[go: up one dir, main page]

JP3931382B2 - Polytetrafluoroethylene powder and method for producing the same - Google Patents

Polytetrafluoroethylene powder and method for producing the same Download PDF

Info

Publication number
JP3931382B2
JP3931382B2 JP15843297A JP15843297A JP3931382B2 JP 3931382 B2 JP3931382 B2 JP 3931382B2 JP 15843297 A JP15843297 A JP 15843297A JP 15843297 A JP15843297 A JP 15843297A JP 3931382 B2 JP3931382 B2 JP 3931382B2
Authority
JP
Japan
Prior art keywords
powder
molecular weight
ptfe
number average
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15843297A
Other languages
Japanese (ja)
Other versions
JPH10147617A (en
Inventor
和孝 細川
上司 斉藤
哲男 清水
寛 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP15843297A priority Critical patent/JP3931382B2/en
Publication of JPH10147617A publication Critical patent/JPH10147617A/en
Application granted granted Critical
Publication of JP3931382B2 publication Critical patent/JP3931382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ポリテトラフルオロエチレン粉末及びその製造方法に関し、さらに詳しくは撥水撥油性に優れたポリテトラフルオロエチレン粉末及びその製造方法に関する。
【0002】
【従来の技術】
ポリテトラフルオロエチレン(PTFE)は、成形用原料として粉末の形態で市販され、耐熱耐寒性、難燃性、摺動性、非粘着性、防汚性、耐薬品性、耐候性、電気特性等に優れている為、種々の成形品が様々な分野で使用されている。また、PTFEの微粒子や粉末は、他の材料中に分散し、あるいは他の材料とブレンドして、改質剤として利用されている。
【0003】
成形用PTFE粉末には、懸濁重合法による粒状生成樹脂を微粉砕して得られる粉末(モールディングパウダーもしくはグラニュラー)と、水性分散(乳化)重合法で得られるラテックスからポリマーを凝集させ乾燥して得られる粉末(ファインパウダー)の二種類があり、共に実用されている。これら二種類の粉末は全く異なる成形方法により加工される。例えば、前者は圧縮成形やラム押出成形により、後者は液状潤滑剤を混合させて行うペースト押出成形や圧延(カレンダー)成形などにより加工される。
【0004】
成形用原料としてのPTFEファインパウダーやモールディングパウダーは、通常極めて高い分子量を有し、特殊な場合を除いて分散やブレンドによる他の材料の改質用に使用されることはない。これら粉末が分散またはブレンド用に不適切である最大の理由は、これら粉末が分散またはブレンド中にフィブリル化を起こすことである。
PTFEのフィブリル化特性は、重合後に融点以上の熱処理を受けていないバージンポリマーに強く現れる性質であり、なかでも乳化重合で製造さえるコロイド状粒子およびファインパウダーに特にその性質が強い。
【0005】
ファインパウダーは通常、潤滑助剤を含ませペースト状にしたものを細いオリフィスを有するシリンダーに充填し冷間で押出す「ペースト押出し」によって成形され、押出物は、焼成してチューブや電線被覆に、あるいはフィルム状に圧延してシールテープとして、また圧延後更に延伸して多孔膜として使用される。ペースト押出し加工は、コロイド状PTFE微粒子のフィブリル化特性によって成り立つものであり、微粒子が押し出し中にフィブリル化して相互に絡み合うことで熱処理前の成形品にある程度の力学的強度が付与される。
【0006】
しかし、フィブリル化は、極めて小さな剪断力でも容易に起こるため、他の材料にファインパウダーやモールディングパウダーを分散またはブレンドする場合、ブレンド中に受ける剪断力でフィブリルが発生し、PTFE粒子が一旦凝集し再分散しにくくなり、均一な分散状態が保持できなくなる。また、フィブリルの発生により、異常な高粘度になって均一に混合できなくなる等の問題が生じる。高分子量のPTFEでも、熱処理(通常、融点以上での処理)を一旦受けるとフィブリル化特性はほとんどなくなるが、冷凍粉砕などの経済的でない特殊な粉砕をしない限り、通常の微粉砕機では70μmより細かい粉末が得られにくく、また粒子の形状も異方性が大きくなるなど分散またはブレンド用としては実用的な微粉末は得られない。
【0007】
しかし、バージンPTFEのフィブリル化特性は、PTFEの分子量に依存し、ある分子量以上で発現する性質であり、低分子量のPTFEではフィブリル化特性は現れない。そのため、低分子量PTFEの微粒子や粉末が分散またはブレンド用として従来から市販されている。
低分子量PTFEを粒子形態からみると、コロイド粒子の凝集粉末か、又は一旦溶融されて緻密化したのち、粉砕によって粉末にしたものに大別される。塗料等のサブミクロンの微分散を要求する用途には、特にコロイド粒子の凝集粉末の使用が好適である。一般に、凝集粉末としての粒子径は1〜30μmであるが、ブレンドの際の剪断力により、凝集粉末が再分散されるため、容易にサブミクロン単位に微分散可能である。一方、緻密化した粉末の粒子径は、粉砕での粒子径に依存し、一般に1μm以下は不可能であり、サブミクロンの微分散を要求する用途には不適当である。
【0008】
低分子量PTFEの微粒子や粉末の製造方法として、種々の技術が提案されている。
例えば特公昭57−22043号公報及び特公昭51−25275号公報には、PTFEの一般的な乳化重合において、連鎖移動剤を使用して低分子量PTFEを得、得られたコロイド状PTFE水性分散体を凝析、乾燥することによって粉末を得る方法が開示されている。
また、高分子量PTFEの熱分解によって低分子量化する方法(例えば特公昭50−15506号公報及び特公昭38−20970号公報)や、高分子量PTFEに放射線を照射し、低分子量化する方法(例えば特公昭52−25419号公報及び特公昭49−48671号公報)が知られている。
【0009】
ところが、上記の低分子量PTFEの微粒子や粉末は、撥水・撥油性が要求される用途では、十分な効果が得られない。一方、分子末端をフッ素化したPTFEが好適であることが知られており、種々の塗料組成物、撥水処理組成物が提案されている。
【0010】
特開平7−26169号公報には、分子末端までフッ素化されたテトラフルオロエチレン(TFE)オリゴマーを塗料素材に分散させた塗料が開示され、撥水性が改善されることが記載されている。
また、特開平8−3477号公報、特開平8−3479号公報及び特開平8−3544号公報には、分子量500〜20000であり、末端までフッ素化された低分子量PTFEを添加した塗料及び処理剤が開示され、撥水性および着雪防止性が改善されることが記載されている。
しかし、開示されたこれらのPTFEの分子量は、極めて低く、加熱によって揮発するため、焼き付け塗料には使用できない。
【0011】
また、分子末端がフッ素化されたPTFEの製造方法についても、種々の技術が提案されている。
特公昭46−23245号公報には、低分子量のワックスを除く高分子量のパーフルオロカーボン重合体の末端基を、フッ素ラジカル源で安定化する方法が開示されている。
特公平1−49403号公報および特公平1−49404号公報には、含フッ素ポリマーを250〜550℃でフッ素ラジカル源と接触反応させる含フッ素樹脂の製造方法が開示されているが、得られたPTFEは塊であるため、粉末にするためには粉砕工程を必要とする。また、粉砕しても粒子径は数μmまでに留まり、サブミクロンの微分散は困難である。
【0012】
また、特公平6−67859号公報には、更に低分子量化及び高収率化を目的として、含フッ素樹脂を融点〜600℃に加熱して、雰囲気温度200〜600℃においてフッ素ラジカル源と反応させ、反応生成ガスを100℃以下に冷却する方法が開示されているが、開示された製造方法は収率が劣り、得られたPTFEの分子量は、極めて低く、加熱によって揮発しやすいため、例えば、ポリアセタール等への添加では、成型時モールドデポジット(金型への付着)が起こりやすく、成形品の外観不良を招いたり、高温での焼き付け塗装では、揮発成分が塗膜表面に付着し、光沢を失う等の問題がある。
【0013】
更に、特公平7−5744号公報には、場合によっては、加熱処理をフッ素ラジカル源の存在下で行い、粉砕した後、平均粒径1〜30μm、比表面積2〜6m2/gのPTFE粉末の製造方法が開示されているが、開示された製造方法によるPTFEの粒子径は大きく、塗料等への微分散は困難である。
【0014】
【発明が解決しようとする課題】
一般に、塗料の塗装方法には、常温で硬化させる方法や加熱して焼き付ける方法があるが、焼き付け温度は、マトリックス樹脂の種類によって約150〜約400℃と広範囲にわたる。一方、フッ素化されたPTFEが撥水性塗料成分として使用されているが、PTFEの分子量が低いため加熱による揮発分が多いか、または、粉末の粒径が大きいため微分散性が劣っていた。
本発明の目的は、良好な撥水性及び撥油性を有すると共に、焼き付け塗装可能であり、かつ優れた微分散性を有するPTFE粉末及びその製造方法を提供することにある。
【0015】
【課題を解決するための手段】
上記課題を解決するために、本発明は、40000〜600000の数平均分子量、7〜20m2/gの比表面積、1〜30μmの平均粒径、および110〜125゜の対水接触角を有することを特徴とするポリテトラフルオロエチレン粉末を提供する。
さらに、本発明は、上記本発明のPTFE粉末を製造する1つの方法として、数平均分子量が40000〜600000であり、比表面積が7〜20m2/gであり、平均粒径が1〜30μmであるコロイド状ポリテトラフルオロエチレン粒子の凝集粉末を、100〜300℃の温度において、フッ素ラジカル源と反応させることからなる製造方法を提供する。
【0016】
前述のように、一般に分散またはブレンド用には、フィブリル化特性が発現しない低分子量PTFEが用いられている。ところが、これまでPTFEの低分子量体と高分子量体共通の分子量測定方法が用いられていなかったため、フィブリル化特性が発現する分子量の境界が不明確であった。
【0017】
従来のPTFEの分子量の測定方法としては、例えば、融点から数平均分子量を求める方法が知られているが、この方法は、融点が327℃未満のPTFEにしか適用できず、高分子量PTFEの分子量は測定できない。
成形用の高分子量PTFEについては標準比重(SSG)から数平均分子量を求める方法が知られているが、この方法は標準比重の成形体ができることが前提である。ところが、低分子量PTFEは溶融粘度が低いため、焼成時溶融流動して成形品が得られないか、または成形体が得られたとしてもクラックや発泡を生じる場合が多く、標準比重が測定できないので、この方法により低分子量PTFEの分子量を測定することはほとんど不可能である。
