大きな膜面積が必要であった。
【0011】
一方、中空糸膜モジュールは平膜と比較して、単位容積当たりの膜面積を大きく取れ、コンパクトに大量処理が可能である。しかし、中空糸膜モジュールをし尿処理などの廃水処理用途に使用した際には、廃水中の非常に細かい繊維状屑(し渣)が、中空糸膜に絡み付くことが判明した。このし渣は大きなものは前処理などで除去されるが、中空糸膜を使用した場合には前処理で除去しきれないような非常に小さなし渣が中空糸膜に絡むことで粗大化し、更にその上に汚泥が付着していることが判明した。
【0012】
し渣は中空糸膜に一旦絡むと除去が困難であり、絡みが徐々に蓄積していき、それを核として、汚泥が付着していく。汚泥が中空糸膜間を閉塞し、ろ過差圧が上昇するだけでなく、中空糸膜の破断等も起こり、活性汚泥中での使用は困難であった。そこで本発明者らは特願平9−297993号において、中空糸膜の先端部分が自由端で、この先端部から絡んだし渣を取り除き、廃水中でのし渣の絡みとその蓄積を防止できる中空糸膜モジュールを提案した。
【0013】
【発明が解決しようとする課題】
このモジュールは、水槽内に配置され運転している最中、つまり水槽内の原水に浸漬されている場合は、水槽内の旋回流により中空糸膜の自由端から絡んだし渣等を除去できる。一方で運転を停止し、水槽内の原水を排出する場合等のように、水槽内の水位が低下した場合には、中空糸膜は自重によって下方に沈み込み、再度水位が上昇した場合に、中空糸膜が乱れてしまうことがある。
【0014】
本モジュールで中空糸膜の乱れや中空糸膜同士の絡みを生じた場合は、そこに汚泥や、し渣の絡みが蓄積し、運転の長期安定継続を妨げることになる。
【0015】
長期の運転では水槽内の水を排出する機会もあるとともに、機器の故障により水位が低下することもあり、このような時に中空糸膜に乱れが生じることがある。一部の中空糸膜の乱れが長期安定運転を行なう上で、装置の信頼性を欠く大きな因子であり、これを解決することが課題である。
【0016】
本発明の目的は、廃水処理などにおいて、中空糸膜モジュールを使用した際におこる、し渣の絡みを除去しながら運転できかつ、中空糸膜自体の絡み付きを防止して長期間安定に運転が可能な中空糸膜処理装置を提供するものである。
【0017】
【課題を解決するための手段】
上記課題は以下の発明により基本的に達成される。
すなわち、「多本数の中空糸膜の一端が自由端にされ、他端が束ねられた固定端にされているとともに、集水部と連結され、かつ前記中空糸膜に隣接して保護部材が設けられた中空糸膜モジュールが、自由端を上側、集水部を下側にして配置された中空糸膜処理装置であって、前記中空糸膜モジュールを鉛直方向に対する角度が5°以上、45°以下となるように傾けて配置したことを特徴とする中空糸膜処理装置。」である。
【0018】
【発明の実施の形態】
以下、図面に示す実施例に基づいて本発明の詳細を説明するが、本発明はこれらの実施例により限定されるものではない。
【0019】
図1は本発明に係る中空糸膜処理装置の一例を示す側面概略図である。図2は水位が低下した際の本発明に係る中空糸膜処理装置の一例を示す側面概略図である。
【0020】
中空糸膜処理装置は、水槽1内に中空糸膜モジュール2が中空糸膜3の自由端4を上側、集水部5を下側にして容器8内に収容されている。各々の中空糸膜モジュールは鉛直方向に対する角度が5°以上、45°以下となるように傾けて配置されている。これにより図2に示すように、水槽内の水位が低下した場合にでも、中空糸膜3は中空糸膜モジュール2の保護部材7にもたれ掛かり、その結果として、中空糸膜3の沈み込みを防止する。
【0021】
中空糸膜モジュール2は、分離手段10によって、水槽内の中空糸膜モジュールの膜面に圧力差を生じさせ、水槽内の原水を分離し、処理水を取出す。上昇流発生手段9は、水槽内の中空糸膜モジュールの下方に設けられ、旋回流を生じさせる。分離の際に除去され、膜面に付着する汚れは、生じた旋回流の上昇流によりかき取られるとともに、汚れ以外にも中空糸膜に絡み付く、し渣なども中空糸膜の自由端部を上側にして配置しているため、絡みが蓄積せず、安定に運転が可能である。
【0022】
図3は本発明に係る中空糸膜処理装置で用いる中空糸膜モジュールの一例を示す正面斜視概略図である。
【0023】
図3に示すように、多本数の中空糸膜3は、一端が互いに固定されていない自由端4で、他端が中空糸膜同士の間隙を封止するように接着材等で充填固定され、固定端6で切断等により、中空糸膜の内側が開口され、開口面に集水部材を取付け、中空糸膜の内側を通って得られる処理水を集める集水部5を形成して、中空糸膜モジュール2を構成する。
【0024】