従って、低分子量から高分子量で共通の分子量測定方法を用い、分子量が異なるPTFEの分子量とフィブリル化特性を定量的に調べると、フィブリル化特性が発現する分子量の境界を明確にできる。
【0018】
水性分散(乳化)重合法で分子量の異なるPTFEを重合し、得られるラテックスを凝集、乾燥して粉末を作製し、それぞれについて溶融時の動的粘弾性測定により得られる数平均分子量(測定方法の詳細はS.Wuにより、Polymer Engineering & Science,1988, Vol.28,538、同1989,Vol.29,273で説明されている)とペースト押出しで得られる未焼成ビードの伸びを測定し、数平均分子量と伸びの関係をみると、数平均分子量が500000以下では連続したペースト押出しビードすら得られない。500000〜600000では、連続したペースト押出しビードが得られないか、又は、得られたとしても未焼成ビードの伸びはほとんどなく、フィブリル化特性は現れない。ところが、数平均分子量が600000を超えると明確に伸びが現れ、フィブリル化特性が発現する。
【0019】
本発明のPTFE粉末の数平均分子量は、40000〜600000(好ましくは、60000〜500000)であり、40000未満のものは高温での揮発分が多く、焼き付けを必要とする塗料などの耐熱塗料には不適当である。また、数平均分子量が600000を超えるものは、フィブリル化特性が発現し、コロイド粒子同士の凝集力が強いため微分散性が劣る。
上記数平均分子量範囲は、従来の測定方法である融点では、約324〜333℃に相当し、また、380℃における溶融粘度では、約1×103〜7×105PaSに相当する。
【0020】
本発明のPTFE粉末の比表面積は、粒子径と相関があり、比表面積が大きいほど粒子径は小さく、凝集粉末を構成する基本単位の粒子径(一次粒子径)の目安として用いられている。
比表面積は7〜20m2/g、好ましくは9〜15m2/gである。比表面積が7m2/g未満のものは、一次粒子径が大きく、微分散性が劣る。また、20m2/gを超えるものは、重合時に特殊な分散剤を用いるか、あるいは、多量の分散剤を使用する必要があり、経済的でない。
【0021】
本発明のPTFE粉末の平均粒径は、1〜30μm、好ましくは2〜20μmである。平均粒径が1μm未満のものは、粉末の嵩密度が小さく、取り扱い性が劣る。また、30μmを超えるものは一次粒子間の凝集力が強いため、微分散し難い。
【0022】
本発明のPTFE粉末は、コロイド状PTFE水性分散体を、凝析、乾燥することによって得られる未焼成PTFEを、100〜300℃、好ましくは、150〜250℃において、フッ素ラジカル源と反応させることによって製造することができる。
反応温度が100℃未満では反応速度が小さく、生産性が劣る。また、300℃を超えると、一次粒子同士が融着するため微分散できない。また、揮発分が増加し生産性が劣る。
【0023】
フッ素ラジカル源としては、フッ素化において従来から使用されているものがいずれも使用できる。例えば分子状フッ素(F2);ClF、ClF3、BrF3、IF3等のハロゲン化フッ化物;XeF2、XeF4、KrF2等の希ガスのフッ化物;NF3、NF2等の含チッ素フッ素化合物が使用できる。
【0024】
フッ素ラジカル源の添加量は、反応時間と反応温度に依存するが、フッ素原子に換算して、原料粉末100重量部に対し、0.01〜1重量部、好ましくは0.1〜0.5重量部である。0.01重量部未満では反応時間を長くする必要があり、生産性が劣る。添加量の上限は特に限定されず、過剰にした場合に存在するは未反応分は回収して再使用できるが、1重量部までで十分である。
【0025】
使用する反応器は、加熱装置を備え、気体と固体が接触する形態のものであれば、何れのものでも使用できる。例えば、空気循環炉内に反応棚を備えたものや流動層等の気固接触が良好に行えるものが好ましい。
【0026】
本発明の製法に用いる未焼成PTFEは、コロイド状PTFE水性分散体の、凝析および乾燥により得られる。このコロイド状PTFE水性分散体は、例えば下記のような製造方法により製造することができる。
水溶性含フッ素分散剤としては、例えば、一般式:
X(CF2)aCOOH
(式中、Xは水素原子、フッ素原子又は塩素原子、aは6〜12の整数を表す。)、
一般式:
Cl(CF2CFCl)bCF2COOH
(式中、bは2〜6の整数を表す。)、
一般式:
(CF3)2CF(CF2CF2)cCOOH
(式中、cは2〜6の整数を表す。)、又は
一般式:
F(CF2)dO(CFYCF2O)eCFYCOOH
(式中、Yはフッ素原子またはCF3、dは1〜5の整数、eは1〜5の整数を表す。)
で表される化合物、もしくはそれらのアンモニウム塩又はアルカリ金属塩(例えば、カリウム塩、ナトリウム塩)等を使用することができる。特に一般式:
n2n+1COOX 又は
37O(CF(CF3)CF2O)lCF(CF3)COOX
(式中、nは6〜9の整数、lは1〜2の整数、Xはアンモニウム基又はアルカリ金属原子を表す。)
で示される化合物を用いるのが好ましい。
【0027】
水溶性含フッ素分散剤の使用量は、反応に用いる水性媒体に対して、0.02〜0.5重量%、好ましくは0.03〜0.5重量%である。
【0028】
重合開始剤としては、TFEの重合において従来から使用されているものがいずれも使用でき、例えば過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩、ジサクシニックアシドパーオキシド、ジグルタリックアシドパーオキシド等の水溶性有機過酸化物が使用できる。中でも、過硫酸塩が好ましい。
【0029】
重合温度は10〜95℃の広い範囲から選択可能である。重合開始剤として過硫酸塩を使用する場合、40〜80℃が適当である。低温で反応を行う場合には上記過硫酸塩に亜硫酸塩、酸性亜硫酸塩等の還元剤を加えてレドックス系にすることが好ましい。
重合反応は、通常TFE自体のガス加圧によって0.6〜3.9MPa、好ましくは0.9〜3.0MPaの範囲の圧力に保ちながら進行させる。
【0030】
TFEと、少なくとも一種の他のオレフィン1重量%以下とを共重合させてもよい。他のオレフィンとしては、例えば、一般式:
X(CF2)nyCF=CF2
(式中、Xは水素原子、フッ素原子又は塩素原子、nは1〜6の整数、yは0又は1を表す。)
及び一般式:
37(OCF2CF2CF2)m[OCF(CF3)CF2]pOCF=CF2
(式中、m及びpはそれぞれ0〜4の整数を表す。ただし、これらが同時に0となることはない。)
で示される化合物、クロロトリフルオロエチレン(CTFE)、ビニリデンフルオライド(VdF)、トリフルオロエチレン(TrFE)などが使用できる。
【0031】
必要ならば、連鎖移動剤として、水素及びメタン、エタン、プロパン、ブタン等の炭化水素;CH3Cl、CH2Cl2、CH2CF2等のハロゲン化炭化水素;メタノール、エタノール等の水溶性有機化合物などを使用することができる。
【0032】
場合により反応系の分散安定剤として、実質的に反応に不活性で反応条件下で液状の炭素数12以上の炭化水素を、水性媒体100重量部に対して2〜10重量部使用することもできる。また、反応中のpHを調整するために緩衝剤として、例えば炭酸アンモニウム、リン酸アンモニウムなどを添加してもよい。
【0033】
得られるコロイド状PTFE粒子の粒子径は、通常0.05〜0.5μmであり、PTFE粒子水性分散体のポリマー濃度は、通常水性媒体に対して10〜45重量%である。得られたコロイド状PTFE水性分散体(ポリマーラテックスまたは単にラテックスと呼ぶ)を反応容器から取り出し、次の工程、即ち凝析と乾燥工程に移す。
【0034】
凝析は、通常ポリマーラテックスを水で10〜20重量%のポリマー濃度になるように希釈し、場合によっては、pHを中性またはアルカリ性に調整した後、撹拌機付きの容器中で反応中の撹拌よりも激しく撹拌して行う。この時、メタノール、アセトン等の水溶性有機化合物、硝酸カリウム、炭酸アンモニウム等の無機塩や塩酸、硫酸、硝酸等の無機酸等を凝析剤として添加しながら撹拌を行ってもよい。また、インラインミキサー等を使用して連続的に凝析を行ってもよい。
【0035】
凝析で得られた湿潤粉末の乾燥は、通常、真空、高周波、熱風等の手段を用いて行う。乾燥温度は10〜250℃、好ましくは100〜200℃である。この時点でのPTFE粉末は、コロイド粒子が凝集した粉末であるため、比表面積は、通常7〜20m2/gの値を有する。
【0036】
重合反応で得られるPTFEの数平均分子量は、40000〜600000、好ましくは60000〜500000に調整する。数平均分子量が、40000未満のものは高温での揮発分が多いため、好ましくない。また、600000を超えるものはフィブリル化特性が発現するため、微分散性が要求されるブレンド用には不適当である。
【0037】
本発明のPTFE粉末は分散またはブレンド用として好ましく、好適には、撥水撥油性塗料、特に焼き付け型撥水撥油塗料に使用される。また、熱可塑性樹脂、熱硬化性樹脂への撥水撥油性付与剤としても使用できる。
また、一次あるいは二次電池用、特にニッケル化合物を正極活物質に使用する二次電池、さらに燃料電池への撥水性付与のための、電池活物質や導電性炭素質材料などの電極材料への添加剤として、あるいは熱可塑性樹脂、熱硬化性樹脂への撥水撥油性や潤滑性付与剤としても使用できる。二次電池としてはニッケル−水素二次電池、ニッケル−カドミウム電池が代表的なものである。本発明のPTFE粉末は微分散しやすく撥水性に富むため、その添加によって電極内の気−液−固の三相界面が効率よく形成され、電極反応によって発生するガスが迅速に拡散し、水、酸化物または水素化物に戻る反応が促進される。
【0038】
本明細書におけるポリマーラテックス及びPTFE粉末の分析方法及び試験方法は次のとおりである。
1)数平均分子量
S.Wuの方法(Polymer Engineering & Science,1988, Vol.28,538、同1989,Vol.29,273)に準処する。この方法は、樹脂の溶融時の弾性率から数平均分子量、重量平均分子量及び分子量分布を算出する方法であり、とくにPTFEに代表される溶媒に不溶な樹脂の分子量測定に有用な方法である。
測定装置はレオメトリクス社製粘弾性測定機RDS−2を使用し、380℃における動的粘弾性を測定した。但し、試料を保持する治具としてパラレルプレートを用い、試料の溶融時の厚みは1.4〜1.5mm、周波数範囲は0.001〜500rad/秒とする。
また、溶融時の試料の変形量は、周波数が1rad/秒以上では試料の厚みに対して、円周上で0.8〜3%の範囲から選択し、周波数が1rad/秒以下では2〜10%の範囲から選択する。また、測定値のサンプリング頻度は対数等間隔で1桁当たり5点とする。
また、2回の連続した測定において、各測定周波数(ω)における貯蔵弾性率(G’(ω))の偏差の平均が5%以下になるまで測定を繰り返す。
測定により求めた周波数(ω)、貯蔵弾性率(G’(ω))用いて、S.Wuの方法(Polymer Engineering & Science,1988, Vol.28,538、同1989,Vol.29,273)に従って数平均分子量(Mn)を求めた。但し、時間t=1/ω、G(t)=G'(ω)とした。
【0039】
2)未焼成ビードの伸び
PTFE粉末50gと押出助剤である炭化水素油(商品名ISOPER−E、エクソン化学株式会社製)9.2gとをガラス瓶中で混合し、室温(25±2℃)で1時間熟成する。次に、シリンダー(内径25.4mm)付きの押出ダイ(絞り角30度で、下端に内径2.54mm及びランド長7mmのオリフィスを有する)に上記混合物を充填し、シリンダーに挿入したピストンに5.7MPaの負荷を加えて1分間保持する。その後直ちに、室温においてラム速度20mm/分で上記混合物をオリフィスから押出し、ロッド状物を得る。得られたロッド状押出物を、約100℃で約10時間乾燥し、押出圧力の安定している後半部から約7cmの長さの試料5個を切り取る。それぞれの試料の両端各約15mmを380℃のソルトバス中で焼成し、表面の長さ方向に間隔20mmの目盛りを中央部に印す。次に試料の両端を引っ張り試験機のクランプでつかみ、200mm/分の一定の速度で試料を引っ張り、破断時の目盛り間の長さ(El)を読み、下式により、伸び(%)を求める。
【0040】
【数1】
伸び(%)=(El(mm)−20(mm))/20(mm)×100
尚、試験回数は5回とし、最大値および最小値を除く3回の値を平均して、伸び(%)とする。また、引っ張り試験中は、室温を24±0.5℃に調温する。
【0041】
3)ポリマー濃度
シャーレに10gのポリマーラテックスを採取し、150℃で約3時間乾燥し蒸発乾固させる。固形分を秤量し、これからをポリマー濃度を計算する。
【0042】
4)ポリマーラテックスの数平均粒子径
既知試料について、固形分0.15重量%に水で希釈したポリマーラテックスの単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真により定方向径を測定して決定した数基準長さ平均粒子径とを測定して作成した検量線を用い、各試料について測定した上記透過率から決定する。
【0043】
5)粉末の平均粒径
日本電子株式会社製レーザー回折式粒度分布測定装置(HELOS & RODOS)を用い、カスケードは使用せず、圧力0.1MPa、測定時間3秒で測定を行い、粒度分布積算の50%に対応する粒径を平均粒径とする。
【0044】
6)粉末の比表面積
BET法に従い、装置としてQUANTA CHROME社製MONOSORBを用いて測定する。キャリアガスとして窒素30%とヘリウム70%の混合ガスを用い、冷却は液体窒素によって行う。試料量は2gとし、3回測定して平均値を比表面積とする。
【0045】
7)高温揮発分
アルミニウム製カップ(容量50ml、上部径61mm、下部径42mm、深さ33mm)に試料10gを入れ、予め加熱温度に調整した熱風循環式電気炉で300±2℃の雰囲気中、1時間保持した後、重量を測定し、下式によって高温揮発分を求める。
【0046】
【数2】
高温揮発分(重量%)=(10(g)−熱処理後の重量(g))/10(g)×100
【0047】
8)粉末からの接触角測定用資料の作製
ASTM D4894−89に従い(金型は表面を鏡面仕上げしたものを用いる)、SSG(標準比重)測定用の未焼成のPTFE圧縮成形体を作製し、これを接触角測定用試料とする。
9)接触角
成形体又は塗膜の表面の接触角を、接触角計(協和界面科学株式会社製CA−DT・A型)を用い、直径3mmの液滴で測定した。測定は3回行い、平均値を接触角とする。
【0048】
【実施例】
実施例1
ステンレス鋼(SUS316)製アンカー型撹拌翼と温度調節用ジャケットを備え、内容量が100リットルのステンレス鋼(SUS316)製オートクレーブに、脱イオン水54l、及びパーフルオロオクタン酸アンモニウム11.6gを仕込み、55℃に加温しながら窒素ガスで3回、TFEガスで2回、系内を置換して酸素を除いた。その後、CH3Cl330gを仕込み、TFEガスで内圧を0.83MPaにし、80rpmで撹拌し、内温を55℃に保つ。
【0049】
次に水1リットルに過硫酸アンモニウム14.3gを溶かした水溶液をTFEで圧入し、オートクレーブ内圧を0.88MPaにすると、反応は加速的に進行する。その間、反応温度は55℃、撹拌速度は80rpmを保つ。TFEは、オートクレーブの内圧を常に0.88±0.05MPaに保つように連続的に供給する。
反応は、10.3kgのTFEモノマーが消費された時点で撹拌及びモノマー供給を停止し、直ちにオートクレーブ内のガスを常圧まで放出して、終了させた。
全反応時間は5.3時間、数平均粒径は0.18μmであった。また、得られたラテックスのポリマー濃度は 15.8重量%であった。
【0050】
得られたラテックスを凝析、洗浄した後、ポリマー粉末を140℃で18時間乾燥した。得られた原料粉末の比表面積は11m2/gであり、粉末の数平均粒径は5μmであった。また、ポリマーの数平均分子量は140000であった。
得られた原料粉末5kgを、空気循環炉内に備えたステンレス鋼(SUS316)製反応容器に仕込み、窒素で反応容器内を置換して空気を除去した後、反応容器が240℃になるように炉内を昇温した。次に、フッ素(F2)12gを反応容器に仕込み、240℃で2時間保持してフッ素化反応を終えた。反応後、直ちに窒素で系内を置換してフッ素(F2)を除去し、反応容器の温度を室温まで冷却し、粉末を取り出した。
【0051】
得られた粉末の比表面積は11m2/g、粉末の数平均粒径は5μm、ポリマーの数平均分子量は140000であった。高温揮発分は0.09重量%と極めて少なく、また、対水接触角は119゜であり、優れた撥水性を示した。
【0052】
塗料添加試験
得られたPTFE粉末39.2gとカーボンブラック(東海カーボン株式会社製シースト116)4.7gを、予めポリエーテルサルフォン(住友化学株式会社製ビクトレックス4100P)39.2gを、N−メチル−2−ピロリドン(大日本インキ化学工業株式会社製)178g、メチルイソブチルケトン(双葉化学薬品株式会社製)66.6g、メチルエチルケトン(双葉化学薬品株式会社製)39.2g及びトルエン(大阪石油化学株式会社製)39.2gの混合溶媒に溶解した溶液に混合、分散し塗料を得た。
【0053】
得られた塗料を、脱脂されたアルミニウム板(厚み:2mm)にスプレー塗装し、120℃で15分間乾燥した後、更に380℃で15分間焼成して塗装板を得た。
得られた塗膜表面の対水接触角は118゜であり、優れた撥水性を示した。また、撥油性の指標としてn−ヘキサデカン(CH3(CH2)14CH3、東京化成工業株式会社製)の接触角を測定すると43゜であり、優れた撥油性を示した。
【0054】
実施例2
実施例1で得た原料粉末を用い、フッ素化反応温度を280℃にする以外は実施例1と同様の条件でフッ素化を行った。得られた粉末の比表面積は9m2/g、粉末の数平均粒径は7μm、ポリマーの数平均分子量は140000であった。高温揮発分は0.08重量%と極めて少なく、また、対水接触角は117゜であり、優れた撥水性を示した。
【0055】
実施例3
ステンレス鋼(SUS316)製アンカー型撹拌翼と温度調節用ジャケットを備え、内容量が6リットルのステンレス鋼(SUS316)製オートクレーブに、脱イオン水2960ml、パーフルオロノナン酸アンモニウム3.0g及び流動パラフィン(キシダ化学株式会社製、試薬1級)120gを仕込み、70℃に加温しながら窒素ガスで3回、TFEガスで2回、系内を置換して酸素を除いた。その後、エタンガス75ccを仕込み、TFEガスで内圧を0.83MPaにし、250rpmで撹拌し、内温を70℃に保つ。
【0056】
次に水40mlに過硫酸アンモニウム60mgを溶かした水溶液をTFEで圧入し、オートクレーブ内圧を0.88MPaにすると、反応は加速的に進行する。この間、反応温度は70℃、撹拌速度は250rpmを保つ。TFEは、オートクレーブの内圧を常に0.88±0.05MPaに保つように連続的に供給する。
反応は、1260gのTFEモノマーが消費された時点で撹拌及びモノマー供給を停止し、直ちにオートクレーブ内のガスを常圧まで放出して、終了させた。全反応時間は11.5時間、数平均粒径は0.15μmであった。また、得られたラテックスのポリマー濃度は 29.6重量%であった。
【0057】
得られたラテックスを凝析、洗浄した後、ポリマー粉末を140℃で18時間乾燥した。得られた原料粉末の比表面積は15m2/gであり、粉末の数平均粒径は10μmであった。また、ポリマーの数平均分子量は420000であった。
【0058】
原料粉末の量を500gにし、フッ素(F2)の仕込量を1.2gにする以外は実施例1と同様の条件でフッ素化した。得られた粉末の比表面積は15m2/g、粉末の数平均粒径は10μm、ポリマーの数平均分子量は420000であった。高温揮発分は0.07重量%と極めて少なく、また、対水接触角は120゜であり、優れた撥水性を示した。
【0059】
実施例4
エタンの仕込量を68ccにし、TFEモノマーの消費量を1290gにする以外は実施例3と同様の手順で反応を行った。全反応時間は10.4時間、数平均粒径は0.16μmであった。また、得られたラテックスのポリマー濃度は30.1重量%であった。
得られたラテックスを実施例3と同様に処理し、原料粉末を得た。得られた粉末の比表面積は14m2/gであり、粉末の数平均粒径は12μmであった。また、ポリマーの数平均分子量は530000であった。
得られた原料粉末を、実施例3と同様の条件でフッ素化した。得られた粉末の比表面積は14m2/g、粉末の数平均粒径は12μm、ポリマーの数平均分子量は530000であった。高温揮発分は0.07重量%と極めて少なく、また、対水接触角は121゜であり、優れた撥水性を示した。
【0060】
比較例1
実施例1で得られた原料粉末の対水接触角を測定したところ95゜と小さく、撥水性は劣っていた。また、実施例1で得られた原料粉末について、実施例1同様の塗料添加試験を行ったところ、塗膜の対水接触角は109゜と小さく、また、n−ヘキサデカンの接触角も33゜と小さく、撥水性及び撥油性が劣っていた。
【0061】
比較例2
実施例3と同様のオートクレーブに、脱イオン水2960ml及びパーフルオロオクタン酸アンモニウム4.5gを仕込み、70℃に加温しながら窒素ガスで3回、TFEガスで2回、系内を置換して酸素を除いた。その後、CH3Cl30gを仕込み、TFEガスで内圧を0.83MPaにし、250rpmで撹拌し、内温を70℃に保つ。
【0062】
次に水40mlに過硫酸アンモニウム2.25gを溶かした水溶液をTFEで圧入し、オートクレーブ内圧を0.88MPaにすると、反応は加速的に進行する。この間、反応温度は70℃、撹拌速度は250rpmを保つ。TFEは、オートクレーブの内圧を常に0.88±0.05MPaに保つように連続的に供給する。
反応は、540gのTFEモノマーが消費された時点で撹拌及びモノマー供給を停止し、直ちにオートクレーブ内のガスを常圧まで放出して、終了させた。
全反応時間は8.2時間、数平均粒径は0.17μmであった。また、得られたラテックスのポリマー濃度は 15.3重量%であった。
【0063】
得られたラテックスを凝析、洗浄した後、ポリマー粉末を140℃で18時間乾燥した。得られた原料粉末の比表面積は13m2/gであり、粉末の数平均粒径は4μmであった。また、ポリマーの数平均分子量は30000であった。
得られた原料粉末を、実施例3と同様の条件でフッ素化した。得られた粉末の比表面積は11m2/g、粉末の数平均粒径は6μm、ポリマーの数平均分子量は30000であった。また、対水接触角は119゜であり、優れた撥水性を示したが、高温揮発分は0.59重量%と極めて多いものであった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polytetrafluoroethylene powder and a method for producing the same, and more particularly to a polytetrafluoroethylene powder excellent in water and oil repellency and a method for producing the same.