自由端4は、一本一本の中空糸膜が何にも拘束されず独立して、揺動可能な状態となっており、支持部材を設けて拘束したり、複数の中空糸膜が引っ付いて、自由に動いたり、端部がループした状態とはなっていない。
【0025】
また、自由端となる中空糸膜の先端部の状態は封止してあるものも、開放しているものも好ましい。各々の中空糸膜が自在に揺動する自由端であれば、先端の状態は特に限定するものではない。
【0026】
一方、他端は接着固定され、切断等により、中空糸膜の内側を開口し、固定部6を形成し、集水部5が取付けられ、中空糸膜の内側を通って得られる処理水を集める。他端に取り付けられる集水部5の形状は薄板状であれば、多本数の中空糸膜を使用した際にも、中空糸膜の全体に水流を付与でき好ましい。しかし、集水可能な形状であればよく、丸型、角型など形状は特に限定するものではない。更に、中空糸膜モジュール2は中空糸膜の長手方向に対する側部に保護部材7を隣接して設けることで、保護部材7に中空糸膜3がもたれ掛り、その結果として、中空糸膜の沈み込みを防止する。なお、保護部材7は側面にのみ設けられていることが好ましく、長手方向の両端部では開放していることで原水が中空糸膜モジュール2内を流通可能となる。
【0027】
保護部材7は中空糸膜モジュール2と一体に取付けられており、これにより、中空糸膜に損傷を与えることなく取扱える。形状については、中空糸膜束の形状により、適宜選定するのがよく、中空糸膜を単に束ねたものであれば筒状のものが好ましい。中空糸膜を薄板状に並べた場合には板状のようなものが好ましい。中空糸膜部分のみを覆うように取付けられるのも好ましく、板状のものであれば多孔のものも好ましい。板以外にも中空糸膜を支えるようなものであればよく、網状、棒状のものもまた好ましい。中空糸膜がもたれ掛るものであれば、特に限定するものではない。
【0028】
また、処理水取出し部11は分離された処理水を取出すものである。集水部5と一体に取付けられていてもよいし、漏れなどが防止できれば別体であることも好ましい。図3に示すように保護部材7と接合されているものも、集水部に設けたノズルでもよく、形状などについては特に限定するものではない。
【0029】
この中空糸膜モジュール2を図1のように水槽1内に中空糸膜3の自由端4を上側、集水部5を下側に、鉛直方向に対して所定の角度で配置する。
【0030】
図1では複数の中空糸膜モジュールを容器に収容してあるが、各々の中空糸膜モジュールを鉛直方向に対して所定の角度に傾けて配置することも好ましい。しかし、より好ましいのはある一定の角度で、すべての中空糸膜モジュールを配置することであり、この場合、容器に収容すれば配置も容易である。容器は下方が開口しており、上昇流を中空糸膜モジュールに流通可能とする。最も好ましくは容器は一つではなく、複数の容器に収容して、グループ毎に配置することであり、大量の中空糸膜モジュールの場合は配置が容易になる。
【0031】
中空糸膜モジュールを配置する角度は、鉛直方向に対して大きいほど中空糸膜はもたれやすくなる。しかしその一方で大き過ぎる角度であると、上昇流の効果が小さくなるため、中空糸膜がもたれ掛かることができる角度で、かつできるだけ小さい角度とする。具体的には、鉛直方向に対して5°以上、45°以下の角度とする。好ましくは5°以上、20°以下である。
【0032】
ここで用いる水槽1には、廃水処理であれば、活性汚泥混合液、凝集処理液等が原水として貯えられる。活性汚泥を含む原水であれば、中空糸膜により汚泥を高濃度に保持し、処理能力を高めることができ、好ましい。しかし、原水の種類は処理の目的によって様々であり、特に限定するものではない。原水は、処理の度に水槽内に原水を供給するのもよいが、連続的に安定して供給されていることが好ましい。また、既設の水槽に中空糸膜モジュール2を浸漬するのもよいし、水槽として別途水槽を設け、ポンプ等により、原水を移送してもよい。水槽の大きさは設置する中空糸膜モジュールを収容可能であり、原水を受入れ可能な容積を有していれば特に限定するものではない。
【0033】
そこで、この中空糸膜モジュール2に上昇流発生手段9で槽内に形成される旋回流の上昇流を付与することで、中空糸膜3に付着する汚れを除去するとともに、し渣の絡みを自由端4から取り除きながら運転継続できる。
【0034】
上昇流発生手段9は、プロペラ等を新設して、槽内を攪拌することで中空糸膜モジュールに上昇流を付与することが好ましい。より好ましくは既設の攪拌手段等により効果的に上昇流が付与することで、動力費を低減できる。廃水処理等で活性汚泥混合液を原水として使用する場合は、好気性の生物処理のために曝気が使用される。従って図1に示すように曝気を用いて上昇流を形成することが、最も好ましい。しかし、上昇流を付与するようなものであれば、特に限定するものではない。
【0035】