[0002]
[Prior art]
Polytetrafluoroethylene (PTFE) is commercially available in the form of powder as a raw material for molding, and has heat and cold resistance, flame resistance, slidability, non-adhesiveness, antifouling properties, chemical resistance, weather resistance, electrical properties, etc. Therefore, various molded products are used in various fields. In addition, PTFE fine particles and powder are dispersed in other materials or blended with other materials and used as a modifier.
[0003]
The PTFE powder for molding is obtained by agglomerating a polymer from a powder (molding powder or granular) obtained by finely pulverizing a granular resin produced by a suspension polymerization method and a latex obtained by an aqueous dispersion (emulsion) polymerization method. There are two types of powders (fine powders) that are obtained, and both are in practical use. These two types of powders are processed by completely different forming methods. For example, the former is processed by compression molding or ram extrusion, and the latter is processed by paste extrusion molding or rolling (calender) molding performed by mixing a liquid lubricant.
[0004]
PTFE fine powders and molding powders as molding raw materials usually have an extremely high molecular weight and are not used for modification of other materials by dispersion or blending except in special cases. The biggest reason these powders are unsuitable for dispersion or blending is that they cause fibrillation during dispersion or blending.
The fibrillation property of PTFE is a property that appears strongly in a virgin polymer that has not been subjected to a heat treatment at or above its melting point after polymerization, and is particularly strong in colloidal particles and fine powders produced by emulsion polymerization.
[0005]
Fine powder is usually formed by “paste extrusion” in which a paste containing a lubricating aid is filled into a cylinder with a narrow orifice and extruded cold, and the extrudate is fired into a tube or wire coating. Alternatively, it is rolled into a film to be used as a seal tape, and further rolled and used as a porous film after rolling. Paste extrusion processing is established by the fibrillation characteristics of colloidal PTFE fine particles, and the fine particles are fibrillated during extrusion and entangled with each other, thereby imparting a certain degree of mechanical strength to the molded product before heat treatment.
[0006]
However, since fibrillation easily occurs even with extremely small shearing force, when fine powder or molding powder is dispersed or blended with other materials, fibrils are generated by the shearing force received during blending, and PTFE particles once aggregate. It becomes difficult to re-disperse, and a uniform dispersed state cannot be maintained. In addition, the occurrence of fibrils causes problems such as abnormal high viscosity and inability to mix uniformly. Even with high molecular weight PTFE, once subjected to a heat treatment (usually a treatment at a melting point or higher), the fibrillation characteristics are almost lost. However, unless special pulverization such as freeze pulverization is performed, an ordinary fine pulverizer is more than 70 μm. It is difficult to obtain a fine powder, and a fine powder that is practical for dispersion or blending cannot be obtained, for example, since the shape of the particles has increased anisotropy.
[0007]
However, the fibrillation characteristics of virgin PTFE depend on the molecular weight of PTFE and are expressed at a certain molecular weight or higher, and fibrillation characteristics do not appear with low molecular weight PTFE. Therefore, low molecular weight PTFE fine particles and powders have been commercially available for dispersion or blending.
When the low molecular weight PTFE is seen from the particle form, it is roughly classified into agglomerated powder of colloidal particles, or a powder that is once melted and densified and then pulverized. For applications requiring submicron fine dispersion such as paint, the use of agglomerated powder of colloidal particles is particularly suitable. In general, the particle diameter of the aggregated powder is 1 to 30 μm, but the aggregated powder is redispersed by the shearing force during blending, so that it can be easily finely dispersed in submicron units. On the other hand, the particle size of the densified powder depends on the particle size in the pulverization, and generally 1 μm or less is impossible, and is inappropriate for applications requiring submicron fine dispersion.
[0008]
Various techniques have been proposed as a method for producing low molecular weight PTFE fine particles and powder.
For example, in Japanese Patent Publication No. 57-22043 and Japanese Patent Publication No. 51-25275, in a general emulsion polymerization of PTFE, a low molecular weight PTFE is obtained by using a chain transfer agent, and the obtained colloidal PTFE aqueous dispersion is obtained. A method for obtaining a powder by coagulating and drying the powder is disclosed.
In addition, a method for reducing the molecular weight by thermal decomposition of high molecular weight PTFE (for example, Japanese Patent Publication No. 50-15506 and Japanese Patent Publication No. 38-20970) and a method for reducing the molecular weight by irradiating high molecular weight PTFE with radiation (for example, JP-B-52-25419 and JP-B-49-48671) are known.
[0009]
However, the above-mentioned low molecular weight PTFE fine particles and powders do not provide a sufficient effect in applications requiring water and oil repellency. On the other hand, PTFE having a fluorinated molecular end is known to be suitable, and various coating compositions and water-repellent treatment compositions have been proposed.
[0010]
Japanese Patent Laid-Open No. 7-26169 discloses a paint in which a tetrafluoroethylene (TFE) oligomer fluorinated up to the molecular end is dispersed in a paint material, and describes that water repellency is improved.
In addition, JP-A-8-3477, JP-A-8-3479 and JP-A-8-3544 disclose a coating material and a treatment in which low molecular weight PTFE having a molecular weight of 500 to 20000 and fluorinated to the terminal is added. An agent is disclosed that describes improved water repellency and anti-snow properties.
However, the molecular weights of these disclosed PTFEs are very low and volatilize on heating and cannot be used in baking paints.
[0011]
Various techniques have also been proposed for a method for producing PTFE having molecular ends fluorinated.
Japanese Examined Patent Publication No. 46-23245 discloses a method of stabilizing a terminal group of a high molecular weight perfluorocarbon polymer excluding a low molecular weight wax with a fluorine radical source.
Japanese Patent Publication No. 1-49403 and Japanese Patent Publication No. 1-49404 disclose a method for producing a fluorine-containing resin in which a fluorine-containing polymer is brought into contact with a fluorine radical source at 250 to 550 ° C. Since PTFE is a lump, a pulverization step is required to obtain a powder. Moreover, even if pulverized, the particle diameter remains at a few μm, and fine dispersion of submicron is difficult.
[0012]
Japanese Patent Publication No. 6-67859 discloses that a fluorine-containing resin is heated to a melting point to 600 ° C. and reacted with a fluorine radical source at an atmospheric temperature of 200 to 600 ° C. for the purpose of further reducing the molecular weight and increasing the yield. Although the method of cooling the reaction product gas to 100 ° C. or lower is disclosed, the disclosed production method has a poor yield, and the molecular weight of the obtained PTFE is extremely low and easily volatilizes by heating. Addition to polyacetal, etc., tends to cause mold deposits (adhesion to the mold) during molding, resulting in poor appearance of the molded product, and baked coating at high temperature, volatile components adhere to the coating surface and gloss There is a problem such as losing.
[0013]
Furthermore, in Japanese Patent Publication No. 7-5744, in some cases, the heat treatment is performed in the presence of a fluorine radical source, and after pulverization, the average particle size is 1 to 30 μm and the specific surface area is 2 to 6 m.2/ G of PTFE powder is disclosed, but the particle diameter of PTFE by the disclosed production method is large, and fine dispersion in a paint or the like is difficult.
[0014]
[Problems to be solved by the invention]
In general, paint coating methods include a method of curing at normal temperature and a method of baking by heating, but the baking temperature ranges from about 150 to about 400 ° C. depending on the type of matrix resin. On the other hand, fluorinated PTFE is used as a water-repellent coating component, however, the PTFE has a low molecular weight, so that it has a high volatile content due to heating, or the powder has a large particle size, so the fine dispersibility is poor.
An object of the present invention is to provide a PTFE powder having good water repellency and oil repellency, capable of being baked on, and having excellent fine dispersibility, and a method for producing the PTFE powder.
[0015]
[Means for Solving the Problems]
  In order to solve the above problems, the present invention provides a number average molecular weight of 40000 to 600000, 7 to 20 m.2A polytetrafluoroethylene powder having a specific surface area of / g, an average particle diameter of 1 to 30 μm, and a contact angle with water of 110 to 125 ° is provided.
  Furthermore, the present invention provides, as one method for producing the PTFE powder of the present invention, a number average molecular weight of 40,000 to 600,000 and a specific surface area of 7 to 20 m.2Agglomerated powder of colloidal polytetrafluoroethylene particles having an average particle diameter of 1 to 30 μm,At a temperature of 100 to 300 ° C.Provided is a production method comprising reacting with a fluorine radical source.
[0016]
As described above, low molecular weight PTFE that does not exhibit fibrillation properties is generally used for dispersion or blending. However, since the molecular weight measurement method common to the low molecular weight body and the high molecular weight body of PTFE has not been used so far, the boundary of the molecular weight at which fibrillation characteristics are manifested is unclear.