中空糸膜を介して得られる処理水は、中空糸膜モジュール2に直接あるいは間接的に接続された分離手段10により取出される。ここでいう分離手段10とはポンプのように吸引手段を用いることも好ましい。さらに好ましくは、透過ライン中に設けた減圧部を真空ポンプで補助することであり、最も好ましくは水槽内の水位を利用した水位差によって、膜透過に必要な差圧を付与することが最も好ましい。この方法であれば運転動力を大幅に軽減できよい。
【0036】
また、本発明の中空糸膜モジュール2に使用する中空糸膜3は、限外濾過膜、精密濾過膜が適当であり、低圧での分離が可能な逆浸透膜でも良い。中空糸膜の外表面で汚れを除去し、内表面に向かって透過水が流れる外圧型多孔質中空糸膜を使用してあれば、それ以上の形式は特に問わない。また、膜構造においても対称膜、非対称膜等を限定するものではない。
【0037】
更に、中空糸膜素材としては、中空糸が形成されるものであれば特に限定はしないが、ポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリビニルアルコール、セルロースアセテート、ポリアクリロニトリル、ポリテトラフルオロエチレン等を用いることが可能である。廃水処理で使用する場合は、親水性の膜素材であれば、高濃度の廃水中で使用しても膜面が汚れにくい。親水性の膜素材としては、ポリアクリロニトリル、ポリビニルアルコール、セルロースアセテート等があげられ、これらを用いることが好ましい。
【0038】
[実施例1]
ポリアクリロニトリル中空糸膜2,400本を薄板状に並べ、一端のみ端部をウレタン接着剤の塗布により型枠内で薄板状に接着固定し、固定部を切断し、中空糸膜内部を開口した。集水部材を接着により固定部に取り付けた。逆端の開口した中空糸膜先端部はモジュールの集水部に真空ポンプを接続して透過側を減圧し、ポリアクリロニトリルのポリマーを中空糸膜先端部から吸引し、所定の位置まで吸引した後に、先端部を水に浸漬し凝固させ、先端部を封止した。集水部材には中空糸膜の両側に中空糸膜と並べるように、角パイプを接続し、中空糸膜の先端方向に向かい、処理水が取出し可能な形状とした。更に角パイプに接着によって板状の保護部材を取付けた。保護部材は、中空糸膜部分のみではなくモジュール全体を覆うように取付けた。この中空糸膜モジュール(3.5m2 )3つを透過手段としてマグネットギアポンプに接続した。上下方向の開放した容器に中空糸膜の自由端が上、他端が下になるように鉛直方向に対する角度が5°になるように収容し、水槽に配置した。配置した容器の下方にステンレス製の散気管2本を配置し、ここから曝気を行ない上方の容器内の中空糸膜モジュールに上昇流を付与した。
【0039】
この水槽に産業廃水処理の活性汚泥混合液(MLSS 約13,000mg/L)を供給し、曝気として槽内を30l/minで曝気し、膜透過流束が0.4m3 /m2 /dayとなるようにポンプで透過水を吸引し定量運転を実施した。1日毎に水槽内の液を排出し、その際に傾斜手段を稼動させ、中空糸膜モジュールの中空糸膜束が乱れを生じていないかを観察した。し渣が絡み付いているか否かを観察した。排水回数16回で中空糸膜の乱れおよび絡みはなかった。
【0040】
[実施例2]
実施例1と同様に、中空糸膜モジュールを鉛直方向に対して20°で容器に収容し、水槽に配置した。排水回数16回で中空糸膜の乱れおよび絡みはなく、中空糸膜モジュールにし渣の絡みはなかった。
【0041】
[比較例]
実施例1,2と同様に、中空糸膜モジュールを鉛直方向に配置して排水を行なった場合、排水回数5回目で2つの中空糸膜モジュールで中空糸膜の絡みを生じ、排水回数9回目で残りの一つの中空糸膜モジュールも中空糸膜の絡みを生じ、初めの2つのモジュールは絡み箇所に汚泥が多量に付着し、多本数の中空糸膜が絡みを生じていた。
【0042】
【発明の効果】
コンパクトに膜面積を大きく取れる中空糸膜モジュールを、廃水処理などのし渣の絡み付く用途でも長期間安定に運転することができた。
【図面の簡単な説明】
【図1】本発明に係る中空糸膜処理装置の一例を示す側面概略図である。
【図2】水位が低下した際の本発明に係る中空糸膜処理装置の一例を示す側面概略図である。
【図3】本発明に係る中空糸膜処理装置で用いる中空糸膜モジュールの一例を示す正面斜視概略図である。
【符号の説明】
1:水槽
2:中空糸膜モジュール
3:中空糸膜
4:自由端
5:集水部
6:固定部
7:保護部材
8:容器
9:上昇流発生手段
10:分離手段
11:処理水取出し部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hollow fiber membrane treatment apparatus used for wastewater treatment or the like.
[0002]
[Prior art]
Membrane separation technology uses reverse osmosis membranes, ultrafiltration membranes, and microfiltration membranes to produce high-quality products such as seawater / brine desalination, production of ultrapure water for semiconductor cleaning, and food separation or concentration. Research has been focused on applications that require water. However, recently, from the viewpoint of environmental protection, research is being conducted to apply membrane separation technology to wastewater treatment.
[0003]
In many cases, wastewater treatment involves solid-liquid separation by precipitation, so if membrane separation technology can be implemented as an alternative, not only high-quality treated water can be obtained, but a large sedimentation basin can be omitted or reduced. The space merit is very large. In wastewater treatment, an activated sludge treatment process is widely used in which organic matter in wastewater is decomposed by microorganisms called activated sludge and then flocified sludge and treated water are separated.
[0004]
In this activated sludge treatment process, if activated sludge is increased in concentration to increase the treatment efficiency, the decomposition process proceeds, but sludge sedimentation may occur in the subsequent sedimentation basin, preventing deterioration of water quality. The management work to do was complicated.
[0005]
By using membrane separation technology for solid-liquid separation of this sludge and treated water, even when high-concentration activated sludge treatment is performed, the water quality is not deteriorated, and the sedimentation basin can be omitted, resulting in extremely space saving. Become. From such a point, research on the membrane separation technology for the solid-liquid separation application of the high concentration (MLSS about 7,000 to 20,000 mg / L) activated sludge mixture is being conducted.
[0006]
By the way, there are mainly flat membranes, tubular membranes, hollow fiber membranes and the like as separation membranes, and separation membrane modules suitable for the method used have been developed.
[0007]
For high-concentration solid-liquid separation, a cross-flow method is used in which raw water is circulated and supplied to the separation membrane module, and the dirt adhering to the membrane surface is removed by circulating flow. Membrane modules have been mainly used.
[0008]
However, this method makes it difficult to supply high-concentration activated sludge into the separation membrane module, and in order to scrape off the sludge adhering to the membrane surface, the raw water is always circulated and supplied to the membrane surface. It was necessary and the power cost was expensive. For this reason, use was limited to the field | area which requires some advanced treatments among wastewater treatments, such as reused water.
[0009]
In recent years, research on energy-saving immersion type separation membrane modules, in which a separation membrane module is immersed in a water tank and the permeate side of the module is sucked with a pump, or treated water is obtained using a water level difference like a siphon, etc. Has been done. In activated sludge treatment, aeration is usually performed to raise aerobic microorganisms. This immersion type uses a swirl flow formed in the water tank by aeration of the membrane surface, and while removing dirt, it is a solid liquid. Separation can be performed and operation is possible at a very low cost.
[0010]
In the flat membrane module, an apparatus as described in Japanese Patent Publication No. 4-70958 is being tried, but when separating high-concentration activated sludge, if the amount of treated water per unit membrane area is large, the membrane surface In addition, since sludge adheres rapidly, a large membrane area is required for mass treatment.
[0011]
On the other hand, the hollow fiber membrane module has a larger membrane area per unit volume than a flat membrane, and can be mass-processed in a compact manner. However, when the hollow fiber membrane module is used for wastewater treatment such as urine treatment, it has been found that very fine fibrous debris in the wastewater is entangled with the hollow fiber membrane. Large residues are removed by pretreatment, etc., but when hollow fiber membranes are used, very small residues that cannot be removed by pretreatment become entangled with the hollow fiber membranes, Furthermore, it became clear that the sludge adhered on it.
[0012]
Once the residue is entangled with the hollow fiber membrane, it is difficult to remove, and the entanglement gradually accumulates, and sludge adheres to the core as a core. Sludge clogs between the hollow fiber membranes, increasing not only the filtration differential pressure, but also causing breakage of the hollow fiber membranes, making it difficult to use in activated sludge. Therefore, in Japanese Patent Application No. 9-297993, the inventors of the present invention have a free end portion of the hollow fiber membrane and can remove the tangled residue from the distal end portion to prevent the tangled residue and the accumulation in the waste water. A hollow fiber membrane module was proposed.
[0013]
[Problems to be solved by the invention]
When this module is placed and operated in the water tank, that is, when it is immersed in the raw water in the water tank, it can remove entanglements and the like entangled from the free end of the hollow fiber membrane by the swirling flow in the water tank. On the other hand, when the water level in the aquarium drops, such as when the operation is stopped and the raw water in the aquarium is discharged, the hollow fiber membrane sinks downward due to its own weight, and when the water level rises again, The hollow fiber membrane may be disturbed.
[0014]
If this module causes turbulence of the hollow fiber membranes or entanglement between the hollow fiber membranes, sludge and stagnation of the sludge accumulate there, preventing continuous long-term operation stability.