[0017]
As a conventional method for measuring the molecular weight of PTFE, for example, a method of obtaining the number average molecular weight from the melting point is known, but this method can be applied only to PTFE having a melting point of less than 327 ° C. The molecular weight of the high molecular weight PTFE is Cannot be measured.
For the high molecular weight PTFE for molding, a method for obtaining the number average molecular weight from the standard specific gravity (SSG) is known. This method is based on the premise that a molded body having a standard specific gravity can be obtained. However, since low molecular weight PTFE has a low melt viscosity, it cannot melt and flow during firing to obtain a molded product, or even if a molded body is obtained, cracks and foaming often occur, and the standard specific gravity cannot be measured. It is almost impossible to measure the molecular weight of low molecular weight PTFE by this method.
Therefore, by using a common molecular weight measurement method from low molecular weight to high molecular weight and quantitatively examining the molecular weight and fibrillation characteristics of PTFE having different molecular weights, the boundary between the molecular weights where the fibrillation characteristics are manifested can be clarified.
[0018]
Number average molecular weights obtained by polymerizing PTFE having different molecular weights by aqueous dispersion (emulsion) polymerization method, aggregating and drying the resulting latex to prepare powders, and measuring dynamic viscoelasticity at the time of melting (of the measurement method) Details are described by S. Wu in Polymer Engingering & Science, 1988, Vol. 28, 538, 1989, Vol. 29, 273) and the elongation of green beads obtained by paste extrusion. Looking at the relationship between the average molecular weight and the elongation, even if the number average molecular weight is 500,000 or less, even a continuous paste extrusion bead cannot be obtained. In the range of 500,000 to 600,000, a continuous paste extrusion bead is not obtained, or even if it is obtained, there is almost no elongation of the unfired bead and fibrillation characteristics do not appear. However, when the number average molecular weight exceeds 600,000, elongation clearly appears and fibrillation characteristics are exhibited.
[0019]
The PTFE powder of the present invention has a number average molecular weight of 40,000 to 600,000 (preferably 60000 to 500,000), and those having less than 40,000 have a large amount of volatile components at high temperatures and are used for heat resistant paints such as paints that require baking. Inappropriate. Moreover, when the number average molecular weight exceeds 600,000, the fibrillation characteristics are manifested, and the cohesive strength between colloidal particles is strong, so that the fine dispersibility is poor.
The above number average molecular weight range corresponds to about 324 to 333 ° C. at the melting point as a conventional measuring method, and about 1 × 10 5 at a melt viscosity at 380 ° C.Three~ 7 × 10FiveCorresponds to PaS.
[0020]
The specific surface area of the PTFE powder of the present invention correlates with the particle diameter. The larger the specific surface area, the smaller the particle diameter, and it is used as a measure of the particle diameter (primary particle diameter) of the basic unit constituting the aggregated powder.
Specific surface area is 7-20m2/ G, preferably 9-15 m2/ G. Specific surface area is 7m2When the particle size is less than / g, the primary particle size is large and the fine dispersibility is poor. 20m2When the amount exceeds / g, it is necessary to use a special dispersant during polymerization or use a large amount of dispersant, which is not economical.
[0021]
The average particle size of the PTFE powder of the present invention is 1 to 30 μm, preferably 2 to 20 μm. When the average particle size is less than 1 μm, the bulk density of the powder is small and the handleability is poor. Moreover, since the cohesion force between primary particles is strong, what exceeds 30 micrometers is hard to disperse | distribute finely.
[0022]
The PTFE powder of the present invention is obtained by reacting unsintered PTFE obtained by coagulating and drying a colloidal PTFE aqueous dispersion with a fluorine radical source at 100 to 300 ° C, preferably 150 to 250 ° C. Can be manufactured by.
When the reaction temperature is less than 100 ° C., the reaction rate is low and the productivity is inferior. Moreover, when it exceeds 300 degreeC, since primary particles fuse | melt, it cannot disperse | distribute finely. Moreover, volatile matter increases and productivity is inferior.
[0023]
Any fluorine radical source conventionally used in fluorination can be used. For example, molecular fluorine (F2); ClF, ClFThree, BrFThree, IFThreeHalogenated fluorides such as XeF2, XeFFour, KrF2Noble gas fluoride such as NFThree, NF2A nitrogen-containing fluorine compound such as can be used.
[0024]
The addition amount of the fluorine radical source depends on the reaction time and the reaction temperature, but is 0.01 to 1 part by weight, preferably 0.1 to 0.5 part per 100 parts by weight of the raw material powder in terms of fluorine atoms. Parts by weight. If it is less than 0.01 parts by weight, it is necessary to lengthen the reaction time, resulting in poor productivity. The upper limit of the amount added is not particularly limited, and the unreacted component existing in excess can be recovered and reused, but up to 1 part by weight is sufficient.
[0025]
As the reactor to be used, any reactor can be used as long as it has a heating device and is in a form in which a gas and a solid are in contact with each other. For example, those having a reaction shelf in an air circulation furnace or those capable of achieving good gas-solid contact such as a fluidized bed are preferable.
[0026]
The green PTFE used in the production method of the present invention is obtained by coagulation and drying of an aqueous colloidal PTFE dispersion. This colloidal PTFE aqueous dispersion can be produced, for example, by the following production method.
Examples of the water-soluble fluorine-containing dispersant include a general formula:
X (CF2)aCOOH
(Wherein, X represents a hydrogen atom, a fluorine atom or a chlorine atom, and a represents an integer of 6 to 12),
General formula:
Cl (CF2(CFCl)bCF2COOH
(Wherein b represents an integer of 2 to 6),
General formula:
(CFThree)2CF (CF2CF2)cCOOH
(Wherein c represents an integer of 2 to 6), or
General formula:
F (CF2)dO (CFYCF2O)eCFYCOOH
(In the formula, Y is a fluorine atom or CF.Three, D represents an integer of 1 to 5, and e represents an integer of 1 to 5. )
Or an ammonium salt or an alkali metal salt thereof (for example, potassium salt, sodium salt) or the like can be used. In particular the general formula:
CnF2n + 1COOX or
CThreeF7O (CF (CFThreeCF2O)lCF (CFThreeCOOX
(In the formula, n represents an integer of 6 to 9, l represents an integer of 1 to 2, and X represents an ammonium group or an alkali metal atom.)
It is preferable to use the compound shown by these.
[0027]
The usage-amount of a water-soluble fluorine-containing dispersing agent is 0.02-0.5 weight% with respect to the aqueous medium used for reaction, Preferably it is 0.03-0.5 weight%.
[0028]
As the polymerization initiator, any of those conventionally used in the polymerization of TFE can be used, for example, persulfates such as ammonium persulfate and potassium persulfate, water-soluble water such as disuccinic acid peroxide and diglutaric acid peroxide. Organic peroxides can be used. Of these, persulfate is preferable.
[0029]
The polymerization temperature can be selected from a wide range of 10 to 95 ° C. When using a persulfate as a polymerization initiator, 40 to 80 ° C. is appropriate. When the reaction is performed at a low temperature, it is preferable to add a reducing agent such as sulfite or acidic sulfite to the persulfate to make a redox system.
The polymerization reaction is usually allowed to proceed while maintaining a pressure in the range of 0.6 to 3.9 MPa, preferably 0.9 to 3.0 MPa by gas pressurization of TFE itself.
[0030]
TFE and at least one other olefin of 1% by weight or less may be copolymerized. Other olefins include, for example, the general formula:
X (CF2)nOyCF = CF2
(In the formula, X represents a hydrogen atom, a fluorine atom or a chlorine atom, n represents an integer of 1 to 6, and y represents 0 or 1.)
And the general formula:
CThreeF7(OCF2CF2CF2)m[OCF (CFThreeCF2]pOCF = CF2
(In the formula, m and p each represent an integer of 0 to 4. However, these are not 0 at the same time.)
A compound represented by the formula: chlorotrifluoroethylene (CTFE), vinylidene fluoride (VdF), trifluoroethylene (TrFE) and the like can be used.
[0031]
If necessary, as chain transfer agents, hydrogen and hydrocarbons such as methane, ethane, propane, butane; CHThreeCl, CH2Cl2, CH2CF2Halogenated hydrocarbons such as water-soluble organic compounds such as methanol and ethanol can be used.
[0032]
In some cases, as a dispersion stabilizer in the reaction system, 2 to 10 parts by weight of a hydrocarbon having a carbon number of 12 or more which is substantially inert to the reaction and liquid under the reaction conditions may be used. it can. In order to adjust the pH during the reaction, for example, ammonium carbonate or ammonium phosphate may be added as a buffering agent.
[0033]
The resulting colloidal PTFE particles usually have a particle size of 0.05 to 0.5 μm, and the polymer concentration of the PTFE particle aqueous dispersion is usually 10 to 45% by weight based on the aqueous medium. The resulting colloidal PTFE aqueous dispersion (referred to as polymer latex or simply latex) is removed from the reaction vessel and transferred to the next step, namely the coagulation and drying step.
[0034]
Coagulation is usually carried out by diluting the polymer latex with water to a polymer concentration of 10 to 20% by weight and, in some cases, adjusting the pH to neutral or alkaline and then reacting in a vessel equipped with a stirrer. Stir more vigorously than stirring. At this time, stirring may be performed while adding a water-soluble organic compound such as methanol or acetone, an inorganic salt such as potassium nitrate or ammonium carbonate, or an inorganic acid such as hydrochloric acid, sulfuric acid or nitric acid as a coagulant. Further, coagulation may be performed continuously using an inline mixer or the like.
[0035]
The wet powder obtained by coagulation is usually dried using means such as vacuum, high frequency, and hot air. The drying temperature is 10 to 250 ° C, preferably 100 to 200 ° C. Since the PTFE powder at this point is a powder in which colloidal particles are aggregated, the specific surface area is usually 7 to 20 m.2/ G value.
[0036]
The number average molecular weight of PTFE obtained by the polymerization reaction is adjusted to 40000-600000, preferably 60000-500000. Those having a number average molecular weight of less than 40,000 are not preferable because they have a high volatile content at high temperatures. Further, those exceeding 600,000 exhibit fibrillation characteristics, and are therefore unsuitable for blends that require fine dispersion.
[0037]
The PTFE powder of the present invention is preferably used for dispersion or blending, and is suitably used for a water- and oil-repellent paint, particularly a baking type water- and oil-repellent paint. It can also be used as a water / oil repellency imparting agent for thermoplastic resins and thermosetting resins.