[0015]
In long-term operation, there is an opportunity to discharge water in the water tank, and the water level may be lowered due to equipment failure. In such a case, the hollow fiber membrane may be disturbed. Disturbance of some hollow fiber membranes is a major factor that lacks device reliability in long-term stable operation, and there is a problem to solve this.
[0016]
It is an object of the present invention to be able to operate while removing the tangled residue that occurs when using a hollow fiber membrane module in wastewater treatment and the like, and to prevent the entanglement of the hollow fiber membrane itself and stably operate for a long period of time. The present invention provides a possible hollow fiber membrane treatment apparatus.
[0017]
[Means for Solving the Problems]
The above object is basically achieved by the following invention.
That is, “one end of a large number of hollow fiber membranes is a free end, the other end is a fixed end bundled, and is connected to a water collecting portion, and a protective member is adjacent to the hollow fiber membrane. the hollow fiber membrane module is provided, the free end upper, a hollow fiber membrane treatment apparatus disposed in the lower side of the water collecting portion, an angle against the hollow fiber membrane module in the vertical direction more than 5 °, A hollow fiber membrane treatment apparatus characterized by being disposed at an angle of 45 ° or less . ”
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on examples shown in the drawings, but the present invention is not limited to these examples.
[0019]
FIG. 1 is a schematic side view showing an example of a hollow fiber membrane treatment apparatus according to the present invention. FIG. 2 is a schematic side view showing an example of the hollow fiber membrane treatment apparatus according to the present invention when the water level is lowered.
[0020]
In the hollow fiber membrane treatment apparatus, a hollow fiber membrane module 2 is accommodated in a container 8 in a water tank 1 with the free end 4 of the hollow fiber membrane 3 on the upper side and the water collecting part 5 on the lower side. Each of the hollow fiber membrane module vertically against angle of 5 ° or more, 45 ° are arranged inclined so that less. As a result, as shown in FIG. 2, even when the water level in the water tank is lowered, the hollow fiber membrane 3 leans against the protective member 7 of the hollow fiber membrane module 2, and as a result, the hollow fiber membrane 3 sinks. To prevent.
[0021]
The hollow fiber membrane module 2 causes the separation means 10 to generate a pressure difference on the membrane surface of the hollow fiber membrane module in the water tank, separates the raw water in the water tank, and takes out the treated water. The upward flow generating means 9 is provided below the hollow fiber membrane module in the water tank and generates a swirling flow. The dirt that is removed during the separation and adheres to the membrane surface is scraped off by the upward flow of the swirling flow that is generated, and in addition to the dirt, it gets entangled with the hollow fiber membrane. Since it is arranged on the upper side, entanglement does not accumulate and stable operation is possible.
[0022]
FIG. 3 is a schematic front perspective view showing an example of a hollow fiber membrane module used in the hollow fiber membrane treatment apparatus according to the present invention.
[0023]
As shown in FIG. 3, the multiple hollow fiber membranes 3 are filled and fixed with an adhesive or the like so that one end is a free end 4 that is not fixed to each other and the other end is sealed between the hollow fiber membranes. The inside of the hollow fiber membrane is opened by cutting or the like at the fixed end 6, a water collecting member is attached to the opening surface, and the water collecting portion 5 for collecting treated water obtained through the inside of the hollow fiber membrane is formed. The hollow fiber membrane module 2 is configured.
[0024]
The free end 4 is in a state in which each hollow fiber membrane is independently restrained without any restraint, and can be restrained by providing a support member or a plurality of hollow fiber membranes can be caught. It does not move freely or end in a loop.
[0025]
Moreover, the state of the front-end | tip part of the hollow fiber membrane used as a free end is what has sealed and what is open | released. The state of the tip is not particularly limited as long as each hollow fiber membrane freely swings.
[0026]
On the other hand, the other end is bonded and fixed, and the inside of the hollow fiber membrane is opened by cutting or the like to form a fixing portion 6, the water collecting portion 5 is attached, and the treated water obtained through the inside of the hollow fiber membrane is removed. Gather. If the shape of the water collecting portion 5 attached to the other end is a thin plate, it is preferable that a water flow can be imparted to the entire hollow fiber membrane even when a large number of hollow fiber membranes are used. However, the shape is not particularly limited as long as it is a shape capable of collecting water, such as a round shape and a square shape. Further, the hollow fiber membrane module 2 is provided with a protective member 7 adjacent to the side of the hollow fiber membrane in the longitudinal direction, so that the hollow fiber membrane 3 leans against the protective member 7, and as a result, the hollow fiber membrane sinks. To prevent intrusion. In addition, it is preferable that the protective member 7 is provided only on the side surface, and the raw water can flow through the hollow fiber membrane module 2 by being open at both ends in the longitudinal direction.