In addition, secondary batteries using primary or secondary batteries, especially secondary batteries using nickel compounds as positive electrode active materials, and electrode materials such as battery active materials and conductive carbonaceous materials for imparting water repellency to fuel cells. It can also be used as an additive, or as a water / oil repellency or lubricity imparting agent for thermoplastic resins and thermosetting resins. Typical secondary batteries include nickel-hydrogen secondary batteries and nickel-cadmium batteries. Since the PTFE powder of the present invention is easy to finely disperse and rich in water repellency, the addition thereof efficiently forms a gas-liquid-solid three-phase interface in the electrode, and the gas generated by the electrode reaction diffuses quickly, The reaction back to oxide or hydride is promoted.
[0038]
The analysis method and test method of polymer latex and PTFE powder in this specification are as follows.
1) Number average molecular weight
S. The method of Wu (Polymer Engingering & Science, 1988, Vol. This method is a method for calculating the number average molecular weight, weight average molecular weight, and molecular weight distribution from the elastic modulus at the time of melting of the resin, and is particularly useful for measuring the molecular weight of a resin insoluble in a solvent represented by PTFE.
The measuring apparatus used the rheometrics viscoelasticity measuring machine RDS-2, and measured the dynamic viscoelasticity in 380 degreeC. However, a parallel plate is used as a jig for holding the sample, the thickness when the sample is melted is 1.4 to 1.5 mm, and the frequency range is 0.001 to 500 rad / sec.
The deformation amount of the sample at the time of melting is selected from a range of 0.8 to 3% on the circumference with respect to the thickness of the sample when the frequency is 1 rad / second or more, and 2 to 2 when the frequency is 1 rad / second or less. Select from a range of 10%. The sampling frequency of the measurement values is 5 points per digit at regular logarithmic intervals.
Further, in two consecutive measurements, the measurement is repeated until the average deviation of the storage elastic modulus (G ′ (ω)) at each measurement frequency (ω) is 5% or less.
Using the frequency (ω) and storage elastic modulus (G ′ (ω)) obtained by measurement, S.P. The number average molecular weight (Mn) was determined according to the method of Wu (Polymer Engineering & Science, 1988, Vol. 28, 538, 1989, Vol. 29, 273). However, time t = 1 / ω and G (t) = G ′ (ω).
[0039]
2) Elongation of unfired beads
50 g of PTFE powder and 9.2 g of hydrocarbon oil (trade name ISOPER-E, manufactured by Exxon Chemical Co., Ltd.) as an extrusion aid are mixed in a glass bottle and aged at room temperature (25 ± 2 ° C.) for 1 hour. Next, the above mixture was filled in an extrusion die with a cylinder (inner diameter: 25.4 mm) (with an aperture angle of 30 degrees and an orifice having an inner diameter of 2.54 mm and a land length of 7 mm), and the piston inserted into the cylinder was charged with 5 Apply a 7 MPa load and hold for 1 minute. Immediately thereafter, the mixture is extruded from the orifice at room temperature at a ram speed of 20 mm / min to obtain a rod. The obtained rod-like extrudate is dried at about 100 ° C. for about 10 hours, and 5 samples having a length of about 7 cm are cut from the latter half where the extrusion pressure is stable. About 15 mm of each end of each sample is fired in a 380 ° C. salt bath, and a scale with a spacing of 20 mm is marked in the center of the surface in the longitudinal direction. Next, both ends of the sample are grasped with a clamp of a tensile tester, the sample is pulled at a constant speed of 200 mm / min, and the length between the graduations (El) And calculate elongation (%) using the following formula.
[0040]
[Expression 1]
Elongation (%) = (El(mm) -20 (mm)) / 20 (mm) × 100
The number of tests is 5 times, and the value of 3 times excluding the maximum value and the minimum value is averaged to obtain the elongation (%). During the tensile test, the room temperature is adjusted to 24 ± 0.5 ° C.
[0041]
3) Polymer concentration
10 g of polymer latex is collected in a petri dish, dried at 150 ° C. for about 3 hours, and evaporated to dryness. The solids are weighed and from this the polymer concentration is calculated.
[0042]
4) Number average particle diameter of polymer latex
For a known sample, the transmittance of 550 nm projection light with respect to the unit length of the polymer latex diluted with water to a solid content of 0.15% by weight, and the number reference length determined by measuring the fixed direction diameter with a transmission electron micrograph Using a calibration curve prepared by measuring the average particle diameter, the average transmittance is determined from the transmittance measured for each sample.
[0043]
5) Average particle size of powder
Particles corresponding to 50% of the integrated particle size distribution are measured using a laser diffraction particle size distribution measuring device (HELOS & RODOS) manufactured by JEOL Ltd., without using a cascade, with a pressure of 0.1 MPa and a measurement time of 3 seconds. Let the diameter be the average particle diameter.
[0044]
6) Specific surface area of powder
According to the BET method, measurement is performed using MONOSORB manufactured by QUANTA CHROME as an apparatus. A mixed gas of 30% nitrogen and 70% helium is used as a carrier gas, and cooling is performed with liquid nitrogen. The sample amount is 2 g, and the measurement is performed three times to obtain the average value as the specific surface area.
[0045]
7) High temperature volatiles
10g of sample is put in an aluminum cup (capacity 50ml, upper diameter 61mm, lower diameter 42mm, depth 33mm), and kept in an atmosphere of 300 ± 2 ° C for 1 hour in a hot air circulating electric furnace adjusted to the heating temperature in advance. The weight is measured, and the high temperature volatile content is obtained by the following formula.
[0046]
[Expression 2]
High temperature volatile content (% by weight) = (10 (g) −weight after heat treatment (g)) / 10 (g) × 100
[0047]
8)Preparation of contact angle measurement data from powder
In accordance with ASTM D4894-89 (the mold uses a mirror-finished surface), an unfired PTFE compression molded body for SSG (standard specific gravity) measurement is prepared, and this is used as a sample for contact angle measurement.
9)Contact angle
The contact angle of the surface of the molded body or coating film was measured with a droplet having a diameter of 3 mm using a contact angle meter (CA-DT • A type manufactured by Kyowa Interface Science Co., Ltd.). The measurement is performed three times, and the average value is taken as the contact angle.
[0048]
【Example】
Example 1
A stainless steel (SUS316) anchor-type stirring blade and a temperature control jacket are provided, and a stainless steel (SUS316) autoclave with an internal volume of 100 liters is charged with 54 l of deionized water and 11.6 g of ammonium perfluorooctanoate, While heating to 55 ° C., the inside of the system was replaced with nitrogen gas three times and TFE gas twice to remove oxygen. Then CHThreeCharge 330 g of Cl, bring the internal pressure to 0.83 MPa with TFE gas, stir at 80 rpm, and keep the internal temperature at 55 ° C.
[0049]
Next, when an aqueous solution in which 14.3 g of ammonium persulfate is dissolved in 1 liter of water is injected with TFE and the internal pressure of the autoclave is set to 0.88 MPa, the reaction proceeds at an accelerated rate. Meanwhile, the reaction temperature is maintained at 55 ° C. and the stirring speed is maintained at 80 rpm. TFE is continuously supplied so that the internal pressure of the autoclave is always kept at 0.88 ± 0.05 MPa.
The reaction was terminated when 10.3 kg of TFE monomer was consumed, stirring and monomer supply were stopped, and the gas in the autoclave was immediately released to normal pressure.
The total reaction time was 5.3 hours, and the number average particle size was 0.18 μm. Further, the polymer concentration of the obtained latex was 15.8% by weight.
[0050]
The obtained latex was coagulated and washed, and then the polymer powder was dried at 140 ° C. for 18 hours. The raw material powder obtained has a specific surface area of 11 m.2The number average particle diameter of the powder was 5 μm. Moreover, the number average molecular weight of the polymer was 140000.
After charging 5 kg of the obtained raw material powder into a stainless steel (SUS316) reaction vessel provided in an air circulation furnace, the inside of the reaction vessel was replaced with nitrogen to remove air, and the reaction vessel was adjusted to 240 ° C. The temperature inside the furnace was raised. Next, fluorine (F2) 12 g was charged in a reaction vessel and held at 240 ° C. for 2 hours to complete the fluorination reaction. Immediately after the reaction, the inside of the system was replaced with nitrogen to remove fluorine (F2), the temperature of the reaction vessel was cooled to room temperature, and the powder was taken out.
[0051]
The specific surface area of the obtained powder is 11 m.2/ G, the number average particle diameter of the powder was 5 μm, and the number average molecular weight of the polymer was 140000. The high-temperature volatile component was extremely low at 0.09% by weight, and the contact angle with water was 119 °, indicating excellent water repellency.
[0052]
Paint addition test
39.2 g of the obtained PTFE powder and 4.7 g of carbon black (Seast 116 manufactured by Tokai Carbon Co., Ltd.), 39.2 g of polyethersulfone (Victrex 4100P manufactured by Sumitomo Chemical Co., Ltd.) in advance, and N-methyl-2 -178 g of pyrrolidone (Dainippon Ink Chemical Co., Ltd.), 66.6 g of methyl isobutyl ketone (Futaba Chemical Co., Ltd.), 39.2 g of methyl ethyl ketone (Futaba Chemical Co., Ltd.) and toluene (Osaka Petrochemical Co., Ltd.) ) It was mixed and dispersed in a solution dissolved in 39.2 g of a mixed solvent to obtain a paint.
[0053]
The obtained paint was spray-coated on a degreased aluminum plate (thickness: 2 mm), dried at 120 ° C. for 15 minutes, and further baked at 380 ° C. for 15 minutes to obtain a coated plate.
The surface of the resulting coating film had a water contact angle of 118 °, indicating excellent water repellency. In addition, n-hexadecane (CHThree(CH2)14CHThree, Manufactured by Tokyo Chemical Industry Co., Ltd.) was 43 °, indicating excellent oil repellency.
[0054]
Example 2
Fluorination was performed under the same conditions as in Example 1 except that the raw material powder obtained in Example 1 was used and the fluorination reaction temperature was changed to 280 ° C. The specific surface area of the obtained powder is 9m2/ G, the number average particle diameter of the powder was 7 μm, and the number average molecular weight of the polymer was 140000. The high-temperature volatile component was extremely low at 0.08% by weight, and the contact angle with water was 117 °, indicating excellent water repellency.
[0055]
Example 3
A stainless steel (SUS316) anchor-type stirring blade and a temperature control jacket are provided, and a stainless steel (SUS316) autoclave with an internal volume of 6 liters is mixed with 2960 ml of deionized water, 3.0 g of ammonium perfluorononanoate and liquid paraffin ( 120 g of Kishida Chemical Co., Ltd., reagent grade 1) was charged, and the system was replaced with nitrogen gas three times and TFE gas twice while heating to 70 ° C. to remove oxygen. Thereafter, 75 cc of ethane gas is charged, the internal pressure is adjusted to 0.83 MPa with TFE gas, the mixture is stirred at 250 rpm, and the internal temperature is maintained at 70 ° C.
[0056]
Next, when an aqueous solution obtained by dissolving 60 mg of ammonium persulfate in 40 ml of water is injected with TFE and the internal pressure of the autoclave is set to 0.88 MPa, the reaction proceeds at an accelerated rate. During this time, the reaction temperature is maintained at 70 ° C. and the stirring speed is maintained at 250 rpm. TFE is continuously supplied so that the internal pressure of the autoclave is always kept at 0.88 ± 0.05 MPa.
The reaction was terminated when 1260 g of TFE monomer was consumed, stirring and monomer supply were stopped, and the gas in the autoclave was immediately released to normal pressure. The total reaction time was 11.5 hours, and the number average particle size was 0.15 μm. The polymer concentration of the obtained latex was 29.6% by weight.
[0057]
The obtained latex was coagulated and washed, and then the polymer powder was dried at 140 ° C. for 18 hours. The specific surface area of the obtained raw material powder is 15 m.2The number average particle diameter of the powder was 10 μm. The number average molecular weight of the polymer was 420,000.
[0058]
The amount of raw material powder is 500 g, and fluorine (F2) Was fluorinated under the same conditions as in Example 1 except that the amount charged was 1.2 g. The specific surface area of the obtained powder is 15 m.2/ G, the number average particle diameter of the powder was 10 μm, and the number average molecular weight of the polymer was 420,000. The high-temperature volatile content was extremely small at 0.07% by weight, and the contact angle with water was 120 °, indicating excellent water repellency.
[0059]
Example 4
The reaction was carried out in the same procedure as in Example 3 except that the amount of ethane charged was 68 cc and the consumption of TFE monomer was 1290 g. The total reaction time was 10.4 hours, and the number average particle size was 0.16 μm. Further, the polymer concentration of the obtained latex was 30.1% by weight.
The obtained latex was treated in the same manner as in Example 3 to obtain a raw material powder. The specific surface area of the obtained powder is 14 m.2The number average particle size of the powder was 12 μm. The number average molecular weight of the polymer was 530000.
The obtained raw material powder was fluorinated under the same conditions as in Example 3. The specific surface area of the obtained powder is 14 m.2/ G, the number average particle diameter of the powder was 12 μm, and the number average molecular weight of the polymer was 530000. The high-temperature volatile content was as extremely low as 0.07% by weight, and the contact angle with water was 121 °, indicating excellent water repellency.
[0060]
Comparative Example 1
The water contact angle of the raw material powder obtained in Example 1 was measured to be as small as 95 ° and the water repellency was inferior. The raw material powder obtained in Example 1 was subjected to the same paint addition test as Example 1. As a result, the water contact angle of the coating film was as small as 109 °, and the contact angle of n-hexadecane was also 33 °. The water repellency and oil repellency were inferior.
[0061]
Comparative Example 2
In an autoclave similar to that in Example 3, 2960 ml of deionized water and 4.5 g of ammonium perfluorooctanoate were charged, and the system was replaced with nitrogen gas three times and TFE gas twice while heating to 70 ° C. Oxygen was removed. Then CHThree30 g of Cl is charged, the internal pressure is adjusted to 0.83 MPa with TFE gas, the mixture is stirred at 250 rpm, and the internal temperature is kept at 70 ° C.
[0062]
Next, when an aqueous solution obtained by dissolving 2.25 g of ammonium persulfate in 40 ml of water is injected with TFE and the internal pressure of the autoclave is set to 0.88 MPa, the reaction proceeds at an accelerated rate. During this time, the reaction temperature is maintained at 70 ° C. and the stirring speed is maintained at 250 rpm. TFE is continuously supplied so that the internal pressure of the autoclave is always kept at 0.88 ± 0.05 MPa.
The reaction was terminated when 540 g of TFE monomer was consumed, stirring and monomer supply were stopped, and the gas in the autoclave was immediately released to normal pressure.
The total reaction time was 8.2 hours and the number average particle size was 0.17 μm. Further, the polymer concentration of the obtained latex was 15.3% by weight.
[0063]
The obtained latex was coagulated and washed, and then the polymer powder was dried at 140 ° C. for 18 hours. The obtained raw material powder has a specific surface area of 13 m.2The number average particle diameter of the powder was 4 μm. The number average molecular weight of the polymer was 30000.
The obtained raw material powder was fluorinated under the same conditions as in Example 3. The specific surface area of the obtained powder is 11 m.2/ G, the number average particle diameter of the powder was 6 μm, and the number average molecular weight of the polymer was 30000. The contact angle with water was 119 °, indicating excellent water repellency, but the high-temperature volatile content was extremely high at 0.59% by weight.

Claims (4)

40000〜600000の数平均分子量、7〜20m2/gの比表面積、1〜30μmの平均粒径、および110〜125゜の対水接触角を有することを特徴とするポリテトラフルオロエチレン粉末。A polytetrafluoroethylene powder having a number average molecular weight of 40,000 to 600,000, a specific surface area of 7 to 20 m 2 / g, an average particle diameter of 1 to 30 μm, and a contact angle with water of 110 to 125 °. 数平均分子量が60000〜500000であり、比表面積が9〜15m2/gであり、平均粒径が2〜20μmである請求項1に記載のポリテトラフルオロエチレン粉末。 2. The polytetrafluoroethylene powder according to claim 1, having a number average molecular weight of 60,000 to 500,000, a specific surface area of 9 to 15 m 2 / g, and an average particle diameter of 2 to 20 μm. 数平均分子量が40000〜600000であり、比表面積が7〜20m2/gであり、平均粒径が1〜30μmであるコロイド状ポリテトラフルオロエチレン粒子の凝集粉末を、100〜300℃の温度において、フッ素ラジカル源と反応させることを特徴とする請求項1又は2に記載のポリテトラフルオロエチレン粉末の製造方法。An aggregated powder of colloidal polytetrafluoroethylene particles having a number average molecular weight of 40,000 to 600,000, a specific surface area of 7 to 20 m 2 / g, and an average particle diameter of 1 to 30 μm is obtained at a temperature of 100 to 300 ° C. The method for producing polytetrafluoroethylene powder according to claim 1, wherein the polytetrafluoroethylene powder is reacted with a fluorine radical source. 150〜250℃でフッ素ラジカル源と反応させる請求項3に記載のポリテトラフルオロエチレン粉末の製造方法。  The manufacturing method of the polytetrafluoroethylene powder of Claim 3 made to react with a fluorine radical source at 150-250 degreeC.
JP15843297A 1996-09-18 1997-06-16 Polytetrafluoroethylene powder and method for producing the same Expired - Fee Related JP3931382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15843297A JP3931382B2 (en) 1996-09-18 1997-06-16 Polytetrafluoroethylene powder and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24600896 1996-09-18
JP8-246008 1996-09-18
JP15843297A JP3931382B2 (en) 1996-09-18 1997-06-16 Polytetrafluoroethylene powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10147617A JPH10147617A (en) 1998-06-02
JP3931382B2 true JP3931382B2 (en) 2007-06-13

Family

ID=26485544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15843297A Expired - Fee Related JP3931382B2 (en) 1996-09-18 1997-06-16 Polytetrafluoroethylene powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP3931382B2 (en)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5135658B2 (en) * 2001-08-02 2013-02-06 ダイキン工業株式会社 Polytetrafluoroethylene fine powder, polytetrafluoroethylene molded product obtained therefrom, and method for producing the same
CN1575312A (en) 2001-10-24 2005-02-02 大金工业株式会社 Manufacturing method of PTFE powder and PTFE molding powder
JP4840280B2 (en) * 2001-10-24 2011-12-21 ダイキン工業株式会社 PTFE powder and PTFE molding powder manufacturing method
JP3990663B2 (en) * 2002-10-25 2007-10-17 新日本製鐵株式会社 Surface-treated metal plate, manufacturing method thereof, and lubricating resin and lubricating resin coating composition used in the manufacturing method
JP3965144B2 (en) * 2003-01-09 2007-08-29 新日本製鐵株式会社 Lubricating metal plate, method for producing the same, lubricating resin water dispersion and lubricating resin coating composition
US7803889B2 (en) 2003-02-28 2010-09-28 Daikin Industries, Ltd. Granulated powder of low-molecular polytetrafluoro-ethylene and powder of low-molecular polytetrafluoro-ethylene and processes for producing both
WO2009020187A1 (en) 2007-08-07 2009-02-12 Daikin Industries, Ltd. Aqueous dispersion of low molecular weight polytetrafluoroethylene, low molecular weight polytetrafluoroethylene powder, and method for producing low molecular weight polytetrafluoroethylene
EP2287209B1 (en) 2008-05-21 2012-09-12 Asahi Glass Company, Limited Method for producing polytetrafluoroethylene fine powder
JP4811480B2 (en) * 2009-03-13 2011-11-09 富士ゼロックス株式会社 Method for producing toner for developing electrostatic image
CN102369221B (en) 2009-03-31 2014-03-12 大金工业株式会社 Low molecular weight polytetrafluoroethylene powder and preparation method therefor
EP2623543B1 (en) 2010-09-30 2020-01-01 Daikin Industries, Ltd. Method for manufacturing fine polytetrafluoroethylene powder
US9309335B2 (en) * 2010-09-30 2016-04-12 Daikin Industries, Ltd. Process for producing polytetrafluoroethylene fine powder
CN103080221B (en) 2010-09-30 2015-11-25 大金工业株式会社 Anti-molten drop agent and resin combination
JP5367058B2 (en) * 2010-12-21 2013-12-11 ダイキン工業株式会社 Stretch material
CN107088369A (en) 2012-04-20 2017-08-25 大金工业株式会社 The application and perforated membrane of mixed-powder and molding material in the manufacture of perforated membrane