[0027]
The protective member 7 is attached integrally with the hollow fiber membrane module 2, and can be handled without damaging the hollow fiber membrane. The shape may be appropriately selected depending on the shape of the hollow fiber membrane bundle, and a cylindrical shape is preferable if the hollow fiber membranes are simply bundled. When the hollow fiber membranes are arranged in a thin plate shape, a plate shape is preferable. It is also preferable that it is attached so as to cover only the hollow fiber membrane part, and if it is plate-shaped, a porous one is also preferable. In addition to the plate, it may be anything that supports the hollow fiber membrane, and a net-like or rod-like one is also preferable. The hollow fiber membrane is not particularly limited as long as it leans against it.
[0028]
Moreover, the treated water extraction part 11 takes out the separated treated water. It may be attached integrally with the water collection part 5, and if it can prevent a leak etc., it is also preferable that it is a different body. As shown in FIG. 3, what is joined to the protective member 7 may be a nozzle provided in the water collecting portion, and the shape and the like are not particularly limited.
[0029]
As shown in FIG. 1, the hollow fiber membrane module 2 is arranged in a water tank 1 with the free end 4 of the hollow fiber membrane 3 on the upper side and the water collecting part 5 on the lower side at a predetermined angle with respect to the vertical direction.
[0030]
In FIG. 1, a plurality of hollow fiber membrane modules are housed in a container, but it is also preferable that each hollow fiber membrane module is disposed at a predetermined angle with respect to the vertical direction. However, it is more preferable to arrange all the hollow fiber membrane modules at a certain angle, and in this case, the arrangement is easy if they are accommodated in a container. The container is open at the bottom, allowing the upward flow to flow through the hollow fiber membrane module. Most preferably, the number of containers is not one, but they are accommodated in a plurality of containers and arranged for each group. In the case of a large amount of hollow fiber membrane modules, the arrangement becomes easy.
[0031]
Angle to arrange the hollow fiber membrane module, the size Ihodo hollow fiber membranes with respect to the vertical direction is likely to lean against. However, on the other hand if there at an angle too large, because the effect of the upward flow was reduced, at an angle can Rukoto is middle hollow fiber membrane Motarekaka, and an as small as possible angle. Specifically, 5 ° or more with respect to the vertical direction, and 45 ° or less under an angle. Good Mashiku is 5 ° or more and 20 ° or less.
[0032]
In the water tank 1 used here, an activated sludge mixed solution, an agglomeration treatment solution, and the like are stored as raw water for wastewater treatment. Raw water containing activated sludge is preferable because the sludge can be kept at a high concentration by the hollow fiber membrane and the treatment capacity can be increased. However, the type of raw water varies depending on the purpose of treatment, and is not particularly limited. The raw water may be supplied into the water tank every time it is treated, but it is preferable that the raw water is supplied continuously and stably. Moreover, the hollow fiber membrane module 2 may be immersed in an existing water tank, or a separate water tank may be provided as a water tank, and raw water may be transferred by a pump or the like. The size of the water tank is not particularly limited as long as it can accommodate the hollow fiber membrane module to be installed and has a volume capable of receiving raw water.
[0033]
Therefore, the hollow fiber membrane module 2 is given an upward flow of swirl flow formed in the tank by the upward flow generation means 9, thereby removing the dirt adhering to the hollow fiber membrane 3 and entanglement of the residue. Operation can be continued while removing from the free end 4.
[0034]
It is preferable that the upward flow generating means 9 is provided with a propeller or the like and agitates the inside of the tank to give the upward flow to the hollow fiber membrane module. More preferably, the power cost can be reduced by effectively giving the upward flow by the existing stirring means or the like. When the activated sludge mixed solution is used as raw water for wastewater treatment or the like, aeration is used for aerobic biological treatment. Therefore, it is most preferable to form an upward flow using aeration as shown in FIG. However, there is no particular limitation as long as it gives an upward flow.
[0035]
The treated water obtained through the hollow fiber membrane is taken out by the separating means 10 connected directly or indirectly to the hollow fiber membrane module 2. The separation means 10 here is preferably a suction means such as a pump. More preferably, the pressure reducing part provided in the permeation line is assisted by a vacuum pump, and most preferably, the pressure difference required for membrane permeation is most preferably applied by the water level difference utilizing the water level in the water tank. . With this method, driving power can be greatly reduced.
[0036]
The hollow fiber membrane 3 used in the hollow fiber membrane module 2 of the present invention is suitably an ultrafiltration membrane or a microfiltration membrane, and may be a reverse osmosis membrane that can be separated at a low pressure. As long as an external pressure type porous hollow fiber membrane in which dirt is removed on the outer surface of the hollow fiber membrane and permeate flows toward the inner surface is used, the type beyond that is not particularly limited. Also, the symmetric film and the asymmetric film are not limited in the film structure.
[0037]
Furthermore, the hollow fiber membrane material is not particularly limited as long as a hollow fiber can be formed, but polyethylene, polypropylene, polysulfone, polyethersulfone, polyvinyl alcohol, cellulose acetate, polyacrylonitrile, polytetrafluoroethylene, etc. It is possible to use. When used in wastewater treatment, if the membrane material is hydrophilic, the membrane surface is difficult to get dirty even when used in high-concentration wastewater. Examples of the hydrophilic film material include polyacrylonitrile, polyvinyl alcohol, and cellulose acetate, and these are preferably used.
[0038]
[Example 1]
2,400 polyacrylonitrile hollow fiber membranes were arranged in a thin plate shape, one end was bonded and fixed in a thin plate shape in a mold by applying urethane adhesive, the fixed portion was cut, and the hollow fiber membrane was opened. . The water collecting member was attached to the fixed part by adhesion. At the end of the hollow fiber membrane that is open at the opposite end, a vacuum pump is connected to the water collecting part of the module, the permeate side is decompressed, and the polymer of polyacrylonitrile is sucked from the tip of the hollow fiber membrane and sucked to a predetermined position. The tip was immersed in water and solidified, and the tip was sealed. A square pipe was connected to the water collecting member so as to be aligned with the hollow fiber membrane on both sides of the hollow fiber membrane, and the water collecting member was directed toward the tip of the hollow fiber membrane so that treated water could be taken out. Further, a plate-shaped protective member was attached to the square pipe by bonding. The protective member was attached so as to cover not only the hollow fiber membrane part but the entire module. Three hollow fiber membrane modules (3.5 m 2 ) were connected to a magnet gear pump as permeation means. The hollow fiber membrane was accommodated in an open container in the vertical direction so that the free end of the hollow fiber membrane was up and the other end was down so that the angle with respect to the vertical direction was 5 °, and placed in a water tank. Two stainless steel diffuser tubes were arranged below the arranged container, and aeration was performed from here to give an upward flow to the hollow fiber membrane module in the upper container.
[0039]
The activated sludge mixed solution (MLSS about 13,000 mg / L) for industrial wastewater treatment is supplied to this water tank, and the inside of the tank is aerated at 30 l / min as aeration, and the membrane permeation flux is 0.4 m 3 / m 2 / day. The permeated water was sucked with a pump so that a quantitative operation was performed. The liquid in the water tank was discharged every day, and at that time, the tilting means was operated to observe whether the hollow fiber membrane bundle of the hollow fiber membrane module was disturbed. It was observed whether the residue was entangled. The hollow fiber membrane was not disturbed or entangled after 16 times of drainage.
[0040]
[Example 2]
In the same manner as in Example 1, the hollow fiber membrane module was accommodated in a container at 20 ° with respect to the vertical direction and placed in a water tank. The hollow fiber membrane was free from turbulence and entanglement after 16 times of drainage, and the hollow fiber membrane module was free from residue.
[0041]
[Comparative example]
Similarly to Examples 1 and 2, when the hollow fiber membrane module is disposed in the vertical direction and drainage is performed, the hollow fiber membrane is entangled with the two hollow fiber membrane modules when the drainage is performed five times, and the drainage is performed nine times. The remaining one hollow fiber membrane module also entangled the hollow fiber membrane, and the first two modules had a large amount of sludge adhering to the entangled portion, and many hollow fiber membranes entangled.
[0042]
【The invention's effect】
The hollow fiber membrane module, which can take a compact and large membrane area, was able to operate stably for a long period of time even in applications where stagnation is involved, such as in wastewater treatment.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing an example of a hollow fiber membrane treatment apparatus according to the present invention.
FIG. 2 is a schematic side view showing an example of the hollow fiber membrane treatment apparatus according to the present invention when the water level is lowered.
FIG. 3 is a schematic front perspective view showing an example of a hollow fiber membrane module used in the hollow fiber membrane treatment apparatus according to the present invention.
[Explanation of symbols]
1: Water tank 2: Hollow fiber membrane module 3: Hollow fiber membrane 4: Free end 5: Water collecting part 6: Fixing part 7: Protection member 8: Container 9: Upflow generating means 10: Separating means 11: Treated water take-out part

Claims (5)

多本数の中空糸膜の一端が自由端にされ、他端が束ねられた固定端にされているとともに、集水部と連結され、かつ前記中空糸膜に隣接して保護部材が設けられた中空糸膜モジュールが、自由端を上側、集水部を下側にして配置された中空糸膜処理装置であって、前記中空糸膜モジュールを鉛直方向に対する角度が5°以上、45°以下となるように傾けて配置したことを特徴とする中空糸膜処理装置。One end of a plurality of hollow fiber membranes is a free end, the other end is a fixed end bundled, and is connected to a water collecting portion, and a protective member is provided adjacent to the hollow fiber membrane the hollow fiber membrane module, the free end upper, a hollow fiber membrane treatment apparatus disposed in the lower side of the water collecting portion, an angle against the hollow fiber membrane module in the vertical direction more than 5 °, 45 ° or less A hollow fiber membrane treatment apparatus, which is disposed so as to be inclined. 前記中空糸膜モジュールを、鉛直方向に対する角度が5°以上、20°以下となるように配置したことを特徴とする請求項1記載の中空糸膜処理装置。  The hollow fiber membrane treatment apparatus according to claim 1, wherein the hollow fiber membrane module is arranged so that an angle with respect to a vertical direction is not less than 5 ° and not more than 20 °. 前記中空糸膜モジュールの下方に上昇流発生手段を配置したことを特徴とする請求項1又は2に記載の中空糸膜処理装置。The hollow fiber membrane treatment apparatus according to claim 1 or 2 , wherein an upward flow generating means is disposed below the hollow fiber membrane module. 前記中空糸膜が親水性の膜素材を使用した中空糸膜モジュールであることを特徴とする請求項1〜3のいずれかに記載の中空糸膜処理装置。The hollow fiber membrane treatment apparatus according to any one of claims 1 to 3, wherein the hollow fiber membrane is a hollow fiber membrane module using a hydrophilic membrane material. 原水が活性汚泥を含むものであることを特徴とする請求項1〜4のいずれかに記載の中空糸膜処理装置。Raw fiber water contains activated sludge, The hollow fiber membrane processing apparatus in any one of Claims 1-4 characterized by the above-mentioned.
JP15237098A 1998-06-02 1998-06-02 Hollow fiber membrane processing equipment Expired - Fee Related JP3918304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15237098A JP3918304B2 (en) 1998-06-02 1998-06-02 Hollow fiber membrane processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15237098A JP3918304B2 (en) 1998-06-02 1998-06-02 Hollow fiber membrane processing equipment

Publications (2)

Publication Number Publication Date
JPH11342321A JPH11342321A (en) 1999-12-14
JP3918304B2 true JP3918304B2 (en) 2007-05-23

Family

ID=15539053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15237098A Expired - Fee Related JP3918304B2 (en) 1998-06-02 1998-06-02 Hollow fiber membrane processing equipment

Country Status (1)

Country Link
JP (1) JP3918304B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469627B1 (en) * 2002-06-03 2005-02-02 한국정수공업 주식회사 Device for increasing the efficiency of filter using fiber hose
DE102004020226B4 (en) * 2004-04-02 2007-02-01 Koch Membrane Systems Gmbh membrane filter
CN100518907C (en) * 2005-03-09 2009-07-29 浙江欧美环境工程有限公司 Floating suspenion hollow fiber porous film filter component element
CN102933288B (en) * 2010-04-09 2016-07-06 643096阿尔伯塔有限公司 nano flotation
US20140174998A1 (en) 2011-08-23 2014-06-26 Dow Global Technologies Llc Filtration assembly including multiple modules sharing common hollow fiber support
JP2018099633A (en) * 2015-04-24 2018-06-28 住友電気工業株式会社 Filtration device
KR102412217B1 (en) * 2019-12-27 2022-06-23 국민대학교 산학협력단 Lamella clarifier and water treatment system having the same

Also Published As

Publication number Publication date
JPH11342321A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
US6627082B2 (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
KR100974912B1 (en) Piping integrated membrane frame structure and membrane unit using same
US6331251B1 (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
WO2011158559A1 (en) Method for cleaning membrane modules
JPH11128692A (en) Hollow fiber membrane module
JP3918304B2 (en) Hollow fiber membrane processing equipment
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP6212436B2 (en) Water treatment apparatus and water treatment method
JPH10290993A (en) Water purification equipment
JP4840285B2 (en) Cleaning method for submerged membrane module
JP2000084374A (en) Hollow fiber membrane treating device and its utilization
JP2007209949A (en) Filtrate recovery device for solid-liquid mixed processing liquid
JP5238128B2 (en) Solid-liquid separation device for solid-liquid mixed processing liquid
KR100236921B1 (en) Immersion type hollow fiber membrane module and method for treating waste water by using the same
JP2009214062A (en) Operation method of immersion type membrane module
JPH11347374A (en) Hollow yarn membrane treatment apparatus and use thereof
JP2010064039A (en) Apparatus and method for treating wastewater
KR19990045939A (en) Improved hollow fiber membrane module and method of treating waste water using same
JP5016827B2 (en) Membrane separation activated sludge treatment method
JP2009233504A (en) Method of cleaning dipping-type membrane module and cleaner for dipping-type membrane module as well as dipping-type membrane filter using the same
JP2019202260A (en) Water treatment system and water treatment method
JP2006142303A (en) Hollow fiber membrane treatment system
JP2006142303A5 (en)
JPH0790151B2 (en) Throwing type solid-liquid separator
JP3726404B2 (en) Membrane separation device and operation method thereof, activated sludge treatment device and water treatment facility

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

LAPS Cancellation because of no payment of annual fees