WO2014007397A1 (en) * 2012-07-06 2014-01-09 ダイキン工業株式会社 Sheet, electrode and fuel cell
WO2015060364A1 (en) 2013-10-23 2015-04-30 ダイキン工業株式会社 Embossed filter medium for air filter, filter pack, air filter unit, and production method for embossed filter medium for air filter
JP2017524765A (en) * 2014-06-17 2017-08-31 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー Particles containing polytetrafluoroethylene and perfluoropolyether
KR102554153B1 (en) 2015-09-07 2023-07-10 스미토모덴코파인폴리머 가부시키가이샤 Manufacturing method of polytetrafluoroethylene molded article and polytetrafluoroethylene molded article
JP6750172B2 (en) 2015-09-07 2020-09-02 住友電工ファインポリマー株式会社 Polytetrafluoroethylene molded body used for sliding member and manufacturing method thereof
JP6508266B2 (en) * 2016-08-04 2019-05-08 ダイキン工業株式会社 Method for producing low molecular weight polytetrafluoroethylene, low molecular weight polytetrafluoroethylene and powder
CN113563613A (en) * 2016-08-04 2021-10-29 大金工业株式会社 Production method of low molecular weight polytetrafluoroethylene
JP6673230B2 (en) 2017-01-12 2020-03-25 ダイキン工業株式会社 Air filter media
JP6811649B2 (en) 2017-03-07 2021-01-13 ダイキン工業株式会社 Compositions and coatings
CN110461883B (en) 2017-03-31 2021-11-30 大金工业株式会社 Method for producing fluoropolymer, surfactant for polymerization, and use of surfactant
JP6780774B2 (en) 2017-03-31 2020-11-04 ダイキン工業株式会社 Method for producing fluoropolymers, polymerization surfactants and use of surfactants
WO2019131633A1 (en) 2017-12-25 2019-07-04 ダイキン工業株式会社 Method for producing polytetrafluoroethylene powder
JP6590096B2 (en) 2018-02-07 2019-10-16 ダイキン工業株式会社 Production method and powder of low molecular weight polytetrafluoroethylene
CN111683998B (en) 2018-02-07 2023-05-12 大金工业株式会社 Production method of low molecular weight polytetrafluoroethylene
EP4134394A1 (en) 2018-02-07 2023-02-15 Daikin Industries, Ltd. Method for producing composition containing low molecular weight polytetrafluoroethylene
US11548989B2 (en) 2018-02-07 2023-01-10 Daikin Industries, Ltd. Method for producing composition containing low molecular weight polytetrafluoroethylene
JP7324148B2 (en) * 2018-02-07 2023-08-09 ダイキン工業株式会社 Method for producing composition containing low-molecular-weight polytetrafluoroethylene
CN111683994B (en) * 2018-02-07 2023-05-16 大金工业株式会社 Process for producing low molecular weight polytetrafluoroethylene
US11634514B2 (en) 2018-02-08 2023-04-25 Daikin Industries. Ltd. Method for manufacturing fluoropolymer, surfactant for polymerization, use for surfactant, and composition
WO2019168183A1 (en) 2018-03-01 2019-09-06 ダイキン工業株式会社 Method for manufacturing fluoropolymer
US20210095054A1 (en) 2018-03-07 2021-04-01 Daikin Industries, Ltd. Method for producing fluoropolymer
US11780973B2 (en) 2018-07-13 2023-10-10 Osaka University Method for producing low-molecular-weight polytetrafluoroethylene
JP6816746B2 (en) 2018-07-20 2021-01-20 ダイキン工業株式会社 Air filter Filter media, filter pack, and air filter unit
WO2020067182A1 (en) 2018-09-28 2020-04-02 ダイキン工業株式会社 Filter medium for air filter, filter pack, air filter unit, and manufacturing methods therefor
US20220315713A1 (en) 2019-04-16 2022-10-06 Daikin Industries, Ltd. Method for producing fluoropolymer powder
US20220251251A1 (en) 2019-04-26 2022-08-11 Daikin Industries, Ltd. Fluoropolymer aqueous dispersion production method and fluoropolymer aqueous dispersion
JP7564452B2 (en) 2019-04-26 2024-10-09 ダイキン工業株式会社 Method for producing aqueous fluoropolymer dispersion
US20220259337A1 (en) 2019-04-26 2022-08-18 Daikin Industries, Ltd. Method for producing aqueous fluoropolymer dispersion, drainage treatment method, and aqueous fluoropolymer dispersion
CN113795519B (en) 2019-05-08 2024-03-15 大金工业株式会社 Method for producing fluorine-containing polymer, and fluorine-containing polymer
JP7261422B2 (en) 2019-07-12 2023-04-20 ダイキン工業株式会社 Method for producing low-molecular-weight polytetrafluoroethylene and powder
CN118146427A (en) 2019-07-23 2024-06-07 大金工业株式会社 Method for producing fluorine-containing polymer, polytetrafluoroethylene composition, and polytetrafluoroethylene powder
US10744231B1 (en) * 2019-08-07 2020-08-18 Zeus Industrial Products, Inc. Catheter comprising PTFE liner
EP4056366A4 (en) 2019-11-05 2023-11-15 Daikin Industries, Ltd. LAYER BODY AND EXTRUSION MOLDING ARTICLE
WO2021100836A1 (en) 2019-11-19 2021-05-27 ダイキン工業株式会社 Method for producing fluoropolymer, method for producing polytetrafluoroethylene, method for producing perfluoroelastomer, and composition
EP4063405A4 (en) 2019-11-19 2024-01-10 Daikin Industries, Ltd. PROCESS FOR PRODUCING POLYTETRAFLUOROETHYLENE
CN114651019B (en) 2019-11-19 2024-11-08 大金工业株式会社 Method for producing fluorinated polymer
JP6989792B2 (en) 2019-12-25 2022-01-12 ダイキン工業株式会社 Fluoropolymer manufacturing method
EP4086291A4 (en) 2020-01-09 2024-02-14 Daikin Industries, Ltd. PROCESS FOR PRODUCING LOW MOLECULAR WEIGHT POLYTETRAFLUORETHYLENE AND POWDER
JP7325778B2 (en) 2020-01-15 2023-08-15 ダイキン工業株式会社 Method for producing low-molecular-weight polytetrafluoroethylene, composition, and low-molecular-weight polytetrafluoroethylene
WO2022107894A1 (en) 2020-11-19 2022-05-27 ダイキン工業株式会社 Method for producing polytetrafluoroethylene, and composition containing polytetrafluoroethylene
EP4253432A4 (en) 2020-11-25 2024-10-30 Daikin Industries, Ltd. FLUOROPOLYMER, AQUEOUS LIQUID DISPERSION, COMPOSITION AND CROSS-LINKED PRODUCT
WO2022163815A1 (en) 2021-01-28 2022-08-04 ダイキン工業株式会社 Method for producing fluoropolymer composition
WO2022163814A1 (en) 2021-01-28 2022-08-04 ダイキン工業株式会社 Method for producing fluoropolymer composition
JP7181480B2 (en) 2021-02-04 2022-12-01 ダイキン工業株式会社 Air filter medium, method for manufacturing air filter medium, filter medium for mask, and filter medium for pleated mask
JP7648942B2 (en) 2021-03-18 2025-03-19 ダイキン工業株式会社 Method for producing fluororesin, fluororesin and aqueous dispersion
JPWO2022244784A1 (en) 2021-05-19 2022-11-24
TWI852019B (en) 2021-06-04 2024-08-11 日商大金工業股份有限公司 Air filter material, pleated filter material, air filter unit, filter material for mask, and air filter material regeneration method
EP4365222A4 (en) * 2021-06-30 2025-07-16 Daikin Ind Ltd PROCESS FOR PRODUCING POLYTETRAFLUOROETHYLENE POWDER AND POLYTETRAFLUOROETHYLENE POWDER
CN117500848A (en) 2021-06-30 2024-02-02 大金工业株式会社 Method for producing fluoropolymer composition, and fluoropolymer composition
CN117500847A (en) 2021-06-30 2024-02-02 大金工业株式会社 Method for producing high-purity fluoropolymer-containing composition, and high-purity fluoropolymer-containing composition
EP4494733A4 (en) 2022-03-15 2025-06-11 Daikin Industries, Ltd. Filter medium for air filter, air filter pack, and air filter unit
WO2023182229A1 (en) 2022-03-23 2023-09-28 ダイキン工業株式会社 Method for producing fluoropolymer, and composition
CN114620826B (en) * 2022-03-28 2024-04-02 中化学朗正环保科技有限公司 Iron-carbon coupled biological particle carrier material for wastewater denitrification and preparation method thereof
JP7319573B1 (en) 2022-04-06 2023-08-02 ダイキン工業株式会社 Compositions and crosslinked products
JP7385150B2 (en) 2022-04-18 2023-11-22 ダイキン工業株式会社 Method for producing purified polytetrafluoroethylene powder and low molecular weight polytetrafluoroethylene powder
JPWO2023210819A1 (en) 2022-04-28 2023-11-02
JPWO2023210820A1 (en) 2022-04-28 2023-11-02
WO2024024891A1 (en) 2022-07-27 2024-02-01 ダイキン工業株式会社 Method for producing aqueous dispersion liquid of fluoropolymer, aqueous dispersion liquid of fluoropolymer, and coating material composition
WO2024024917A1 (en) 2022-07-27 2024-02-01 ダイキン工業株式会社 Fluoropolymer aqueous dispersion liquid production method, fluoropolymer aqueous dispersion liquid, and coating composition
WO2024024916A1 (en) 2022-07-27 2024-02-01 ダイキン工業株式会社 Powder containing particles of low-molecular-weight polytetrafluoroethylene and a method for producing same

Also Published As

Publication number Publication date
JPH10147617A (en) 1998-06-02

Similar Documents

Publication Publication Date Title
JP3931382B2 (en) Polytetrafluoroethylene powder and method for producing the same
EP0481509B1 (en) Polytetrafluoroethylene fine particles and powder
EP2500366B2 (en) Aqueous polytetrafluoroethylene emulsion and process for production thereof, aqueous polytetrafluoroethylene dispersion obtained using the emulsion, polytetrafluoroethylene fine powder, and stretch-expanded body
JP3633856B2 (en) Low melting point tetrafluoroethylene copolymer and use thereof
JP5828283B2 (en) Modified polytetrafluoroethylene particles, method for producing the same, and modified polytetrafluoroethylene molded article
JPH0730134B2 (en) Melt-processable tetrafluoroethylene copolymer and its production method
JP2010280915A (en) Modified polytetrafluoroethylene fine powder and modified polytetrafluoroethylene molded product
JP3271524B2 (en) Modified polytetrafluoroethylene fine powder and method for producing the same
JPH11240917A5 (en)
US6747108B1 (en) Modified polytetrafluoroethylene fine powder and process for preparing the same
CN110662778B (en) Modified polytetrafluoroethylene and method for producing the same
JPH11240918A (en) Tetrafluoroethylene-based copolymer, production method thereof and use thereof
JP4466002B2 (en) Tetrafluoroethylene copolymer, process for producing the same, and paste extrusion molding
JPH0987334A (en) Production of fine modified polytetrafluoroethylene powder
EP1605011B1 (en) Granulated powder of low-molecular polytetrafluoro- ethylene and powder of low-molecular polytetrafluoro- ethylene and processes for producing both
JP2022050950A (en) Composition for compression molding, method for producing the same, and molded article
JP6750172B2 (en) Polytetrafluoroethylene molded body used for sliding member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees