[go: up one dir, main page]

JP4048654B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4048654B2
JP4048654B2 JP21090999A JP21090999A JP4048654B2 JP 4048654 B2 JP4048654 B2 JP 4048654B2 JP 21090999 A JP21090999 A JP 21090999A JP 21090999 A JP21090999 A JP 21090999A JP 4048654 B2 JP4048654 B2 JP 4048654B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
air
heat exchanger
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21090999A
Other languages
Japanese (ja)
Other versions
JP2001030744A (en
Inventor
誠司 伊藤
邦夫 入谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP21090999A priority Critical patent/JP4048654B2/en
Priority to DE60031808T priority patent/DE60031808T2/en
Priority to US09/624,697 priority patent/US6347528B1/en
Priority to EP00115019A priority patent/EP1072453B1/en
Publication of JP2001030744A publication Critical patent/JP2001030744A/en
Application granted granted Critical
Publication of JP4048654B2 publication Critical patent/JP4048654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00949Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising additional heating/cooling sources, e.g. second evaporator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、暖房モードと冷房モードと除湿モードとを切替可能なヒートポンプ式の冷凍サイクル装置に関し、例えば、電気自動車用空調装置に用いて好適なものである。
【0002】
【従来の技術】
従来、電気自動車等の車両では、エンジン廃熱(温水)を熱源として車室内の暖房を行うことができないので、ヒートポンプ式の冷凍サイクル装置を装備して、凝縮器での冷媒凝縮熱により車室内を暖房するようにしている。
【0003】
しかし、冬季の寒冷地使用のごとく外気温が−10°C以下に低下するような使用環境では、ヒートポンプサイクルにおいて蒸発器として作用する室外熱交換器での吸熱量が低下して、圧縮機吸入圧力が低下するので、冷媒比容積が大きくなり、冷媒循環量が減少するので、暖房能力が低下するという問題があった。このため、寒冷地使用では車室内の暖房能力が不足してしまう。
【0004】
そこで、本出願人においては、先に、特開平9−328013号公報において、暖房時に、サイクル高圧冷媒を中間圧に減圧し、この中間圧冷媒を気液分離器にてガス冷媒と液冷媒とに分離し、この中間圧のガス冷媒を圧縮機にガスインジェクションすることにより、暖房時での圧縮機の圧縮仕事量を増大させて、暖房能力を増大させるようにした冷凍サイクル装置を提案している。
【0005】
この従来技術では、室内空調ユニットの空気通路の上流側に冷凍サイクルの蒸発器を、また、その下流側に冷凍サイクルの凝縮器を配置して、除湿運転を実施することにより、車両窓ガラスの曇り止めを行うようにしている。
【0006】
また、上記の従来技術では、圧縮機の吐出側に配置した四方弁により冷房時では圧縮機の吐出ガスを室外熱交換器に流入させ、また、暖房時には圧縮機の吐出ガスを室内凝縮器に流入させるように冷媒の流れ方向を切り替えている。
【0007】
【発明が解決しようとする課題】
ところで、上記の従来技術では、暖房時に室外熱交換器に着霜が生じたときは、四方弁により冷媒流れを反転させて逆サイクル(冷房サイクル)とし、室外熱交換器の霜を圧縮機の高温吐出ガスの熱で除去するようにしている。
【0008】
このように逆サイクルへの反転により室外熱交換器の除霜を行うので、除霜中は室内の暖房を行うことができず、暖房フィーリングを損なうという不具合がある。
【0009】
また、上記の従来技術では、四方弁により冷房流れを切り替えて運転モードの切替を行っているので、サイクルの冷媒配管構成が煩雑になり、かつ、逆止弁等の部品点数が増加する。
【0010】
本発明は上記点に鑑みて、第1には、室外熱交換器の除霜モードにおける室内暖房作用を確保することを目的とする。
【0011】
また、本発明は第2には、通常暖房時における暖房能力の向上と、室外熱交換器の除霜中における室内暖房作用の確保とを両立させることを目的とする。
【0012】
また、本発明は第3には、サイクルの冷媒通路構成の簡略化を図ることを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明では、室内へ向かって空気が流れる空調通路(2)と、
冷媒を圧縮し吐出する圧縮機(22)と、
前記空調通路(2)内に設置され、前記圧縮機(22)からの吐出ガス冷媒により空気を加熱する凝縮器(12)と、
前記空調通路(2)内に形成され、前記凝縮器(12)をバイパスして空気を流すバイパス通路(12a)と、
前記空調通路(2)内に設置され、前記凝縮器(12)への空気流れと前記バイパス通路(12a)への空気流れとを切り替えるドア手段(16、17)と、
室外に設置される室外熱交換器(24)と、
前記室外熱交換器(24)の冷媒入口側に設置された暖房用減圧装置(27)と、
前記空調通路(2)内で、前記凝縮器(12)の上流側に設置され蒸発器(11)と、
前記蒸発器(11)の冷媒入口側に設置された冷房用減圧装置(29)と、
前記暖房用減圧装置(27)をバイパスして冷媒が流れる冷媒バイパス通路(63)と、
前記冷媒バイパス通路(63)に設けられたバイパス側減圧装置(26)とを備え、
前記圧縮機(22)の吐出側を常に前記凝縮器(12)に接続して、前記圧縮機(22)からの吐出ガス冷媒が常に前記凝縮器(12)を通過して前記室外熱交換器(24)側への一方向に流れるようにし、
暖房モード時には、前記空調通路(2)内の送風空気が前記凝縮器(12)を通過する位置に前記ドア手段(16、17)を切り替えることにより、前記圧縮機(22)の吐出ガス冷媒が前記凝縮器(12)に流入して前記空調通路(2)内の送風空気に放熱することで凝縮し、前記凝縮器(12)通過後の高圧冷媒が前記暖房用減圧装置(27)により減圧されて低圧状態となり、前記暖房用減圧装置(27)通過後の低圧冷媒が前記室外熱交換器(24)に流入して蒸発し、前記室外熱交換器(24)通過後の低圧冷媒が前記圧縮機(22)に吸入されるようになっており、前記暖房モードでは前記凝縮器(12)により加熱された温風を室内へ吹き出し、
冷房モード時には、前記空調通路(2)内の送風空気が前記バイパス通路(12a)を通過する位置に前記ドア手段(16、17)を切り替えることにより、前記圧縮機(22)の吐出ガス冷媒が前記空調通路(2)内の送風空気と熱交換しないまま前記凝縮器(12)を通過し、前記凝縮器(12)通過後の吐出ガス冷媒が高圧状態のまま前記室外熱交換器(24)に流入し、前記室外熱交換器(24)にて前記吐出ガス冷媒が凝縮し、前記室外熱交換器(24)通過後の高圧冷媒が前記冷房用減圧装置(29)により減圧されて低圧状態となり、前記冷房用減圧装置(29)通過後の低圧冷媒が前記蒸発器(11)に流入して前記空調通路(2)内の送風空気から吸熱することで蒸発し、前記蒸発器(11)通過後の低圧冷媒が前記圧縮機(22)に吸入されるようになっており、前記冷房モードでは前記蒸発器(11)により冷却された冷風が前記バイパス通路(12a)を通過して室内へ吹き出し、
除湿モード時には、前記空調通路(2)内の送風空気が前記凝縮器(12)を通過する位置に前記ドア手段(16、17)を切り替えることにより、前記圧縮機(22)の吐出ガス冷媒が前記凝縮器(12)に流入して前記空調通路(2)内の送風空気に放熱することで凝縮し、前記凝縮器(12)通過後の高圧冷媒が前記暖房用減圧装置(27)により減圧されて中間圧状態となり、前記暖房用減圧装置(27)通過後の中間圧冷媒が前記室外熱交換器(24)に流入して室外空気と熱交換し、前記室外熱交換器(24)通過後の中間圧冷媒が前記冷房用減圧装置(29)により減圧されて低圧状態となり、前記冷房用減圧装置(29)通過後の低圧冷媒が前記蒸発器(11)に流入して前記空調通路(2)内の送風空気から吸熱することで蒸発し、前記蒸発器(11)通過後の低圧冷媒が前記圧 縮機(22)に吸入されるようになっており、前記除湿モードでは前記蒸発器(11)により冷却除湿された冷風を前記凝縮器(12)にて再加熱して室内へ吹き出し、
前記暖房モード時に前記室外熱交換器(24)の除霜を行う除霜モードを設定するときは、前記空調通路(2)内の送風空気が前記バイパス通路(12a)を通過する位置に前記ドア手段(16、17)を切り替えることにより、前記圧縮機(22)の吐出ガス冷媒が前記空調通路(2)内の送風空気と熱交換しないまま前記凝縮器(12)を通過し、前記凝縮器(12)通過後の吐出ガス冷媒を、前記暖房用減圧装置(27)に向かう流れと前記冷媒バイパス通路(63)に向かう流れとに分岐し、
前記分岐ガス冷媒の一方が前記暖房用減圧装置(27)により減圧されて低圧状態となり、前記暖房用減圧装置(27)通過後の低圧状態のガス冷媒が前記室外熱交換器(24)に流入して前記室外熱交換器(24)の除霜を行い、前記室外熱交換器(24)通過後の低圧冷媒が前記圧縮機(22)に吸入されるようになっており、
また、前記分岐ガス冷媒の他方が前記冷媒バイパス通路(63)に流入して前記バイパス側減圧装置(26)により減圧されて低圧状態となり、前記バイパス側減圧装置(26)通過後の低圧状態のガス冷媒が前記蒸発器(11)に流入し、前記蒸発器(11)にて前記空調通路(2)内の送風空気を前記低圧状態のガス冷媒により加熱し、前記蒸発器(11)通過後の低圧冷媒も前記圧縮機(22)に吸入されるようになっており、前記除霜モードでは前記蒸発器(11)にて加熱された温風が前記バイパス通路(12a)を通過して室内へ吹き出すことを特徴としている。
【0014】
これによると、室外熱交換器(24)の除霜を行いながら、同時に蒸発器(11)による空気加熱作用により室内の暖房を続行できる。つまり、暖房モード時には蒸発器(11)が使用されない点に着目して、本発明では除霜モード時に蒸発器(11)を有効利用することにより、サイクルの煩雑化を招くことなく、除霜モードにおける室内暖房作用を確保することができる。
【0015】
また、請求項1記載の発明では、冷房、除霜モード時には、ドア手段(16、17)により凝縮器(12)への空気流れを遮断してバイパス通路(12a)に空気を通過させることができ、そのため、凝縮器(12)は高圧冷媒が流れる冷媒通路の一部としての役割を果たすことになる。
そのため、暖房、冷房、除湿、除霜の各モードを通じて、凝縮器(12)に冷媒が流れたままとなり、圧縮機(22)の吐出ガス冷媒を常に凝縮器(12)を通して室外熱交換器(24)へ向かう一方向に流すことができる。その結果、冷媒流れ方向逆転のための四方弁の廃止、あるいは、冷媒流れ経路切替用の逆止弁、電磁弁等の弁装置の数を低減することが可能となり、冷媒配管構成の簡素化により製品コストを低減できる。
次に、請求項2記載の発明では、請求項1において、発熱部品(81)の廃熱を回収する第1熱交換手段(74、320)を有し、
除霜モード時に、バイパス側減圧装置(26)により減圧された低圧状態のガス冷媒が第1熱交換手段(74、320)により発熱部品(81)の廃熱を吸熱し、この廃熱を吸熱した後の低圧状態のガス冷媒が蒸発器(11)流入することを特徴としている。
【0016】
これによると、除霜モード時の蒸発器(11)による室内暖房能力を発熱部品(81)の廃熱回収により向上できる。
【0017】
次に、請求項3記載の発明では、請求項2において、圧縮機(22)として、圧縮した冷媒を吐出する吐出ポート(22a)、冷凍サイクル低圧側の冷媒を吸入する吸入ポート(22b)、および冷凍サイクル中間圧側のガス冷媒を導入するガスインジェクションポート(22c)を有する圧縮機を用い、
暖房モード時においても、凝縮器(12)にて凝縮した高圧冷媒を暖房用減圧装置(27)に向かう流れと冷媒バイパス通路(63)に向かう流れとに分岐し、
前記分岐冷媒の一方が暖房用減圧装置(27)により減圧されて低圧状態となって室外熱交換器(24)に流入し、
前記分岐冷媒の他方は、バイパス側減圧装置(26)により中間圧まで減圧し、この中間圧冷媒に第1熱交換手段(74、320)により発熱部品(81)の廃熱を吸熱させて、この中間圧冷媒をガス化し、この中間圧ガス冷媒をガスインジェクションポート(22c)に流入させるようになっており、
暖房モード時には、室外熱交換器(24)通過後の低圧冷媒が吸入ポート(22b)に吸入され、冷房モード時には、蒸発器(11)通過後の低圧冷媒が吸入ポート(22b)に吸入され、除霜モード時には、室外熱交換器(24)通過後の低圧冷媒及び蒸発器(11)通過後の低圧冷媒が吸入ポート(22b)に吸入されることを特徴としている。
【0018】
これによると、圧縮機(22)へのガスインジェクションによる暖房能力の向上効果と発熱部品(81)の廃熱回収による暖房能力の向上効果とを合わせ奏することができる。そのため、通常暖房時における暖房能力の向上と、室外熱交換器の除霜中における室内暖房作用の確保とを良好に両立できる。
【0019】
次に、請求項4記載の発明では、請求項3において、暖房モード時に、暖房用減圧装置(27)に向かう前記一方の分岐冷媒である高圧冷媒と、バイパス側減圧装置(26)により減圧された中間圧冷媒との間で熱交換を行う第2熱交換手段(23、230)を有することを特徴としている。
【0020】
これによると、中間圧冷媒が高圧冷媒から吸熱するとともに発熱部品(81)の廃熱からも吸熱するので、中間圧冷媒のガス化が促進され暖房能力を効果的に向上できる。
【0021】
次に、請求項5記載の発明では、請求項4において、第1熱交換手段と第2熱交換手段とを1つの熱交換器(230)として一体に構成したことを特徴としている。
【0022】
これによると、第1、第2の熱交換手段を一体型熱交換器(230)により小型、簡潔に構成できる。
【0023】
次に、請求項6記載の発明では、請求項1において、発熱部品(81)の廃熱を回収する第1熱交換手段(74、320)を有し、
暖房モード時に圧縮機(22)に吸入される、室外熱交換器(24)通過後の低圧冷媒に第1熱交換手段(74、320)により発熱部品(81)の廃熱を吸熱させ、
除霜モード時には、圧縮機(22)に吸入される、室外熱交換器(24)通過後の低圧冷媒、及び圧縮機(22)に吸入される、蒸発器(11)通過後の低圧冷媒に第1熱交換手段(74、320)により発熱部品(81)の廃熱を吸熱させることを特徴としている。
【0024】
これによると、低圧側冷媒は中間圧冷媒に比して温度が低いから、発熱部品(81)の温度が低い条件のときでも廃熱回収を行うことができる。
【0025】
次に、請求項7記載の発明では、請求項6において、圧縮機(22)の吸入ポート(22b)の入口側に、冷媒の気液を分離するアキュームレータ(25)を備え、このアキュームレータ(25)から、オイルの溶け込んだ液冷媒をガス冷媒に混合して吸入ポート(22b)に吸入させるようになっており、アキュームレータ(25)の入口側に第1熱交換手段(74、320)を配置したことを特徴としている。
【0026】
これによると、アキュームレータ(25)によりオイルが溶け込んだ液冷媒を低圧ガス冷媒に確実に混入させて、圧縮機(22)の吸入ポート(22b)に送り込むことができる。その結果、圧縮機回転数の低下により室外熱交換器(24)を流れる冷媒の流量(流速)が低下して室外熱交換器(24)に冷媒中のオイルが溜まりやすい暖房低負荷時においても、圧縮機(22)へのオイル戻り性を良好に確保でき、圧縮機(22)の耐久性向上に貢献できる。しかも、アキュームレータ(25)の入口側に第1熱交換手段(74、320)を配置することにより、アキュームレータ入口側の気液2相域の冷媒(ガス域冷媒より一層低温の冷媒)に発熱部品(81)の廃熱を吸熱させることができ、発熱部品(81)の低温時においても廃熱回収を良好に行うことができる。
【0030】
なお、上記各手段の括弧内の符号は、後述する実施形態記載の具体的手段との対応関係を示す。
【0031】
【発明の実施の形態】
(第1実施形態)
図1は、本発明を電気自動車用空調装置に適用した第1実施形態で、空調ユニット1は電気自動車の車室内に設置されるもので、その空調ダクト2は、車室内に空調空気を導く空調通路を構成するものである。この空調ダクト2の一端側に内外気を吸入する吸入口3、4、5が設けられている。内気吸入口4と外気吸入口5は、内外気切替ドア6により切替開閉される。
【0032】
上記吸入口3〜5に隣接して、空調ダクト2内に空気を送風する送風機7が設置されており、この送風機7は図示しないモ−タとこのモータにより駆動されるファン7a、7bにより構成される。
【0033】
一方、空調ダクト2の他端側には車室内へ通ずる複数の吹出口、すなわち車室内乗員の足元部に向かって空調空気を吹き出すフット吹出口8、車室内乗員の上半身に向かって空調空気を吹き出すフェイス吹出口9および車両フロントガラスの内面に空調空気を吹き出すデフロスタ吹出口10が形成されている。
【0034】
また、送風機7よりも空気下流側における空調ダクト2内には冷房用蒸発器11が設けられている。この冷房用蒸発器11は、冷凍サイクル21の一部を構成する室内側熱交換器であり、後述する冷房モードおよび除湿モード時に、内部を流れる冷媒の吸熱作用によって、空調ダクト2内の空気を除湿、冷却する冷却器として機能する。また、後述する除霜モード時には内部を流れる冷媒の放熱作用によって、空調ダクト2内の空気を加熱する加熱器として機能する。
【0035】
また、冷房用蒸発器11よりも空気下流側における空調ダクト2内には暖房用凝縮器12が設けられている。この暖房用凝縮器12は、冷凍サイクル21の一部を構成する室内側熱交換器であり、後述する暖房モードおよび除湿モード時に、内部を流れる冷媒の放熱作用によって、空調ダクト2内の空気を加熱する加熱器として機能する。
【0036】
また、空調ダクト2内の空気流路は、仕切り壁13によりフット吹出口8側の第1空気流路14と、フェイス吹出口9およびデフロスタ吹出口10側の第2空気流路15とに仕切られている。この空気流路14、15の2分割は冬季の暖房時に次の内外気2層モードを実施するためである。すなわち、冬季暖房時にフット吹出口8側の第1空気流路14には内気吸入口3から温度の高い内気を吸入して足元へ温度を吹き出すことにより暖房負荷を軽減すると同時に、デフロスタ吹出口10側の第2空気流路15には外気吸入口5から湿度の低い外気を吸入して、フロントウインドの曇りを確実に防止する内外気2層モードを実施するために、空気流路14、15の2分割を行っている。
【0037】
ドア16、17は凝縮器12を通る空気通路と凝縮器12をバイパスするバイパス通路12aとを切り替える通路切替ドアであり、一方のドア17は空気流路14、15の仕切り部材の役割を兼ねている。また、18は空気流路14、15の下流側に配置されたドアで、空気流路14、15の仕切り作用と空気流路14、15の連通状態とを切り替えるドアである。なお、前記した各吹出口8、9、10は図示しない吹出口切替ドアにより開閉される。
【0038】
ところで、上記冷凍サイクル21は、冷房用の蒸発器11と暖房用の凝縮器12とで冷房、暖房および除湿を行うヒートポンプ式冷凍サイクルとして構成されており、蒸発器11と凝縮器12の他に以下の機器を備えている。
【0039】
すなわち、冷媒圧縮機22、気液2相の中間圧冷媒を高圧冷媒と熱交換してガス化する冷媒−冷媒熱交換器23、室外熱交換器24、サイクル低圧冷媒(圧縮機吸入冷媒)の気液を分離して余剰液冷媒を溜めておくアキュムレータ(気液分離器)25、凝縮器12通過後の高圧冷媒の一部を分岐(バイパス)させて中間圧に減圧する第1減圧装置26、冷媒−冷媒熱交換器23の出口の高圧冷媒を暖房時に低圧まで減圧する第2減圧装置27、冷房時に室外熱交換器24からの凝縮後の高圧冷媒を低圧まで減圧する第3減圧装置29、冷房、暖房、除湿、除霜の各モードでの冷媒流れを切り替える電磁弁(冷媒経路切替手段)28a、28b、28c、および水−冷媒熱交換器74が冷凍サイクル21に備えられている。
【0040】
なお、室外熱交換器24は電気自動車の車室外に設置され、電動室外ファン24aにより送風される外気と熱交換するようになっている。また、上記冷媒圧縮機22は電動式圧縮機であって、図示しない交流モータを一体に密封ケース内に内蔵し、このモータにより駆動されて冷媒の吸入、圧縮、吐出を行う。この冷媒圧縮機22の交流モータにはインバータ30により交流電圧が印加され、このインバータ30により交流電圧の周波数を調整することによってモータ回転速度を連続的に変化させるようになっている。従って、インバータ30は圧縮機22の回転数調整手段をなすものであり、このインバータ30には、車載バッテリ31からの直流電圧が印加される。インバータ30は空調用制御装置40によって通電制御される。
【0041】
冷媒圧縮機22には圧縮した冷媒を吐出する吐出ポート22a、サイクル低圧側の冷媒を吸入する吸入ポート22b、および中間圧のガス冷媒をインジェクションするガスインジェクションポート22cが備えられている。このガスインジェクションポート22cは、ガスインジェクション通路22dを介して冷媒−冷媒熱交換器23に連通している。
【0042】
第1減圧装置26、第2減圧装置27および第3減圧装置29はいずれも電気的に弁開度が調整される電気式膨張弁からなり、この電気式膨張弁は例えば、ステップモータのような電気駆動手段を有し、この電気駆動手段により弁体の変位量を調整して、この弁体により冷媒絞り通路の開度を調整するものである。なお、第1〜第3減圧装置26、27、29は固定絞り手段(例えば、キャピラリチューブ、オリフィス等)により構成することもできる。
【0043】
アキュムレータ25はU状の冷媒出口管25aを有しており、余剰液冷媒を底部側に溜めてガス冷媒をU状の冷媒出口管25aの上端開口部から吸入することにより圧縮機22への液バックを防止する。また、同時に、アキュムレータ25のU状の冷媒出口管25aの底部に設けた小径のオイル戻し穴(図示せず)から、オイルが溶け込んだ液冷媒を吸入してガス冷媒に混合することより、圧縮機22へのオイル戻り性を確保するように構成されている。
【0044】
また、冷媒−冷媒熱交換器23と第2減圧装置27を接続する高圧側の冷媒配管(主流路)32には、冷媒−冷媒熱交換器23出口の高圧冷媒の温度および圧力を検出するための冷媒温度センサ41aと高圧センサ41bが設置されている。このセンサ41a、41bの出力信号は空調用制御装置40に入力され、第2減圧装置27の開度を制御することで冷媒−冷媒熱交換器23出口の高圧冷媒のサブクール(過冷却度)を制御する。
【0045】
また、前記したインジェクション通路22dには、第1減圧装置26で減圧された中間圧冷媒の温度および圧力を検出する中間圧冷媒温度センサ41f、中間圧センサ41gが設置されている。このセンサ41f、41gの出力信号は空調用制御装置40に入力され、第1減圧装置26の開度を制御することで、冷媒−冷媒熱交換器出口の中間圧冷媒のスーパヒート(過熱度)を制御する。
【0046】
空調用制御装置40はマイクロコンピュータとその周辺回路にて構成されるもので、空調用制御装置40には、上記センサ41a、41b、41f、41gの他に、外気温センサ41c、蒸発器直後の空気温度を検出する蒸発器温度センサ41d、圧縮機22の吐出ガス温度を検出する吐出温度センサ41e、室外熱交換器24出口の冷媒温度センサ41h、インバータ30の電流センサ41i等のセンサ群41からセンサ信号が入力されるようになっている。
【0047】
また、空調用制御装置40には、空調用コントロールパネル50(図2参照)から乗員(ユーザ)により操作される各レバーの設定状況に応じた信号も入力されるようになっている。
【0048】
なお、図1にはインバータ30と空調用制御装置40との間の電気的接続のみを示し、他の機器と空調用制御装置40との電気的接続を図示していないが、第1〜第3減圧装置26、27、29、電磁弁28a、28b、28c、ドア6、16、17、18、図示しない吹出口切替ドア、送風機7、および室外ファン24aの作動も制御装置40により制御される。電磁弁28a、28b、28cは、制御装置40により後述の図8のように開閉制御されて冷媒循環経路を冷房、暖房、除湿、除霜の各運転モードに対応して切り替える。
【0049】
一方、前記した冷媒−冷媒熱交換器23は例えば図2に示すように、内部通路23aと外部通路23bとを同心状に形成した二重通路構造の円筒形状になっている。内部通路23aは中心部に位置して室外熱交換器24へ向かう主流の冷媒(高圧冷媒)が流れる。
【0050】
これに対し、外部通路23bは、内部通路23aの外周側の円周方向に並列配置された多数の小通路から形成されており、外部通路23bには第1減圧装置26で減圧された中間圧冷媒がバイパス通路63から流入する。
【0051】
ここで、内部通路23aおよび外部通路23bを形成する管状体23cはアルミニウム等の熱伝導性に優れた金属にて成形(例えば、押出し成形)され、かつ、管状体23cの外表面には断熱材23dが固着されているので、内部通路23a内の高圧冷媒と外部通路23b内の中間圧冷媒との相互間のみで良好に熱交換を行うことができる。
【0052】
この冷媒−冷媒熱交換器23は、ガスインジェクションを必要としないときには、第1減圧装置26を全閉することにより、内部通路23aのみに高圧冷媒が流れるので、高圧側配管32の一部として使われる。
【0053】
また、水−冷媒熱交換器74も上記冷媒−冷媒熱交換器23と同様に内部通路(温水通路)74aと外部通路(冷媒通路)74bとを同心状に形成した二重通路構造の円筒形状にて構成することができる。外部通路74bには冷媒−冷媒熱交換器23の外部通路23bから中間圧冷媒が配管71を介して流入する。
【0054】
この外部通路74bの出口側は、インジェクション通路22dを介してインジェクションポート22cに接続されるとともに、分岐点73aから除霜用電磁弁28cを設けた配管72に接続される。この配管72は第3減圧装置29下流の分岐点73bに接続されている。
【0055】
ここで、水−冷媒熱交換器74の内部通路(温水通路)74aに温水を循環させる温水回路80について説明すると、この温水回路80は電気自動車に搭載される発熱部品81の冷却を行うものであって、発熱部品81としては、例えば、電気自動車走行用交流モータ(図示せず)の回転速度制御用インバータの半導体スイッチ素子(パワートランジスタ)等である。
【0056】
この温水回路80には、前記した水−冷媒熱交換器74の他に、温水循環用の電動式水ポンプ82、電磁弁タイプの三方弁(水回路切替手段)83、温水(冷却水)の熱を外気中に放熱する放熱器84が備えられている。三方弁35の切替作用により、発熱部品81で加熱された温水が実線矢印Aのように水−冷媒熱交換器74側に流れるか、または破線矢印Bのように放熱器84側に流れるようになっている。
【0057】
次に、図3に示す空調コントロールパネル50には、乗員により手動操作される以下の操作部材が設けられている。51は車室内への吹出空気の温度の目標値を設定する温度コントロールレバーで、本例では、電動式圧縮機22の回転数調整の目標値を設定するように構成されている。
【0058】
また、温度コントロールレバー51の操作位置により設定される目標値に対し、電磁弁28a、28b、28cおよび通路切替ドア16、17の開閉を制御し、冷凍サイクルの運転モードを切り替える。
【0059】
各運転モードの切替は例えば図4に示すようにレバー51を左から右に移動させることにより冷房モード、除湿モード、暖房モードを順次設定する。また、図5、6、7に示すように温度コントロールレバー51の操作位置の移動により、冷房時には目標蒸発器吹出温度が設定され、除湿時および暖房時には目標高圧圧力が設定されるようになっている。
【0060】
温度コントロールレバー51の操作位置信号は制御装置40に入力され、そして制御装置40は、センサ群41により検出される実際の蒸発器吹出空気温度または高圧圧力が上記目標値と一致するように圧縮機22の回転数を制御して、吹出空気温度を制御する。
【0061】
52は送風機7の速度(風量)切替レバー、53は圧縮機22の運転を断続するエアコンスイッチ、54は吹出口8、9、10の切替ドア(図示せず)を開閉する空調吹出モード切替レバー、55は内外切替ドア6を開閉する内外気切替レバーである。
【0062】
次に、上記構成において第1実施形態の作動を説明する。エアコンスイッチ53が投入されると、その信号が制御装置40に投入され、圧縮機22を起動する。この状態にて温度コントロールレバー51が図4のPH2からPH1の位置にあると、制御装置40は暖房モードと判定して電磁弁28a、28b、28c、通路切替ドア16、17等の機器を図8の暖房モード時の状態に制御する。
【0063】
図1の黒色矢印は暖房モード時における冷媒流れを示し、図9は暖房モード時における冷凍サイクルの冷媒の状態を示すモリエル線図である。圧縮機22から吐出された高温高圧の過熱ガス冷媒は、まず、室内に設定された凝縮器12に流入し、ここで送風機7により送風される空気と熱交換(放熱)し、ガス冷媒が凝縮する。ガス冷媒の凝縮により加熱された温風は主にフット吹出口8より車室内へ吹き出され、車室内の暖房を行う。
【0064】
凝縮器12から流出した高圧冷媒の一部は、冷房用電磁弁28bが閉じているため、分岐点61aからバイパス通路63側へ分岐される。そして、この分岐された高圧冷媒は第1減圧装置26に流入し、中間圧PMまで減圧される。中間圧PMまで減圧された二相冷媒は冷媒−冷媒熱交換器23の外部通路23bを通り、内部通路23aを通る室内凝縮器12出口の高圧冷媒と熱交換(吸熱)することで乾き度が増加する。
【0065】
暖房モード時には温水回路80の発熱部品81にて加熱された温水が三方弁83により実線矢印Aのように水−冷媒熱交換器74側に流れるので、冷媒−冷媒熱交換器23の外部通路23bから流出した中間圧冷媒は水−冷媒熱交換器74において温水と熱交換(吸熱)することで乾き度が増加してガス化する。
【0066】
電磁弁28cは暖房モード時に閉状態にあるので、中間圧のガス冷媒はインジェクション通路22dを通ってインジェクションポート22cに流入する。
【0067】
一方、冷媒−冷媒熱交換器23の内部通路23aを通る高圧冷媒は外部通路23bを通る冷媒と熱交換(放熱)し、過冷却される。この過冷却された高圧冷媒は第2減圧装置27に流入し、第2減圧装置27により低圧PLまで減圧され室外熱交換器24に流入する。そして、この低圧冷媒が室外熱交換器24を通る際に室外ファン24aの送風空気(外気)から吸熱して蒸発する。
【0068】
室外熱交換器24で蒸発したガス冷媒は、開状態にある暖房用電磁弁28aを通過してアキュムレータ25に流入し、暖房負荷の変動により生じる液冷媒はアキュムレータ25内に溜められる。アキュムレータ25ではそのU状の冷媒出口管25aの上端開口部からガス冷媒を吸入するとともに、U状の冷媒出口管25aの底部に設けたオイル戻し穴(図示せず)から、オイルが溶け込んだ液冷媒を吸入してガス冷媒に混合し、このガス冷媒を圧縮機22の吸入ポート22bに吸入させる。これにより、中間期の暖房低負荷時のように冷媒流量が少ない条件のもとでも、圧縮機22へ確実にオイルを戻すことができる。
【0069】
第1減圧装置(電気式膨張弁)26の開度は、中間圧冷媒の温度センサ41fおよび圧力センサ41gの検出信号に基づいて制御装置40により制御されて、圧縮機22のインジェクションポート22cに流入するガスインジェクション冷媒のスーパーヒートSHが所定量になるように冷媒流量を制御する。すなわち、ガスインジェクション冷媒のスーパーヒートSHが大きくなれば、第1減圧装置(電気式膨張弁)26の開度を増大し、逆にスーパーヒートSHが小さくなれば、第1減圧装置(電気式膨張弁)26の開度を減少させる。このようなガスインジェクション冷媒のスーパーヒート制御により圧縮機22への過度な液戻りを防止できる。
【0070】
また、第2減圧装置27の開度は制御装置40により制御されて、冷媒−冷媒熱交換器23の内部通路23aを出た高圧冷媒のサブクールSCが所定量になるように冷媒−冷媒熱交換器23での交換熱量を制御する。すなわち、高圧冷媒のサブクールSCが大きくなれば、第2減圧装置27の開度を増大して高圧を低下させてサブクールSCを減少させる。逆に、高圧冷媒のサブクールSCが小さくなれば、第2減圧装置27の開度を減少して高圧を上昇させて、サブクールSCを増加させる。
【0071】
なお、図9において、Giはインジェクション通路22dからインジェクションポート22cにガスインジェクションされる冷媒流量、Geは室外熱交換器(暖房時の蒸発器)24を通して圧縮機22に吸入される冷媒流量、Δi1 は冷媒−冷媒熱交換器23および水−冷媒熱交換器74で吸熱するガスインジェクション側の中間圧冷媒のエンタルピ差で、Δi2 は冷媒−冷媒熱交換器23で放熱して、第2減圧装置27に向かう高圧冷媒のエンタルピ差である。
【0072】
また、通路切替ドア16、17は凝縮器12側の空気通路を開いてバイパス通路12aを全閉するので、圧縮機22から吐出された高温高圧冷媒と送風機7により送風された空気とを凝縮器12にて熱交換させる。
【0073】
図10は第1減圧装置26により減圧された中間圧冷媒の圧力(中間圧)を横軸にとり、縦軸にインジェクション冷媒のスーパーヒートSHおよび暖房能力Qcをとったもので、スーパーヒートSHが所定値T1であるときに、水−冷媒熱交換器74での廃熱回収がないときは中間圧=Pmとなり、そのときの暖房能力QcはQ1となる。
【0074】
これに対し、本実施形態のように、水−冷媒熱交換器74で温水から廃熱回収を行うときは、スーパーヒートSHを同じ値T1に制御しても、温水からの廃熱回収により中間圧冷媒のガス化が促進されるので、図11に示すように中間圧をPmからPm1まで高めることができる。この中間圧の上昇により、ガスインジェクション冷媒流量がGiからGi1に増加して、暖房能力Qcを図10のQ1からQ2に向上できる。図11は廃熱回収の有無によるサイクル冷媒状態の変化を示すモリエル線図である。
【0075】
次に、暖房モード時における除霜モードについて説明する。暖房モード時では蒸発器として作用する室外熱交換器24において発生する凝縮水が凍結して、室外熱交換器24に着霜状態が生じる。この室外熱交換器24の着霜状態が制御装置40により判定されると、電磁弁28a、28b、28c、通路切替ドア16、17等の機器が図8の除霜モード時の状態に切り替えられる。
【0076】
室外熱交換器24の着霜状態は種々な方法で判定することができるが、本例では、室外熱交換器24の着霜により室外熱交換器24の出口冷媒温度Thoが低下して、外気温Tamとこの出口冷媒温度Thoとの差(Tam−Tho)が所定値(例えば、20°C)より大きくなると、室外熱交換器24が着霜状態であるとしてサイクルを図12の除霜モード状態に切り替える。
【0077】
図12の矢印は除霜モードにおける冷媒の流れ方向を示し、図13は除霜モードにおける冷媒の状態変化を示すモリエル線図である。
【0078】
除霜モード時には、通路切替ドア16、17により凝縮器12の空気通路が全閉されているので、送風機7の送風空気はすべて凝縮器12のバイパス通路12aを通過する。そのため、圧縮機22からの吐出ガス冷媒は凝縮器12で熱交換せずに吐出直後の状態のまま凝縮器12を通過し、分岐点61aにて2つの流れに分岐される。
【0079】
すなわち、一方の冷媒流れは冷媒−冷媒熱交換器23の内部通路23aを通って放熱した後に、第2減圧装置27により減圧され室外熱交換器24に流入する。ここで、減圧後のガス冷媒(ホットガス)が室外熱交換器24にて放熱して、室外熱交換器24の霜を溶かす。室外熱交換器24を通過した冷媒は開状態にある暖房用電磁弁28aを通過してアキュムレータ25に流入する。
【0080】
分岐点61aからの他方の冷媒流れは、第1減圧装置26に流入し、減圧される。この減圧後のガス冷媒は冷媒−冷媒熱交換器23の外部通路23bを通り、内部通路23aを通る高圧ガス冷媒と熱交換して吸熱した後に、水−冷媒熱交換器74の外部通路(冷媒通路)74bにて温水から再度吸熱する。
【0081】
その後に、ガス冷媒は除霜用電磁弁28cを通過して室内蒸発器11に流入し、送風機7の送風空気中に放熱する。室内蒸発器11を通過した冷媒は、アキュムレータ25に流入し、室外熱交換器24を通過した冷媒と合流し、圧縮機22に吸入される。
【0082】
室内蒸発器11にて加熱された送風空気(温風)は凝縮器12のバイパス通路12aを通過して主にフット吹出口8から車室内へ吹き出し、車室内の暖房を行う。従って、除霜中にも車室内の暖房を続行できるので、除霜中における車室内温度の低下を抑制できる。なお、除霜モード時には第1、第2減圧装置26、27は予め設定された所定の制御開度に保持される。
【0083】
除霜モードが進行して、室外熱交換器24の出口冷媒温度Thoが上昇して外気温Tamとこの出口冷媒温度Thoとの差(Tam−Tho)が所定値(例えば、20°C)以下になり、かつ、その状態が所定時間(例えば、10秒)以上継続されると、室外熱交換器24の除霜が終了したと判定し、自動的に暖房モードに復帰させる。
【0084】
次に、温度コントロールレバー51が図3のPC1からPC2の位置にあると、制御装置40は冷房モードと判定して電磁弁28a、28b、28c、通路切替ドア16、17等の機器を図8の冷房モードの状態に制御する。図1の白抜き矢印は冷房モードにおける冷媒流れを示す。
【0085】
冷房モード時には、通路切替ドア16、17が凝縮器12側の空気通路を全閉するため、送風機7の送風空気は全量、バイパス通路12aを流れる。そのため、圧縮機22から吐出された高温高圧の過熱ガス冷媒は、凝縮器12で送風機7の送風空気と熱交換(放熱)せず、それ故、圧縮機22からの吐出直後の過熱状態のまま、凝縮器12を通過する。
【0086】
このとき、第1、第2減圧装置(電気式膨張弁)26、27が全閉状態に制御されているため、圧縮機22からの吐出ガス冷媒の全量が、開弁状態にある冷房用電磁弁28bおよびバイパス通路62を通って室外熱交換器24に流入する。
【0087】
この室外熱交換器24では、高圧ガス冷媒が室外ファン24aの送風空気(外気)と熱交換(放熱)して凝縮する。そして、室外熱交換器24で凝縮した冷媒は、電磁弁28a、28cの閉弁により第3減圧装置29を通過して低圧PLまで減圧された後、蒸発器11に流入する。ここで、第3減圧装置29は高圧センサ41bと室外熱交換器24の出口冷媒温度センサ41hの検出信号に基づいて室外熱交換器24出口冷媒のサブクールが所定値となるように弁開度が制御される。
【0088】
蒸発器11にて冷媒が送風機7の送風空気から吸熱して蒸発し、蒸発器11にて冷却された冷風は、上記したように下流側の室内凝縮器12は通過せず、そのバイパス通路12aを冷風のまま通過して、主にフェイス吹出口9から車室内へ吹き出して車室内を冷房する。
【0089】
一方、蒸発器11で蒸発したガス冷媒はアキュムレータ25に流入し、このアキュムレータ25からガス冷媒は圧縮機22の吸入ポート22bに吸入される。
【0090】
次に、温度コントロールレバー51が図3のPD1からPD2の位置にあると、制御装置40は除湿モードと判定して電磁弁28a、28b、28c、通路切替ドア16、17等の機器を図8の除湿モード時の状態に制御する。図1の斜線付き矢印は除湿モード時の冷媒流れ経路を示す。
【0091】
除湿モード時には、通路切替ドア16、17により凝縮器12の空気通路が開放されるので、圧縮機22から吐出された高温高圧の過熱ガス冷媒は凝縮器12に流入し、ここで送風機7の送風空気と熱交換(放熱)し、ガス冷媒が凝縮する。
【0092】
このとき、第1減圧装置26および冷房用電磁弁28bが全閉されているので、凝縮器12で凝縮した高圧冷媒の全量が冷媒−冷媒熱交換器23の内部通路23aを通過する。このとき、内部通路23aを通過する冷媒は冷却されず、室内凝縮器12を出たときの状態のまま、冷媒−冷媒熱交換器23を通過して第2減圧装置27に流入し、この第2減圧装置27により中間圧に減圧され室外熱交換器24に流入する。
【0093】
ここで、第2減圧装置27により作られる中間圧は、除湿モードにおいて高い吹出温度が必要な第1除湿モードD1 では、外気温度に対する冷媒の飽和圧力より低く設定することにより、室外熱交換器24を蒸発器として作用させて吸熱側に設定できる。すなわち、第2減圧装置27の開度を小さくして減圧量を大きくすることにより中間圧が低く設定される。
【0094】
そして、室外熱交換器24を流れ出た中間圧冷媒は、暖房用電磁弁28aの閉弁により第3減圧装置29に流入し、低圧PLまで減圧される。この減圧された低圧冷媒は蒸発器11に流入し、送風機7の送風空気から吸熱して蒸発した後、アキュムレータ25に流入する。アキュムレータ25からガス冷媒は圧縮機22の吸入ポート22bに吸入される。
【0095】
除湿モードでは、室内空調ユニット1内に設定された蒸発器11および凝縮器12にともに冷媒が流れて、送風機7の送風空気はまず蒸発器11で冷却、除湿され、その後に凝縮器12にて再加熱され、温風となる。この温風は主にデフ吹出口10より車室内へ吹き出され、窓ガラスの曇り止めを行うとともに、車室内を除湿暖房する。
【0096】
ところで、除湿モードの中で、高い吹出温度が必要な第1除湿モードD1 では、圧縮機22の動力、室外熱交換器24の吸熱量、および室内蒸発器11での吸熱量の総和を室内凝縮器12から放熱できるため、目的とする高い吹出温度を作り出すことができる。
【0097】
一方、除湿モードの中で、低い吹出温度が必要な第2除湿モードD2 では、第2減圧装置27により作られる中間圧を、外気温度に対する冷媒の飽和圧力よりも高く設定することにより、室外熱交換器24を凝縮器として作用させて放熱側に設定できる。すなわち、第2減圧装置27の弁開度を大きくして減圧量を小さくすることにより中間圧が高く設定される。
【0098】
これにより、室外熱交換器24が凝縮器となり放熱側として作用するため、圧縮機22の動力Lおよび室内蒸発器11での吸熱量の合計と、室外熱交換器24での放熱量Qehと室内凝縮器11での放熱量Qcの合計とが等しくなる。従って、室内凝縮器11での放熱量は第1除湿モードD1 の場合より減少するので、目的とする低い吹出温度を作り出すことができる。
【0099】
なお、本第1実施形態によると、以下の理由からサイクル冷媒循環経路を簡素化できる。すなわち、除霜モードおよび冷房モード時においても、通路切替ドア16、17により凝縮器12への空気流れを遮断してバイパス通路12aを空気が通過するようにしているため、凝縮器12は高圧冷媒が流れる冷媒通路の一部となる。そのため、暖房、冷房、除湿および除霜の全モードを通じて、凝縮器12に冷媒が流れたままとなるので、圧縮機22の吐出ガス冷媒を常に凝縮器12を通して室外熱交換器24等へ向かう一方向に流すことができる。その結果、冷媒流れ方向逆転のための四方弁の廃止、あるいは、冷媒流れ経路切替用の逆止弁、電磁弁等の弁装置の数を低減することが可能となり、冷媒配管構成を簡素化できる。
【0100】
(第2実施形態)
図14は第2実施形態であり、第1実施形態では温水回路80に三方弁83を設けて、暖房、除霜モード時には発熱部品81で加熱された温水を実線矢印Aのように水−冷媒熱交換器74側に流し、また、冷房、除湿モード時には発熱部品81で加熱された温水を破線矢印Bのように放熱器84側に流すようにしているが、第2実施形態では三方弁83、放熱器84を廃止して、常に水−冷媒熱交換器74に温水が流れるようにしている。
【0101】
第2実施形態によると、放熱器84の廃止に伴って発熱部品81の冷却を常に水−冷媒熱交換器74にて行う必要が生じる。従って、インジェクション通路22d側に常に冷媒を循環することになり、冷房モード時にインジェクション冷媒の温度上昇により圧縮機吐出冷媒温度が上昇するものの、温水回路80の部品点数低減によるコスト低減を図ることができる。
【0102】
(第3実施形態)
図15は第3実施形態であり、第1実施形態では水−冷媒熱交換器74を中間圧冷媒が流れるインジェクション通路22d側に設けて、インジェクション冷媒により発熱部品81の廃熱回収を行っているが、第3実施形態では低圧側冷媒により発熱部品81の廃熱回収を行うようにしている。
【0103】
すなわち、図15に示すように、蒸発器11の出口側と暖房用電磁弁28aの出口側との合流点73cと、アキュムレータ25の入口部との間に水−冷媒熱交換器74を設けている。
【0104】
第3実施形態によると、冷房時に蒸発器11出口からの冷媒が水−冷媒熱交換器74の外部通路(冷媒通路)74bを通って流れるので、圧損増加による若干の効率低下が生じるとともに、暖房モード時に廃熱回収によるインジェクション冷媒の増量効果を発揮できないが、その代わりに、第3実施形態においては温水回路80の温水温度が低い条件の時にも、温水からの廃熱回収を行って暖房能力を向上できる。
【0105】
すなわち、図16は第3実施形態による除霜モード時のモリエル線図(図13に対応)であり、水−冷媒熱交換器74の外部通路(冷媒通路)74bではアキュムレータ25入口側の気液2相域の低圧冷媒が流れる。この気液2相域の低圧冷媒の温度は過熱ガス域の冷媒より十分低い温度であるので、温水回路80の温水温度が多少低くくなっても温水と冷媒との温度差を確保して、温水からの廃熱回収による暖房能力向上を実現できる。この効果は、除霜モード時だけでなく、暖房モード時にも同様に発揮できる。
【0106】
なお、図13、16では、図面作成上の理由から蒸発器11での冷媒圧力を室外熱交換器24での冷媒圧力より低い状態で図示しているが、実際は両者11、24での冷媒圧力が同等であることはもちろんである。
【0107】
(第4実施形態)
図17は第4実施形態であり、第1〜第3実施形態では水−冷媒熱交換器(第1熱交換手段)74と冷媒−冷媒熱交換器(第2熱交換手段)23とをそれぞれ独立に構成しているが、第4実施形態では図17〜図19に示すように、両熱交換器23、74を1つの一体型熱交換器230として構成している。
【0108】
図18、19により、一体型熱交換器230の具体例を説明すると、冷媒−冷媒熱交換器23における高圧冷媒が流れる内部通路23aに相当する高圧冷媒通路部230aと、冷媒−冷媒熱交換器23における中間圧冷媒が流れる外部通路23bに相当する中間圧冷媒通路部230bと、水−冷媒熱交換器74における温水が流れる内部通路74aに相当する温水通路部230cとを一体化している。
【0109】
この一体化に際して、上記三者の通路部230a〜230cをいずれもアルミニュウム等の金属により押し出し加工された扁平状の多穴チューブにより構成するとともに、中間圧冷媒通路部230bを中央にして、その両側に高圧冷媒通路部230aと温水通路部230cとを密着接合して一体化している。
【0110】
(他の実施形態)
なお、上記した第1〜第4実施形態では、凝縮器12の出口側(冷媒−冷媒熱交換器23の上流側)の分岐点61aと、室外熱交換器24の入口側(第2減圧装置27の下流側)の合流点61bとを直接結合するバイパス通路62を設け、このバイパス通路60に電磁弁(電気的開閉手段)28bを挿入しているが、バイパス通路62を廃止して電磁弁28bを第2減圧装置27の入口、出口間に直接並列接続してもよい。
【0111】
上述の各実施形態では、凝縮器12への空気流れとバイパス通路12aへの空気流れを切り替えるドア手段として、連動操作される2枚の板状の通路切替ドア16、17を用いているが、このドア手段として、1枚の板状ドア、さらにはフィルム状ドア等を用いてもよいことはもちろんである。
【図面の簡単な説明】
【図1】本発明の第1実施形態を示す冷凍サイクル図である。
【図2】第1実施形態で使用する冷媒−冷媒熱交換器の具体例を示す断面図である。
【図3】第1実施形態で使用する空調制御パネルの正面図である。
【図4】図3の空調制御パネルにおける温度コントロールレバーの作動領域と運転モードとの特性図である。
【図5】同温度コントロールレバーの冷房領域の特性図である。
【図6】同温度コントロールレバーの除湿領域の特性図である。
【図7】同温度コントロールレバーの暖房領域の特性図である。
【図8】第1実施形態で使用する弁・ドアの作動説明用の図表である。
【図9】第1実施形態における暖房モードの冷凍サイクルの作動を説明するモリエル線図である。
【図10】第1実施形態における廃熱回収有無による暖房能力の説明図である。
【図11】第1実施形態における廃熱回収有無による冷凍サイクルの作動の違いを説明するモリエル線図である。
【図12】第1実施形態における除霜時の作動を説明する冷凍サイクル図である。
【図13】第1実施形態における除霜時の作動を説明するモリエル線図である。
【図14】本発明の第2実施形態を示す冷凍サイクル図である。
【図15】本発明の第3実施形態を示す冷凍サイクル図である。
【図16】第3実施形態における除霜時の作動を説明するモリエル線図である。
【図17】第4実施形態を示す冷凍サイクル図である。
【図18】第4実施形態による一体型熱交換器を例示する概略斜視図である。
【図19】図18の各通路接合部の断面図である。
【符号の説明】
11…蒸発器、12…凝縮器、16、17…通路切替ドア、22…圧縮機、
22c…ガスインジェクションポート、22d…ガスインジェクション用通路、23…冷媒−冷媒熱交換器、24…室外熱交換器、25…アキュムレータ、
26…第1減圧装置、27…第2減圧装置、29…第3減圧装置、
74…水−冷媒熱交換器、81…発熱部品。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump type refrigeration cycle apparatus capable of switching between a heating mode, a cooling mode, and a dehumidifying mode, and is suitable for use in, for example, an air conditioner for an electric vehicle.
[0002]
[Prior art]
Conventionally, in a vehicle such as an electric vehicle, the vehicle interior cannot be heated using engine waste heat (hot water) as a heat source. Therefore, a heat pump type refrigeration cycle device is provided and the vehicle interior is heated by the refrigerant condensation heat in the condenser. Like to heat up.
[0003]
However, in a usage environment in which the outside air temperature drops below -10 ° C as in cold weather in winter, the amount of heat absorbed by the outdoor heat exchanger acting as an evaporator in the heat pump cycle is reduced, and the compressor suction Since the pressure is reduced, the refrigerant specific volume is increased, and the amount of refrigerant circulation is reduced, so that there is a problem that the heating capacity is lowered. For this reason, when used in cold regions, the heating capacity in the passenger compartment is insufficient.
[0004]
Therefore, in the present applicant, first, in JP-A-9-328013, during heating, the cycle high-pressure refrigerant is reduced to an intermediate pressure, and this intermediate-pressure refrigerant is separated into a gas refrigerant and a liquid refrigerant by a gas-liquid separator. And proposed a refrigeration cycle device that increases the heating capacity by increasing the amount of compression work of the compressor during heating by gas-injecting the intermediate-pressure gas refrigerant into the compressor. Yes.
[0005]
In this prior art, the evaporator of the refrigeration cycle is arranged upstream of the air passage of the indoor air conditioning unit, and the condenser of the refrigeration cycle is arranged downstream of the air passage, so that the dehumidifying operation is performed. I try to stop fogging.
[0006]
Further, in the above prior art, the four-way valve arranged on the discharge side of the compressor allows the discharge gas of the compressor to flow into the outdoor heat exchanger during cooling, and the discharge gas of the compressor to the indoor condenser during heating. The flow direction of the refrigerant is switched so as to flow in.
[0007]
[Problems to be solved by the invention]
By the way, in the above prior art, when frost is generated in the outdoor heat exchanger during heating, the refrigerant flow is reversed by a four-way valve to make a reverse cycle (cooling cycle), and the frost in the outdoor heat exchanger is removed from the compressor. The heat is removed by the heat of the high temperature discharge gas.
[0008]
Thus, since the defrosting of the outdoor heat exchanger is performed by reversing to the reverse cycle, the room heating cannot be performed during the defrosting, and the heating feeling is impaired.
[0009]
In the above-described conventional technology, the cooling flow is switched by the four-way valve to switch the operation mode. Therefore, the refrigerant piping configuration of the cycle becomes complicated, and the number of parts such as a check valve increases.
[0010]
In view of the above points, the present invention firstly aims to ensure an indoor heating function in a defrosting mode of an outdoor heat exchanger.
[0011]
A second object of the present invention is to achieve both the improvement of the heating capacity during normal heating and the securing of the indoor heating function during defrosting of the outdoor heat exchanger.
[0012]
A third object of the present invention is to simplify the refrigerant passage configuration of the cycle.
[0013]
[Means for Solving the Problems]
  In order to achieve the above object, the invention according to claim 1 provides:An air conditioning passage (2) through which air flows into the room;
  A compressor (22) for compressing and discharging the refrigerant;
  A condenser (12) that is installed in the air conditioning passage (2) and that heats the air with a refrigerant gas discharged from the compressor (22);
  A bypass passage (12a) that is formed in the air conditioning passage (2) and flows the air bypassing the condenser (12);
  Door means (16, 17) installed in the air conditioning passage (2), for switching between an air flow to the condenser (12) and an air flow to the bypass passage (12a);
  An outdoor heat exchanger (24) installed outdoors;
  A heating decompressor (27) installed on the refrigerant inlet side of the outdoor heat exchanger (24);
  Installed upstream of the condenser (12) in the air conditioning passage (2).TheAn evaporator (11);
  A cooling decompression device (29) installed on the refrigerant inlet side of the evaporator (11);
  A refrigerant bypass passage (63) through which the refrigerant flows by bypassing the heating decompression device (27);
  A bypass-side pressure reducing device (26) provided in the refrigerant bypass passage (63);With
  The discharge side of the compressor (22) is always connected to the condenser (12), and the discharge gas refrigerant from the compressor (22) always passes through the condenser (12) and the outdoor heat exchanger. (24) to flow in one direction to the side,
  In the heating mode, the discharge gas refrigerant of the compressor (22) is changed by switching the door means (16, 17) to a position where the blown air in the air conditioning passage (2) passes through the condenser (12). The refrigerant is condensed by flowing into the condenser (12) and dissipating heat to the blown air in the air conditioning passage (2), and the high-pressure refrigerant after passing through the condenser (12) is decompressed by the heating decompression device (27). The low-pressure refrigerant after passing through the heating decompression device (27) flows into the outdoor heat exchanger (24) and evaporates, and the low-pressure refrigerant after passing through the outdoor heat exchanger (24) It is designed to be sucked into the compressor (22), and in the heating modeHot air heated by the condenser (12) is blown into the roomAnd
  In the cooling mode, by switching the door means (16, 17) to a position where the blown air in the air conditioning passage (2) passes through the bypass passage (12a), the discharge gas refrigerant of the compressor (22) is changed. The outdoor heat exchanger (24) passes through the condenser (12) without exchanging heat with the blown air in the air conditioning passage (2), and the discharged gas refrigerant after passing through the condenser (12) remains in a high pressure state. And the discharge gas refrigerant condenses in the outdoor heat exchanger (24), and the high-pressure refrigerant after passing through the outdoor heat exchanger (24) is decompressed by the cooling decompression device (29) to be in a low pressure state. Then, the low-pressure refrigerant after passing through the cooling decompression device (29) flows into the evaporator (11) and absorbs heat from the blown air in the air-conditioning passage (2) to evaporate, and the evaporator (11) The low-pressure refrigerant after passing is compressed (22) is adapted to be inhaled, in the cooling modeCold air cooled by the evaporator (11)Through the bypass passage (12a)Blowing into the roomAnd
  In the dehumidifying mode, the discharge gas refrigerant of the compressor (22) is changed by switching the door means (16, 17) to a position where the blown air in the air conditioning passage (2) passes through the condenser (12). The refrigerant is condensed by flowing into the condenser (12) and dissipating heat to the blown air in the air conditioning passage (2), and the high-pressure refrigerant after passing through the condenser (12) is decompressed by the heating decompression device (27). The intermediate-pressure refrigerant after passing through the heating pressure reducing device (27) flows into the outdoor heat exchanger (24) and exchanges heat with outdoor air, and passes through the outdoor heat exchanger (24). The subsequent intermediate pressure refrigerant is decompressed by the cooling decompression device (29) to be in a low pressure state, and the low pressure refrigerant after passing through the cooling decompression device (29) flows into the evaporator (11) and enters the air conditioning passage ( 2) To absorb heat from the blown air inside Evaporated, the evaporator (11) low-pressure refrigerant after passing through said pressure It is designed to be sucked into the compressor (22), and in the dehumidification modeThe cold air cooled and dehumidified by the evaporator (11) is reheated by the condenser (12) and blown into the room.And
  When setting the defrost mode for defrosting the outdoor heat exchanger (24) during the heating mode,By switching the door means (16, 17) to a position where the blown air in the air conditioning passage (2) passes through the bypass passage (12a), the discharged gas refrigerant of the compressor (22) is changed to the air conditioning passage ( 2) Passing through the condenser (12) without exchanging heat with the blown air inside, and discharging after passing through the condenser (12)Gas refrigerant,The flow toward the heating decompression device (27) and the flow toward the refrigerant bypass passage (63)Branch,
  One of the branched gas refrigerantsIs reduced in pressure by the heating decompression device (27) to be in a low pressure state, and the low-pressure gas refrigerant after passing through the heating decompression device (27)Inflow into the outdoor heat exchanger (24)do itDefrosting the outdoor heat exchanger (24),The low-pressure refrigerant after passing through the outdoor heat exchanger (24) is sucked into the compressor (22),
  Also,The other of the branched gas refrigerant isThe refrigerant flows into the refrigerant bypass passage (63) and is depressurized by the bypass side pressure reducing device (26) to be in a low pressure state, and the low pressure gas refrigerant after passing through the bypass side pressure reducing device (26)It flows into the evaporator (11), and the blower air in the air conditioning passage (2) is blown by the evaporator (11).By the low-pressure gas refrigerantHeated,The low-pressure refrigerant after passing through the evaporator (11) is also sucked into the compressor (22), and in the defrosting mode, the warm air heated by the evaporator (11) Blows into the room through (12a)It is characterized by that.
[0014]
According to this, while performing defrosting of the outdoor heat exchanger (24), indoor heating can be continued by the air heating action of the evaporator (11) at the same time. That is, paying attention to the point that the evaporator (11) is not used in the heating mode, in the present invention, the evaporator (11) is effectively used in the defrosting mode, so that the defrosting mode is not caused without complicating the cycle. It is possible to ensure the indoor heating action in the.
[0015]
  In the first aspect of the present invention, in the cooling and defrosting mode, the air flow to the condenser (12) is blocked by the door means (16, 17) and the air is allowed to pass through the bypass passage (12a). Therefore, the condenser (12) serves as a part of the refrigerant passage through which the high-pressure refrigerant flows.
  Therefore, through each mode of heating, cooling, dehumidification, and defrosting, the refrigerant remains flowing into the condenser (12), and the discharge gas refrigerant of the compressor (22) is always passed through the condenser (12) to the outdoor heat exchanger ( 24). As a result, it is possible to eliminate the four-way valve for reversing the refrigerant flow direction, or to reduce the number of valve devices such as a check valve and a solenoid valve for switching the refrigerant flow path, thereby simplifying the refrigerant piping configuration. Product cost can be reduced.
  Next, in the invention according to claim 2, in claim 1, it has the 1st heat exchange means (74, 320) which collects the waste heat of exothermic parts (81),
  During defrost mode,The low-pressure gas refrigerant decompressed by the bypass-side decompression device (26)Waste heat of the heat generating component (81) is removed by the first heat exchange means (74, 320).The gas refrigerant in the low pressure state after absorbing heat and absorbing this waste heatEvaporator (11)InInflowDoIt is characterized by that.
[0016]
According to this, the room heating capability by the evaporator (11) at the time of a defrost mode can be improved by the waste heat recovery of a heat-emitting component (81).
[0017]
  Next, in the invention of claim 3, in claim 2, as the compressor (22), a discharge port (22a) for discharging the compressed refrigerant, a suction port (22b) for sucking in the refrigerant on the low pressure side of the refrigeration cycle, And a compressor having a gas injection port (22c) for introducing a gas refrigerant on the refrigeration cycle intermediate pressure side,
  Even in the heating mode, the high-pressure refrigerant condensed in the condenser (12) branches into a flow toward the heating decompression device (27) and a flow toward the refrigerant bypass passage (63),
  One of the branched refrigerants is decompressed by the heating decompression device (27) to become a low pressure state and flows into the outdoor heat exchanger (24),
  The other of the branch refrigerant is by a bypass side pressure reducing device (26).The intermediate pressure refrigerant is depressurized to an intermediate pressure, the first heat exchange means (74, 320) absorbs the waste heat of the heat generating component (81), the intermediate pressure refrigerant is gasified, and the intermediate pressure gas refrigerant is gasified. Flow into the injection port (22c)And
  In the heating mode, the low-pressure refrigerant after passing through the outdoor heat exchanger (24) is sucked into the suction port (22b), and in the cooling mode, the low-pressure refrigerant after passing through the evaporator (11) is sucked into the suction port (22b), In the defrosting mode, the low-pressure refrigerant after passing through the outdoor heat exchanger (24) and the low-pressure refrigerant after passing through the evaporator (11) are sucked into the suction port (22b).It is characterized by that.
[0018]
According to this, the improvement effect of the heating capability by the gas injection to the compressor (22) and the improvement effect of the heating capability by the waste heat recovery of the heat generating component (81) can be combined. Therefore, it is possible to satisfactorily balance the improvement of the heating capacity during normal heating and the securing of the indoor heating action during the defrosting of the outdoor heat exchanger.
[0019]
  Next, in invention of Claim 4, in Claim 3, at the time of heating mode,It is said one branch refrigerant which goes to decompression device (27) for heatingHigh-pressure refrigerant,The pressure was reduced by the bypass side pressure reducing device (26).It has the 2nd heat exchange means (23,230) which heat-exchanges with an intermediate pressure refrigerant | coolant, It is characterized by the above-mentioned.
[0020]
According to this, since the intermediate pressure refrigerant absorbs heat from the high pressure refrigerant and also absorbs heat from the waste heat of the heat generating component (81), gasification of the intermediate pressure refrigerant is promoted, and the heating capacity can be effectively improved.
[0021]
Next, the invention described in claim 5 is characterized in that, in claim 4, the first heat exchange means and the second heat exchange means are integrally formed as one heat exchanger (230).
[0022]
According to this, the first and second heat exchanging means can be made compact and simple by the integrated heat exchanger (230).
[0023]
  Next, in invention of Claim 6, in Claim 1, it has the 1st heat exchange means (74, 320) which collect | recovers the waste heats of a heat-emitting component (81),
  Inhaled into compressor (22) during heating mode, After passing the outdoor heat exchanger (24)The low-pressure refrigerant absorbs the waste heat of the heat generating component (81) by the first heat exchange means (74, 320),
  During defrost modeIsSucked into the compressor (22), After passing the outdoor heat exchanger (24)Low pressure refrigerant and sucked into compressor (22), After passing through the evaporator (11)The waste heat of the heat generating component (81) is absorbed into the low-pressure refrigerant by the first heat exchange means (74, 320).
[0024]
According to this, since the temperature of the low-pressure side refrigerant is lower than that of the intermediate-pressure refrigerant, waste heat recovery can be performed even when the temperature of the heat generating component (81) is low.
[0025]
Next, according to a seventh aspect of the present invention, in the sixth aspect, an accumulator (25) for separating the gas-liquid refrigerant is provided on the inlet side of the suction port (22b) of the compressor (22), and the accumulator (25 ), The liquid refrigerant in which the oil is dissolved is mixed with the gas refrigerant and sucked into the suction port (22b), and the first heat exchange means (74, 320) is arranged on the inlet side of the accumulator (25). It is characterized by that.
[0026]
According to this, the liquid refrigerant in which the oil is dissolved by the accumulator (25) can be reliably mixed into the low-pressure gas refrigerant and sent to the suction port (22b) of the compressor (22). As a result, the flow rate (flow velocity) of the refrigerant flowing through the outdoor heat exchanger (24) is reduced due to the decrease in the compressor rotation speed, and the oil in the refrigerant is likely to accumulate in the outdoor heat exchanger (24) even at a low heating load. The oil return property to the compressor (22) can be secured satisfactorily, and the durability of the compressor (22) can be improved. In addition, by arranging the first heat exchange means (74, 320) on the inlet side of the accumulator (25), a heat generating component can be added to the gas-liquid two-phase refrigerant on the accumulator inlet side (refrigerant lower in temperature than the gas refrigerant). The waste heat of (81) can be absorbed, and the waste heat can be recovered satisfactorily even when the heat generating component (81) is at a low temperature.
[0030]
In addition, the code | symbol in the bracket | parenthesis of each said means shows a corresponding relationship with the specific means as described in embodiment mentioned later.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 is a first embodiment in which the present invention is applied to an air conditioner for an electric vehicle. An air conditioning unit 1 is installed in a vehicle interior of an electric vehicle, and an air conditioning duct 2 guides conditioned air into the vehicle interior. It constitutes an air conditioning passage. Suction ports 3, 4, and 5 for sucking inside and outside air are provided on one end side of the air conditioning duct 2. The inside air inlet 4 and the outside air inlet 5 are opened and closed by an inside / outside air switching door 6.
[0032]
A blower 7 for blowing air is installed in the air conditioning duct 2 adjacent to the suction ports 3 to 5, and this blower 7 is constituted by a motor (not shown) and fans 7a and 7b driven by this motor. Is done.
[0033]
On the other hand, on the other end of the air conditioning duct 2, a plurality of air outlets leading to the passenger compartment, that is, a foot air outlet 8 for blowing out the air conditioned air toward the foot of the passenger in the passenger compartment, and the conditioned air toward the upper body of the passenger in the passenger compartment. A defroster outlet 10 for blowing out conditioned air is formed on the face outlet 9 and the inner surface of the vehicle windshield.
[0034]
In addition, a cooling evaporator 11 is provided in the air conditioning duct 2 on the air downstream side of the blower 7. The cooling evaporator 11 is an indoor heat exchanger that constitutes a part of the refrigeration cycle 21, and in the cooling mode and the dehumidifying mode, which will be described later, the air in the air conditioning duct 2 is removed by the endothermic action of the refrigerant flowing inside. Functions as a dehumidifier / cooler. Moreover, it functions as a heater which heats the air in the air-conditioning duct 2 by the heat radiation action of the refrigerant flowing inside during the defrosting mode described later.
[0035]
Further, a heating condenser 12 is provided in the air conditioning duct 2 on the air downstream side of the cooling evaporator 11. The heating condenser 12 is an indoor heat exchanger that constitutes a part of the refrigeration cycle 21, and in the heating mode and dehumidification mode, which will be described later, the heat in the air conditioning duct 2 is radiated by the heat radiation action of the refrigerant flowing inside. Functions as a heater for heating.
[0036]
In addition, the air flow path in the air conditioning duct 2 is partitioned by a partition wall 13 into a first air flow path 14 on the foot outlet 8 side and a second air flow path 15 on the face outlet 9 and defroster outlet 10 side. It has been. This division of the air flow paths 14 and 15 is for carrying out the next two-layer mode of the inside and outside air during heating in winter. That is, during heating in winter, the first air flow path 14 on the foot outlet 8 side draws high-temperature inside air from the inside air inlet 3 and blows the temperature to the feet, thereby simultaneously reducing the heating load and at the same time defroster outlet 10 In order to implement the inside / outside air two-layer mode in which outside air with low humidity is sucked into the second air passage 15 on the side from the outside air inlet 5 and the front window is reliably prevented from being fogged, the air passages 14, 15 Is divided into two.
[0037]
The doors 16 and 17 are passage switching doors that switch between an air passage that passes through the condenser 12 and a bypass passage 12 a that bypasses the condenser 12. One door 17 also serves as a partition member for the air passages 14 and 15. Yes. Reference numeral 18 denotes a door disposed on the downstream side of the air flow paths 14 and 15, which switches between the partitioning action of the air flow paths 14 and 15 and the communication state of the air flow paths 14 and 15. Each of the outlets 8, 9, and 10 is opened and closed by an outlet switching door (not shown).
[0038]
By the way, the refrigeration cycle 21 is configured as a heat pump refrigeration cycle that performs cooling, heating, and dehumidification with a cooling evaporator 11 and a heating condenser 12, in addition to the evaporator 11 and the condenser 12. The following equipment is provided.
[0039]
That is, the refrigerant compressor 22, the refrigerant-refrigerant heat exchanger 23 that heat-exchanges gas-liquid two-phase intermediate pressure refrigerant with the high-pressure refrigerant and gasifies it, the outdoor heat exchanger 24, and the cycle low-pressure refrigerant (compressor suction refrigerant). An accumulator (gas-liquid separator) 25 that separates gas-liquid and stores excess liquid refrigerant, and a first pressure reducing device 26 that branches (bypasses) part of the high-pressure refrigerant after passing through the condenser 12 to reduce the pressure to an intermediate pressure. , A second decompressor 27 that decompresses the high-pressure refrigerant at the outlet of the refrigerant-refrigerant heat exchanger 23 to a low pressure during heating, and a third decompressor 29 that decompresses the high-pressure refrigerant after condensation from the outdoor heat exchanger 24 to a low pressure during cooling. The refrigeration cycle 21 includes solenoid valves (refrigerant path switching means) 28a, 28b, 28c for switching the refrigerant flow in each of the cooling, heating, dehumidification, and defrost modes, and a water-refrigerant heat exchanger 74.
[0040]
The outdoor heat exchanger 24 is installed outside the passenger compartment of the electric vehicle and exchanges heat with the outside air blown by the electric outdoor fan 24a. The refrigerant compressor 22 is an electric compressor, and an AC motor (not shown) is integrally incorporated in a sealed case, and is driven by the motor to suck, compress, and discharge the refrigerant. An AC voltage is applied to the AC motor of the refrigerant compressor 22 by an inverter 30, and the motor rotation speed is continuously changed by adjusting the frequency of the AC voltage by the inverter 30. Accordingly, the inverter 30 serves as a means for adjusting the rotational speed of the compressor 22, and a DC voltage from the in-vehicle battery 31 is applied to the inverter 30. The inverter 30 is energized and controlled by the air conditioning controller 40.
[0041]
The refrigerant compressor 22 is provided with a discharge port 22a that discharges the compressed refrigerant, a suction port 22b that sucks in the refrigerant on the low-pressure side of the cycle, and a gas injection port 22c that injects the intermediate-pressure gas refrigerant. The gas injection port 22c communicates with the refrigerant-refrigerant heat exchanger 23 via a gas injection passage 22d.
[0042]
Each of the first pressure reducing device 26, the second pressure reducing device 27, and the third pressure reducing device 29 is an electric expansion valve whose valve opening is electrically adjusted, and this electric expansion valve is, for example, a step motor. An electric drive means is provided, and the displacement amount of the valve body is adjusted by the electric drive means, and the opening degree of the refrigerant throttle passage is adjusted by the valve body. The first to third decompression devices 26, 27, and 29 can also be configured by fixed throttle means (for example, capillary tubes, orifices, etc.).
[0043]
The accumulator 25 has a U-shaped refrigerant outlet pipe 25a. The liquid refrigerant is supplied to the compressor 22 by storing excess liquid refrigerant on the bottom side and sucking gas refrigerant from the upper end opening of the U-shaped refrigerant outlet pipe 25a. Prevent back. At the same time, liquid refrigerant in which oil has melted is sucked from a small-diameter oil return hole (not shown) provided at the bottom of the U-shaped refrigerant outlet pipe 25a of the accumulator 25 and mixed with the gas refrigerant. The oil return property to the machine 22 is ensured.
[0044]
In addition, the high-pressure refrigerant pipe (main flow path) 32 connecting the refrigerant-refrigerant heat exchanger 23 and the second decompressor 27 detects the temperature and pressure of the high-pressure refrigerant at the outlet of the refrigerant-refrigerant heat exchanger 23. The refrigerant temperature sensor 41a and the high-pressure sensor 41b are installed. The output signals of the sensors 41a and 41b are input to the air conditioning control device 40, and the subcooling (supercooling degree) of the high-pressure refrigerant at the outlet of the refrigerant-refrigerant heat exchanger 23 is controlled by controlling the opening degree of the second decompression device 27. Control.
[0045]
The injection passage 22d is provided with an intermediate pressure refrigerant temperature sensor 41f and an intermediate pressure sensor 41g for detecting the temperature and pressure of the intermediate pressure refrigerant decompressed by the first decompression device 26. The output signals of the sensors 41f and 41g are inputted to the air conditioning controller 40, and the superheat (superheat degree) of the intermediate pressure refrigerant at the outlet of the refrigerant-refrigerant heat exchanger is controlled by controlling the opening degree of the first pressure reducing device 26. Control.
[0046]
The air-conditioning control device 40 is composed of a microcomputer and its peripheral circuits. The air-conditioning control device 40 includes an outside air temperature sensor 41c and an evaporator immediately after the evaporator in addition to the sensors 41a, 41b, 41f and 41g. From a sensor group 41 such as an evaporator temperature sensor 41d for detecting the air temperature, a discharge temperature sensor 41e for detecting the discharge gas temperature of the compressor 22, a refrigerant temperature sensor 41h at the outlet of the outdoor heat exchanger 24, and a current sensor 41i of the inverter 30. A sensor signal is input.
[0047]
The air-conditioning control device 40 is also input with a signal corresponding to the setting status of each lever operated by a passenger (user) from the air-conditioning control panel 50 (see FIG. 2).
[0048]
FIG. 1 shows only the electrical connection between the inverter 30 and the air conditioning control device 40, and does not show the electrical connection between other devices and the air conditioning control device 40. 3. The operation of the pressure reducing devices 26, 27, 29, electromagnetic valves 28a, 28b, 28c, doors 6, 16, 17, 18, an outlet switching door (not shown), the blower 7, and the outdoor fan 24a is also controlled by the control device 40. . The solenoid valves 28a, 28b, and 28c are controlled to be opened and closed by the control device 40 as shown in FIG. 8 to be described later, and the refrigerant circulation path is switched corresponding to each operation mode of cooling, heating, dehumidification, and defrosting.
[0049]
On the other hand, the refrigerant-refrigerant heat exchanger 23 has a cylindrical shape with a double passage structure in which an internal passage 23a and an external passage 23b are formed concentrically as shown in FIG. The internal passage 23a is located at the center, and a main-stream refrigerant (high-pressure refrigerant) that flows toward the outdoor heat exchanger 24 flows.
[0050]
On the other hand, the external passage 23b is formed by a large number of small passages arranged in parallel in the circumferential direction on the outer peripheral side of the internal passage 23a. The external passage 23b has an intermediate pressure reduced by the first pressure reducing device 26. The refrigerant flows from the bypass passage 63.
[0051]
Here, the tubular body 23c forming the internal passage 23a and the external passage 23b is molded (for example, extrusion molding) with a metal having excellent thermal conductivity such as aluminum, and a heat insulating material is formed on the outer surface of the tubular body 23c. Since 23d is fixed, heat exchange can be performed satisfactorily only between the high-pressure refrigerant in the internal passage 23a and the intermediate-pressure refrigerant in the external passage 23b.
[0052]
The refrigerant-refrigerant heat exchanger 23 is used as a part of the high-pressure side pipe 32 because the high-pressure refrigerant flows only in the internal passage 23a by fully closing the first decompression device 26 when gas injection is not required. Is called.
[0053]
The water-refrigerant heat exchanger 74 also has a cylindrical shape with a double-passage structure in which an internal passage (hot water passage) 74a and an external passage (refrigerant passage) 74b are formed concentrically as in the refrigerant-refrigerant heat exchanger 23. Can be configured. The intermediate pressure refrigerant flows into the external passage 74 b from the external passage 23 b of the refrigerant-refrigerant heat exchanger 23 through the pipe 71.
[0054]
The outlet side of the external passage 74b is connected to the injection port 22c through the injection passage 22d, and is connected to the pipe 72 provided with the defrosting electromagnetic valve 28c from the branch point 73a. This pipe 72 is connected to a branch point 73 b downstream of the third decompression device 29.
[0055]
Here, the hot water circuit 80 that circulates hot water in the internal passage (hot water passage) 74a of the water-refrigerant heat exchanger 74 will be described. The hot water circuit 80 cools the heat generating component 81 mounted on the electric vehicle. The heat generating component 81 is, for example, a semiconductor switch element (power transistor) of an inverter for controlling the rotational speed of an AC motor (not shown) for driving an electric vehicle.
[0056]
In addition to the water-refrigerant heat exchanger 74 described above, the hot water circuit 80 includes an electric water pump 82 for circulating hot water, a three-way valve (water circuit switching means) 83 of a solenoid valve type, and hot water (cooling water). A heat radiator 84 that dissipates heat into the outside air is provided. By the switching action of the three-way valve 35, the hot water heated by the heat generating component 81 flows to the water-refrigerant heat exchanger 74 side as indicated by the solid line arrow A, or flows to the radiator 84 side as indicated by the broken line arrow B. It has become.
[0057]
Next, the air-conditioning control panel 50 shown in FIG. 3 is provided with the following operation members that are manually operated by a passenger. Reference numeral 51 denotes a temperature control lever for setting a target value of the temperature of the air blown into the vehicle interior. In this example, the temperature control lever 51 is configured to set a target value for adjusting the rotational speed of the electric compressor 22.
[0058]
Moreover, the opening / closing of the solenoid valves 28a, 28b, 28c and the passage switching doors 16, 17 are controlled with respect to the target value set by the operation position of the temperature control lever 51, and the operation mode of the refrigeration cycle is switched.
[0059]
For example, as shown in FIG. 4, the operation mode is switched by sequentially moving the lever 51 from the left to the right to set the cooling mode, the dehumidifying mode, and the heating mode. Further, as shown in FIGS. 5, 6 and 7, by moving the operation position of the temperature control lever 51, the target evaporator outlet temperature is set during cooling, and the target high pressure is set during dehumidification and heating. Yes.
[0060]
The operation position signal of the temperature control lever 51 is input to the control device 40, and the control device 40 compresses the compressor so that the actual evaporator blown air temperature or high pressure detected by the sensor group 41 matches the target value. The rotation speed of 22 is controlled and the blown air temperature is controlled.
[0061]
52 is a speed (air volume) switching lever of the blower 7, 53 is an air conditioner switch for intermittently operating the compressor 22, and 54 is an air conditioning blowing mode switching lever for opening and closing a switching door (not shown) of the outlets 8, 9, and 10. , 55 is an inside / outside air switching lever that opens and closes the inside / outside switching door 6.
[0062]
Next, the operation of the first embodiment in the above configuration will be described. When the air conditioner switch 53 is turned on, the signal is turned on to the control device 40 to start the compressor 22. In this state, when the temperature control lever 51 is in the position from PH2 to PH1 in FIG. 4, the control device 40 determines that the heating mode is selected and displays the devices such as the electromagnetic valves 28a, 28b, 28c, the passage switching doors 16, 17 and the like. Control to the state of 8 heating mode.
[0063]
Black arrows in FIG. 1 indicate the refrigerant flow in the heating mode, and FIG. 9 is a Mollier diagram showing the state of the refrigerant in the refrigeration cycle in the heating mode. The high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 22 first flows into the condenser 12 set indoors, where it exchanges heat (radiates heat) with the air blown by the blower 7, and the gas refrigerant is condensed. To do. The warm air heated by the condensation of the gas refrigerant is mainly blown into the vehicle compartment from the foot outlet 8 to heat the vehicle compartment.
[0064]
A portion of the high-pressure refrigerant that has flowed out of the condenser 12 is branched from the branch point 61a to the bypass passage 63 side because the cooling electromagnetic valve 28b is closed. The branched high-pressure refrigerant flows into the first decompression device 26 and is decompressed to the intermediate pressure PM. The two-phase refrigerant decompressed to the intermediate pressure PM passes through the external passage 23b of the refrigerant-refrigerant heat exchanger 23 and exchanges heat with the high-pressure refrigerant at the outlet of the indoor condenser 12 that passes through the internal passage 23a. To increase.
[0065]
In the heating mode, the hot water heated by the heat generating component 81 of the hot water circuit 80 flows to the water-refrigerant heat exchanger 74 side as indicated by the solid arrow A by the three-way valve 83, and therefore the external passage 23b of the refrigerant-refrigerant heat exchanger 23. The intermediate-pressure refrigerant flowing out of the gas is gasified with increased dryness by heat exchange (heat absorption) with warm water in the water-refrigerant heat exchanger 74.
[0066]
Since the solenoid valve 28c is in the closed state in the heating mode, the intermediate-pressure gas refrigerant flows into the injection port 22c through the injection passage 22d.
[0067]
On the other hand, the high-pressure refrigerant passing through the internal passage 23a of the refrigerant-refrigerant heat exchanger 23 exchanges heat (dissipates heat) with the refrigerant passing through the external passage 23b, and is supercooled. The supercooled high-pressure refrigerant flows into the second decompression device 27, is decompressed to the low pressure PL by the second decompression device 27, and flows into the outdoor heat exchanger 24. When the low-pressure refrigerant passes through the outdoor heat exchanger 24, the low-pressure refrigerant absorbs heat from the blown air (outside air) of the outdoor fan 24a and evaporates.
[0068]
The gas refrigerant evaporated in the outdoor heat exchanger 24 flows into the accumulator 25 through the heating solenoid valve 28a in the open state, and the liquid refrigerant generated by the fluctuation of the heating load is stored in the accumulator 25. In the accumulator 25, the gas refrigerant is sucked from the upper end opening of the U-shaped refrigerant outlet pipe 25a, and oil is dissolved from an oil return hole (not shown) provided in the bottom of the U-shaped refrigerant outlet pipe 25a. The refrigerant is sucked and mixed with the gas refrigerant, and the gas refrigerant is sucked into the suction port 22 b of the compressor 22. Accordingly, the oil can be reliably returned to the compressor 22 even under a condition in which the refrigerant flow rate is small as in the case of an intermediate heating and low load.
[0069]
The opening of the first pressure reducing device (electric expansion valve) 26 is controlled by the control device 40 based on the detection signals of the temperature sensor 41f and the pressure sensor 41g of the intermediate pressure refrigerant, and flows into the injection port 22c of the compressor 22. The flow rate of the refrigerant is controlled so that the superheat SH of the gas injection refrigerant to be performed becomes a predetermined amount. That is, if the superheat SH of the gas injection refrigerant increases, the opening degree of the first decompression device (electric expansion valve) 26 is increased, and conversely, if the superheat SH decreases, the first decompression device (electric expansion). The opening of the valve 26 is decreased. Excessive liquid return to the compressor 22 can be prevented by such superheat control of the gas injection refrigerant.
[0070]
In addition, the opening degree of the second decompression device 27 is controlled by the control device 40, and the refrigerant-refrigerant heat exchange is performed so that the subcool SC of the high-pressure refrigerant exiting the internal passage 23a of the refrigerant-refrigerant heat exchanger 23 becomes a predetermined amount. The amount of exchange heat in the vessel 23 is controlled. That is, when the subcool SC of the high-pressure refrigerant increases, the opening degree of the second decompression device 27 is increased to lower the high pressure and reduce the subcool SC. Conversely, if the subcool SC of the high-pressure refrigerant is reduced, the opening of the second decompression device 27 is decreased to increase the high pressure, and the subcool SC is increased.
[0071]
In FIG. 9, Gi is a refrigerant flow rate that is gas-injected from the injection passage 22d to the injection port 22c, Ge is a refrigerant flow rate that is drawn into the compressor 22 through the outdoor heat exchanger (evaporator during heating), Δi1Is the enthalpy difference of the intermediate pressure refrigerant on the gas injection side that absorbs heat in the refrigerant-refrigerant heat exchanger 23 and the water-refrigerant heat exchanger 74, and Δi2Is the enthalpy difference of the high-pressure refrigerant that dissipates heat in the refrigerant-refrigerant heat exchanger 23 and travels toward the second decompression device 27.
[0072]
Further, since the passage switching doors 16 and 17 open the air passage on the condenser 12 side and fully close the bypass passage 12a, the high-temperature and high-pressure refrigerant discharged from the compressor 22 and the air blown by the blower 7 are condensed into the condenser. 12 to heat exchange.
[0073]
FIG. 10 shows the pressure (intermediate pressure) of the intermediate-pressure refrigerant decompressed by the first decompression device 26 on the horizontal axis, and the vertical axis represents the superheat SH and heating capacity Qc of the injection refrigerant. The superheat SH is predetermined. At the value T1, when there is no waste heat recovery in the water-refrigerant heat exchanger 74, the intermediate pressure = Pm, and the heating capacity Qc at that time is Q1.
[0074]
On the other hand, when the waste heat is recovered from the hot water by the water-refrigerant heat exchanger 74 as in the present embodiment, even if the superheat SH is controlled to the same value T1, the waste heat is recovered from the hot water. Since the gasification of the pressurized refrigerant is promoted, the intermediate pressure can be increased from Pm to Pm1 as shown in FIG. As the intermediate pressure increases, the gas injection refrigerant flow rate increases from Gi to Gi1, and the heating capacity Qc can be improved from Q1 to Q2 in FIG. FIG. 11 is a Mollier diagram showing the change of the cycle refrigerant state depending on the presence or absence of waste heat recovery.
[0075]
Next, the defrosting mode in the heating mode will be described. In the heating mode, the condensed water generated in the outdoor heat exchanger 24 acting as an evaporator is frozen, and a frosted state occurs in the outdoor heat exchanger 24. When the frosting state of the outdoor heat exchanger 24 is determined by the control device 40, the devices such as the electromagnetic valves 28a, 28b, 28c and the passage switching doors 16, 17 are switched to the state in the defrosting mode of FIG. .
[0076]
Although the frosting state of the outdoor heat exchanger 24 can be determined by various methods, in this example, the frosting of the outdoor heat exchanger 24 reduces the outlet refrigerant temperature Tho of the outdoor heat exchanger 24 and When the difference between the temperature Tam and the outlet refrigerant temperature Tho (Tam−Tho) becomes larger than a predetermined value (for example, 20 ° C.), it is assumed that the outdoor heat exchanger 24 is in a frosted state and the cycle is changed to the defrosting mode of FIG. Switch to state.
[0077]
The arrows in FIG. 12 indicate the flow direction of the refrigerant in the defrosting mode, and FIG. 13 is a Mollier diagram showing the state change of the refrigerant in the defrosting mode.
[0078]
In the defrosting mode, the air passage of the condenser 12 is fully closed by the passage switching doors 16 and 17, so that all the air blown from the blower 7 passes through the bypass passage 12 a of the condenser 12. Therefore, the discharged gas refrigerant from the compressor 22 does not exchange heat in the condenser 12, passes through the condenser 12 as it is immediately after discharge, and is branched into two flows at the branch point 61a.
[0079]
That is, one refrigerant flow radiates heat through the internal passage 23 a of the refrigerant-refrigerant heat exchanger 23, and then is decompressed by the second decompression device 27 and flows into the outdoor heat exchanger 24. Here, the decompressed gas refrigerant (hot gas) dissipates heat in the outdoor heat exchanger 24 to melt the frost in the outdoor heat exchanger 24. The refrigerant that has passed through the outdoor heat exchanger 24 flows into the accumulator 25 through the heating electromagnetic valve 28a in the open state.
[0080]
The other refrigerant flow from the branch point 61a flows into the first decompression device 26 and is decompressed. The decompressed gas refrigerant passes through the external passage 23b of the refrigerant-refrigerant heat exchanger 23, exchanges heat with the high-pressure gas refrigerant passing through the internal passage 23a, absorbs heat, and then passes through the external passage (refrigerant) of the water-refrigerant heat exchanger 74. The heat is absorbed again from the hot water in the passage 74b.
[0081]
Thereafter, the gas refrigerant passes through the defrosting electromagnetic valve 28 c and flows into the indoor evaporator 11, and dissipates heat into the blown air of the blower 7. The refrigerant that has passed through the indoor evaporator 11 flows into the accumulator 25, merges with the refrigerant that has passed through the outdoor heat exchanger 24, and is sucked into the compressor 22.
[0082]
The blown air (warm air) heated by the indoor evaporator 11 passes through the bypass passage 12a of the condenser 12 and blows out mainly from the foot outlet 8 into the vehicle interior to heat the vehicle interior. Therefore, since heating of the passenger compartment can be continued even during defrosting, a decrease in the passenger compartment temperature during defrosting can be suppressed. In the defrosting mode, the first and second decompression devices 26 and 27 are held at a predetermined control opening set in advance.
[0083]
As the defrosting mode proceeds, the outlet refrigerant temperature Tho of the outdoor heat exchanger 24 rises, and the difference between the outside air temperature Tam and this outlet refrigerant temperature Tho (Tam−Tho) is a predetermined value (for example, 20 ° C.) or less. And when the state continues for a predetermined time (for example, 10 seconds) or longer, it is determined that the defrosting of the outdoor heat exchanger 24 is completed, and the mode is automatically returned to the heating mode.
[0084]
Next, when the temperature control lever 51 is in the position of PC1 to PC2 in FIG. 3, the control device 40 determines that the cooling mode is selected, and the devices such as the electromagnetic valves 28a, 28b, 28c, the passage switching doors 16, 17 and the like are shown in FIG. Control to the state of the cooling mode. The white arrow in FIG. 1 indicates the refrigerant flow in the cooling mode.
[0085]
In the cooling mode, the passage switching doors 16 and 17 fully close the air passage on the condenser 12 side, so that all the air blown from the blower 7 flows through the bypass passage 12a. Therefore, the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 22 does not exchange heat (dissipate heat) with the blown air of the blower 7 in the condenser 12, and therefore remains in a superheated state immediately after being discharged from the compressor 22. Through the condenser 12.
[0086]
At this time, since the first and second pressure reducing devices (electrical expansion valves) 26 and 27 are controlled to be in a fully closed state, the entire amount of the gas refrigerant discharged from the compressor 22 is in an open state. It flows into the outdoor heat exchanger 24 through the valve 28 b and the bypass passage 62.
[0087]
In the outdoor heat exchanger 24, the high-pressure gas refrigerant is condensed by exchanging heat (radiating heat) with the blown air (outside air) of the outdoor fan 24a. Then, the refrigerant condensed in the outdoor heat exchanger 24 passes through the third pressure reducing device 29 by the valve closing of the electromagnetic valves 28 a and 28 c, is reduced to the low pressure PL, and then flows into the evaporator 11. Here, the third decompression device 29 has a valve opening degree so that the subcooling of the refrigerant at the outlet of the outdoor heat exchanger 24 becomes a predetermined value based on detection signals of the high pressure sensor 41b and the outlet refrigerant temperature sensor 41h of the outdoor heat exchanger 24. Be controlled.
[0088]
In the evaporator 11, the refrigerant absorbs heat from the air blown from the blower 7 and evaporates, and the cold air cooled by the evaporator 11 does not pass through the indoor condenser 12 on the downstream side as described above, and its bypass passage 12a. The air is passed through the vehicle as it is, and is blown out mainly from the face air outlet 9 into the vehicle interior to cool the vehicle interior.
[0089]
On the other hand, the gas refrigerant evaporated in the evaporator 11 flows into the accumulator 25, and the gas refrigerant is sucked into the suction port 22 b of the compressor 22 from the accumulator 25.
[0090]
Next, when the temperature control lever 51 is in the position of PD1 to PD2 in FIG. 3, the control device 40 determines the dehumidifying mode, and the devices such as the electromagnetic valves 28a, 28b and 28c, the passage switching doors 16 and 17 are shown in FIG. Control to the dehumidifying mode. The hatched arrows in FIG. 1 indicate the refrigerant flow path in the dehumidifying mode.
[0091]
In the dehumidifying mode, since the air passage of the condenser 12 is opened by the passage switching doors 16 and 17, the high-temperature and high-pressure superheated gas refrigerant discharged from the compressor 22 flows into the condenser 12, where the blower 7 blows air. Heat exchange (heat radiation) with air causes the gas refrigerant to condense.
[0092]
At this time, since the first pressure reducing device 26 and the cooling electromagnetic valve 28 b are fully closed, the entire amount of the high-pressure refrigerant condensed by the condenser 12 passes through the internal passage 23 a of the refrigerant-refrigerant heat exchanger 23. At this time, the refrigerant passing through the internal passage 23a is not cooled, passes through the refrigerant-refrigerant heat exchanger 23 and flows into the second decompression device 27 as it exits the indoor condenser 12, 2 The pressure is reduced to an intermediate pressure by the pressure reducing device 27 and flows into the outdoor heat exchanger 24.
[0093]
Here, the intermediate pressure produced by the second pressure reducing device 27 is the first dehumidifying mode D that requires a high blowing temperature in the dehumidifying mode.1Then, by setting it lower than the saturation pressure of the refrigerant with respect to the outside air temperature, the outdoor heat exchanger 24 can act as an evaporator and can be set on the heat absorption side. That is, the intermediate pressure is set low by decreasing the opening degree of the second pressure reducing device 27 and increasing the pressure reduction amount.
[0094]
Then, the intermediate pressure refrigerant that has flowed out of the outdoor heat exchanger 24 flows into the third decompression device 29 by the closing of the heating electromagnetic valve 28a, and is decompressed to the low pressure PL. The decompressed low-pressure refrigerant flows into the evaporator 11, absorbs heat from the blown air of the blower 7 and evaporates, and then flows into the accumulator 25. The gas refrigerant is sucked from the accumulator 25 into the suction port 22 b of the compressor 22.
[0095]
In the dehumidifying mode, the refrigerant flows through both the evaporator 11 and the condenser 12 set in the indoor air conditioning unit 1, and the air blown from the blower 7 is first cooled and dehumidified by the evaporator 11, and then the condenser 12. It is reheated and becomes warm air. This warm air is mainly blown out from the differential outlet 10 into the vehicle interior to prevent fogging of the window glass and to dehumidify and heat the vehicle interior.
[0096]
By the way, in the dehumidification mode, the 1st dehumidification mode D which requires high blowing temperature1Then, since the sum of the power of the compressor 22, the heat absorption amount of the outdoor heat exchanger 24, and the heat absorption amount in the indoor evaporator 11 can be radiated from the indoor condenser 12, a desired high blowing temperature can be created.
[0097]
On the other hand, in the dehumidification mode, the second dehumidification mode D which requires a low blowing temperature2Then, by setting the intermediate pressure produced by the second decompression device 27 higher than the saturation pressure of the refrigerant with respect to the outside air temperature, the outdoor heat exchanger 24 can act as a condenser and can be set on the heat radiation side. That is, the intermediate pressure is set high by increasing the valve opening degree of the second pressure reducing device 27 and reducing the pressure reduction amount.
[0098]
As a result, the outdoor heat exchanger 24 becomes a condenser and acts as a heat radiating side, so that the total power absorbed by the power L of the compressor 22 and the indoor evaporator 11, the heat radiating amount Qeh in the outdoor heat exchanger 24, and the room The sum of the heat radiation amount Qc in the condenser 11 becomes equal. Therefore, the heat radiation amount in the indoor condenser 11 is the first dehumidifying mode D.1Therefore, the target low blowing temperature can be produced.
[0099]
According to the first embodiment, the cycle refrigerant circulation path can be simplified for the following reasons. That is, even in the defrosting mode and the cooling mode, the passage switching doors 16 and 17 block the air flow to the condenser 12 so that air passes through the bypass passage 12a. It becomes a part of the refrigerant passage through which. For this reason, the refrigerant continues to flow through the condenser 12 through all modes of heating, cooling, dehumidification, and defrosting. Therefore, the refrigerant discharged from the compressor 22 is always directed to the outdoor heat exchanger 24 and the like through the condenser 12. Can flow in the direction. As a result, the four-way valve for reversing the refrigerant flow direction can be eliminated, or the number of valve devices such as a check valve and a solenoid valve for switching the refrigerant flow path can be reduced, and the refrigerant piping configuration can be simplified. .
[0100]
(Second Embodiment)
FIG. 14 shows the second embodiment. In the first embodiment, a three-way valve 83 is provided in the hot water circuit 80, and the hot water heated by the heat generating component 81 in the heating and defrosting mode is converted into a water-refrigerant as indicated by a solid arrow A. In the cooling and dehumidifying modes, the hot water heated by the heat generating component 81 is allowed to flow toward the radiator 84 as indicated by the broken-line arrow B, but in the second embodiment, the three-way valve 83 is allowed to flow. The heat radiator 84 is abolished so that hot water always flows through the water-refrigerant heat exchanger 74.
[0101]
According to the second embodiment, it is necessary to always cool the heat generating component 81 with the water-refrigerant heat exchanger 74 when the radiator 84 is abolished. Therefore, the refrigerant is always circulated to the injection passage 22d side, and the temperature discharged from the compressor rises due to the rise in the temperature of the injection refrigerant in the cooling mode, but the cost can be reduced by reducing the number of parts of the hot water circuit 80. .
[0102]
(Third embodiment)
FIG. 15 shows a third embodiment. In the first embodiment, a water-refrigerant heat exchanger 74 is provided on the side of the injection passage 22d through which the intermediate-pressure refrigerant flows, and waste heat recovery of the heat generating component 81 is performed by the injection refrigerant. However, in the third embodiment, waste heat recovery of the heat generating component 81 is performed by the low-pressure side refrigerant.
[0103]
That is, as shown in FIG. 15, a water-refrigerant heat exchanger 74 is provided between the junction 73 c between the outlet side of the evaporator 11 and the outlet side of the heating solenoid valve 28 a and the inlet portion of the accumulator 25. Yes.
[0104]
According to the third embodiment, the refrigerant from the outlet of the evaporator 11 flows through the external passage (refrigerant passage) 74b of the water-refrigerant heat exchanger 74 at the time of cooling. In the mode, the effect of increasing the amount of the injection refrigerant by waste heat recovery cannot be exhibited. Instead, in the third embodiment, even when the hot water temperature of the hot water circuit 80 is low, the waste heat recovery from the hot water is performed for heating capacity. Can be improved.
[0105]
16 is a Mollier diagram (corresponding to FIG. 13) in the defrosting mode according to the third embodiment. In the external passage (refrigerant passage) 74b of the water-refrigerant heat exchanger 74, the gas-liquid on the inlet side of the accumulator 25 is shown. Two-phase low-pressure refrigerant flows. Since the temperature of the low-pressure refrigerant in the gas-liquid two-phase region is sufficiently lower than the refrigerant in the superheated gas region, the temperature difference between the hot water and the refrigerant is ensured even if the hot water temperature in the hot water circuit 80 is somewhat lower, Heating capacity can be improved by recovering waste heat from hot water. This effect can be exhibited not only in the defrost mode but also in the heating mode.
[0106]
13 and 16, the refrigerant pressure in the evaporator 11 is shown in a state lower than the refrigerant pressure in the outdoor heat exchanger 24 for reasons of drawing drawing, but actually the refrigerant pressure in both 11 and 24 is shown. Of course, they are equivalent.
[0107]
(Fourth embodiment)
FIG. 17 shows a fourth embodiment. In the first to third embodiments, a water-refrigerant heat exchanger (first heat exchange means) 74 and a refrigerant-refrigerant heat exchanger (second heat exchange means) 23 are respectively provided. Although comprised independently, in 4th Embodiment, as shown in FIGS. 17-19, both the heat exchangers 23 and 74 are comprised as one integrated heat exchanger 230. FIG.
[0108]
A specific example of the integrated heat exchanger 230 will be described with reference to FIGS. 18 and 19. The high-pressure refrigerant passage portion 230a corresponding to the internal passage 23a through which the high-pressure refrigerant flows in the refrigerant-refrigerant heat exchanger 23, and the refrigerant-refrigerant heat exchanger. The intermediate pressure refrigerant passage portion 230b corresponding to the external passage 23b through which the intermediate pressure refrigerant flows in 23 and the hot water passage portion 230c corresponding to the internal passage 74a through which the hot water flows in the water-refrigerant heat exchanger 74 are integrated.
[0109]
At the time of this integration, each of the three passage portions 230a to 230c is constituted by a flat multi-hole tube extruded by a metal such as aluminum, and the intermediate pressure refrigerant passage portion 230b is set at the center and both sides thereof are formed. In addition, the high-pressure refrigerant passage portion 230a and the hot water passage portion 230c are closely joined and integrated.
[0110]
(Other embodiments)
In the first to fourth embodiments described above, the branch point 61a on the outlet side of the condenser 12 (upstream side of the refrigerant-refrigerant heat exchanger 23) and the inlet side of the outdoor heat exchanger 24 (second decompression device). 27 is provided with a bypass passage 62 that directly couples to a junction 61b on the downstream side of 27, and an electromagnetic valve (electrical opening / closing means) 28b is inserted into the bypass passage 60. 28b may be directly connected in parallel between the inlet and the outlet of the second pressure reducing device 27.
[0111]
In each of the embodiments described above, two plate-shaped passage switching doors 16 and 17 that are operated in conjunction are used as door means for switching the air flow to the condenser 12 and the air flow to the bypass passage 12a. Of course, a single plate-like door or a film-like door may be used as the door means.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle diagram showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a specific example of a refrigerant-refrigerant heat exchanger used in the first embodiment.
FIG. 3 is a front view of an air conditioning control panel used in the first embodiment.
4 is a characteristic diagram of an operation region and an operation mode of a temperature control lever in the air conditioning control panel of FIG. 3;
FIG. 5 is a characteristic diagram of a cooling region of the temperature control lever.
FIG. 6 is a characteristic diagram of a dehumidifying region of the temperature control lever.
FIG. 7 is a characteristic diagram of a heating region of the temperature control lever.
FIG. 8 is a chart for explaining operations of valves and doors used in the first embodiment.
FIG. 9 is a Mollier diagram illustrating the operation of the refrigeration cycle in the heating mode in the first embodiment.
FIG. 10 is an explanatory diagram of heating capacity depending on whether or not waste heat is recovered in the first embodiment.
FIG. 11 is a Mollier diagram illustrating a difference in operation of the refrigeration cycle depending on whether or not waste heat is recovered in the first embodiment.
FIG. 12 is a refrigeration cycle diagram for explaining the operation at the time of defrosting in the first embodiment.
FIG. 13 is a Mollier diagram illustrating an operation during defrosting in the first embodiment.
FIG. 14 is a refrigeration cycle diagram showing a second embodiment of the present invention.
FIG. 15 is a refrigeration cycle diagram showing a third embodiment of the present invention.
FIG. 16 is a Mollier diagram illustrating the operation during defrosting in the third embodiment.
FIG. 17 is a refrigeration cycle diagram showing a fourth embodiment.
FIG. 18 is a schematic perspective view illustrating an integrated heat exchanger according to a fourth embodiment.
19 is a cross-sectional view of each passage joint in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Evaporator, 12 ... Condenser, 16, 17 ... Passage switching door, 22 ... Compressor,
22c ... Gas injection port, 22d ... Gas injection passage, 23 ... Refrigerant-refrigerant heat exchanger, 24 ... Outdoor heat exchanger, 25 ... Accumulator,
26 ... 1st decompression device, 27 ... 2nd decompression device, 29 ... 3rd decompression device,
74 ... Water-refrigerant heat exchanger, 81 ... Heat-generating component.

Claims (7)

室内へ向かって空気が流れる空調通路(2)と、
冷媒を圧縮し吐出する圧縮機(22)と、
前記空調通路(2)内に設置され、前記圧縮機(22)からの吐出ガス冷媒により空気を加熱する凝縮器(12)と、
前記空調通路(2)内に形成され、前記凝縮器(12)をバイパスして空気を流すバイパス通路(12a)と、
前記空調通路(2)内に設置され、前記凝縮器(12)への空気流れと前記バイパス通路(12a)への空気流れとを切り替えるドア手段(16、17)と、
室外に設置される室外熱交換器(24)と、
前記室外熱交換器(24)の冷媒入口側に設置された暖房用減圧装置(27)と、
前記空調通路(2)内で、前記凝縮器(12)の上流側に設置され蒸発器(11)と、
前記蒸発器(11)の冷媒入口側に設置された冷房用減圧装置(29)と、
前記暖房用減圧装置(27)をバイパスして冷媒が流れる冷媒バイパス通路(63)と、
前記冷媒バイパス通路(63)に設けられたバイパス側減圧装置(26)とを備え、
前記圧縮機(22)の吐出側を常に前記凝縮器(12)に接続して、前記圧縮機(22)からの吐出ガス冷媒が常に前記凝縮器(12)を通過して前記室外熱交換器(24)側への一方向に流れるようにし、
暖房モード時には、前記空調通路(2)内の送風空気が前記凝縮器(12)を通過する位置に前記ドア手段(16、17)を切り替えることにより、前記圧縮機(22)の吐出ガス冷媒が前記凝縮器(12)に流入して前記空調通路(2)内の送風空気に放熱することで凝縮し、前記凝縮器(12)通過後の高圧冷媒が前記暖房用減圧装置(27)により減圧されて低圧状態となり、前記暖房用減圧装置(27)通過後の低圧冷媒が前記室外熱交換器(24)に流入して蒸発し、前記室外熱交換器(24)通過後の低圧冷媒が前記圧縮機(22)に吸入されるようになっており、前記暖房モードでは前記凝縮器(12)により加熱された温風を室内へ吹き出し、
冷房モード時には、前記空調通路(2)内の送風空気が前記バイパス通路(12a)を通過する位置に前記ドア手段(16、17)を切り替えることにより、前記圧縮機(22)の吐出ガス冷媒が前記空調通路(2)内の送風空気と熱交換しないまま前記凝縮器(12)を通過し、前記凝縮器(12)通過後の吐出ガス冷媒が高圧状態のまま前記室外熱交換器(24)に流入し、前記室外熱交換器(24)にて前記吐出ガス冷媒が凝縮し、前記室外熱交換器(24)通過後の高圧冷媒が前記冷房用減圧装置(29)により減圧されて低圧状態となり、前記冷房用減圧装置(29)通過後の低圧冷媒が前記蒸発器(11)に流入して前記空調通路(2)内の送風空気から吸熱することで蒸発し、前記蒸発器(11)通過後の低圧冷媒が前記圧縮機(22)に吸入されるようになっており、前記冷房モードでは前記蒸発器(11)により冷却された冷風が前記バイパス通路(12a)を通過して室内へ吹き出し、
除湿モード時には、前記空調通路(2)内の送風空気が前記凝縮器(12)を通過する位置に前記ドア手段(16、17)を切り替えることにより、前記圧縮機(22)の吐出ガス冷媒が前記凝縮器(12)に流入して前記空調通路(2)内の送風空気に放熱することで凝縮し、前記凝縮器(12)通過後の高圧冷媒が前記暖房用減圧装置(27)により減圧されて中間圧状態となり、前記暖房用減圧装置(27)通過後の中間圧冷媒が前記室外熱交換器(24)に流入して室外空気と熱交換し、前記室外熱交換器(24)通過後の中間圧冷媒が前記冷房用減圧装置(29)により減圧されて低圧状態となり、前記冷房用減圧装置(29)通過後の低圧冷媒が前記蒸発器(11)に流入して前記空調通路(2)内の送風空気から吸熱することで蒸発し、前記蒸発器(11)通過後の低圧冷媒が前記圧縮機(22)に吸入されるようになっており、前記除湿モードでは前記蒸発器(11)により冷却除湿された冷風を前記凝縮器(12)にて再加熱して室内へ吹き出し、
前記暖房モード時に前記室外熱交換器(24)の除霜を行う除霜モードを設定するときは、前記空調通路(2)内の送風空気が前記バイパス通路(12a)を通過する位置に前記ドア手段(16、17)を切り替えることにより、前記圧縮機(22)の吐出ガス冷媒が前記空調通路(2)内の送風空気と熱交換しないまま前記凝縮器(12)を通過し、前記凝縮器(12)通過後の吐出ガス冷媒を、前記暖房用減圧装置(27)に向かう流れと前記冷媒バイパス通路(63)に向かう流れとに分岐し、
前記分岐ガス冷媒の一方が前記暖房用減圧装置(27)により減圧されて低圧状態となり、前記暖房用減圧装置(27)通過後の低圧状態のガス冷媒が前記室外熱交換器(24)に流入して前記室外熱交換器(24)の除霜を行い、前記室外熱交換器(24)通過後の低圧冷媒が前記圧縮機(22)に吸入されるようになっており、
また、前記分岐ガス冷媒の他方が前記冷媒バイパス通路(63)に流入して前記バイパス側減圧装置(26)により減圧されて低圧状態となり、前記バイパス側減圧装置(26)通過後の低圧状態のガス冷媒が前記蒸発器(11)に流入し、前記蒸発器(11)にて前記空調通路(2)内の送風空気を前記低圧状態のガス冷媒により加熱し、前記蒸発器(11)通過後の低圧冷媒も前記圧縮機(22)に吸入されるようになっており、前記除霜モードでは前記蒸発器(11)にて加熱された温風が前記バイパス通路(12a)を通過して室内へ吹き出すことを特徴とする冷凍サイクル装置。
An air conditioning passage (2) through which air flows into the room;
A compressor (22) for compressing and discharging the refrigerant;
A condenser (12) that is installed in the air conditioning passage (2) and that heats the air with a refrigerant gas discharged from the compressor (22);
A bypass passage (12a) that is formed in the air conditioning passage (2) and flows the air bypassing the condenser (12);
Door means (16, 17) installed in the air conditioning passage (2), for switching between an air flow to the condenser (12) and an air flow to the bypass passage (12a);
An outdoor heat exchanger (24) installed outdoors;
A heating decompressor (27) installed on the refrigerant inlet side of the outdoor heat exchanger (24);
An evaporator (11) installed upstream of the condenser (12) in the air conditioning passage (2);
A cooling decompression device (29) installed on the refrigerant inlet side of the evaporator (11);
A refrigerant bypass passage (63) through which the refrigerant flows by bypassing the heating decompression device (27);
A bypass-side pressure reducing device (26) provided in the refrigerant bypass passage (63) ,
The discharge side of the compressor (22) is always connected to the condenser (12), and the discharge gas refrigerant from the compressor (22) always passes through the condenser (12) and the outdoor heat exchanger. (24) to flow in one direction to the side,
In the heating mode, the discharge gas refrigerant of the compressor (22) is changed by switching the door means (16, 17) to a position where the blown air in the air conditioning passage (2) passes through the condenser (12). The refrigerant is condensed by flowing into the condenser (12) and dissipating heat to the blown air in the air conditioning passage (2), and the high-pressure refrigerant after passing through the condenser (12) is decompressed by the heating decompression device (27). The low-pressure refrigerant after passing through the heating decompression device (27) flows into the outdoor heat exchanger (24) and evaporates, and the low-pressure refrigerant after passing through the outdoor heat exchanger (24) is adapted to be sucked into the compressor (22), wherein in the heating mode is blown a hot air heated by the condenser (12) into the room,
In the cooling mode, by switching the door means (16, 17) to a position where the blown air in the air conditioning passage (2) passes through the bypass passage (12a), the discharge gas refrigerant of the compressor (22) is changed. The outdoor heat exchanger (24) passes through the condenser (12) without exchanging heat with the blown air in the air conditioning passage (2), and the discharged gas refrigerant after passing through the condenser (12) remains in a high pressure state. And the discharge gas refrigerant condenses in the outdoor heat exchanger (24), and the high-pressure refrigerant after passing through the outdoor heat exchanger (24) is decompressed by the cooling decompression device (29) to be in a low pressure state. Then, the low-pressure refrigerant after passing through the cooling decompression device (29) flows into the evaporator (11) and absorbs heat from the blown air in the air-conditioning passage (2) to evaporate, and the evaporator (11) The low-pressure refrigerant after passing is compressed (22) is adapted to be sucked into the cool air cooled by the evaporator (11) in the cooling mode is blown into the room through the bypass passage (12a),
In the dehumidifying mode, the discharge gas refrigerant of the compressor (22) is changed by switching the door means (16, 17) to a position where the blown air in the air conditioning passage (2) passes through the condenser (12). The refrigerant is condensed by flowing into the condenser (12) and dissipating heat to the blown air in the air conditioning passage (2), and the high-pressure refrigerant after passing through the condenser (12) is decompressed by the heating decompression device (27). The intermediate-pressure refrigerant after passing through the heating pressure reducing device (27) flows into the outdoor heat exchanger (24) and exchanges heat with outdoor air, and passes through the outdoor heat exchanger (24). The subsequent intermediate pressure refrigerant is decompressed by the cooling decompression device (29) to be in a low pressure state, and the low pressure refrigerant after passing through the cooling decompression device (29) flows into the evaporator (11) and enters the air conditioning passage ( 2) To absorb heat from the blown air inside Evaporated, the evaporator (11) low-pressure refrigerant after passing through are adapted to be sucked into the compressor (22), the condensed cooling dehumidified cold air by the evaporator in the dehumidifying mode (11) It was blown into the room and re-heated in a vessel (12),
When setting the defrost mode for defrosting the outdoor heat exchanger (24) in the heating mode, the door is located at a position where the blown air in the air conditioning passage (2) passes through the bypass passage (12a). By switching the means (16, 17), the discharge gas refrigerant of the compressor (22) passes through the condenser (12) without exchanging heat with the blown air in the air conditioning passage (2), and the condenser (12) The discharged gas refrigerant after passing is branched into a flow toward the heating decompression device (27) and a flow toward the refrigerant bypass passage (63) ,
One of the branch gas refrigerants is decompressed by the heating decompression device (27) to become a low pressure state, and the low-pressure gas refrigerant after passing through the heating decompression device (27) flows into the outdoor heat exchanger (24). The outdoor heat exchanger (24) is defrosted, and the low-pressure refrigerant after passing through the outdoor heat exchanger (24) is sucked into the compressor (22).
Further, the other of the branch gas refrigerant flows into the refrigerant bypass passage (63) and is decompressed by the bypass side decompression device (26) to become a low pressure state, and is in a low pressure state after passing through the bypass side decompression device (26). After the gas refrigerant flows into the evaporator (11), the blower air in the air conditioning passage (2) is heated by the low-pressure gas refrigerant in the evaporator (11), and after passing through the evaporator (11) The low-pressure refrigerant is also drawn into the compressor (22), and in the defrost mode, the warm air heated by the evaporator (11) passes through the bypass passage (12a) and passes through the room. A refrigeration cycle apparatus characterized by being blown out .
発熱部品(81)の廃熱を回収する第1熱交換手段(74、320)を有し、
前記除霜モード時に、前記バイパス側減圧装置(26)により減圧された低圧状態のガス冷媒が前記第1熱交換手段(74、320)により前記発熱部品(81)の廃熱を吸熱し、前記廃熱を吸熱した後の低圧状態のガス冷媒が前記蒸発器(11)流入することを特徴とする請求項1に記載の冷凍サイクル装置。
Having first heat exchange means (74, 320) for recovering waste heat of the heat generating component (81);
During the defrosting mode, the low-pressure gas refrigerant decompressed by the bypass side decompression device (26) absorbs the waste heat of the heat generating component (81) by the first heat exchange means (74, 320) , the refrigeration cycle apparatus according to claim 1 in which the gas refrigerant of the low pressure state after absorbs waste heat is equal to or flowing into the evaporator (11).
前記圧縮機(22)は、圧縮した冷媒を吐出する吐出ポート(22a)、冷凍サイクル低圧側の冷媒を吸入する吸入ポート(22b)、および冷凍サイクル中間圧側のガス冷媒を導入するガスインジェクションポート(22c)を有しており、
前記暖房モード時においても、前記凝縮器(12)にて凝縮した高圧冷媒を前記暖房用減圧装置(27)に向かう流れと前記冷媒バイパス通路(63)に向かう流れとに分岐し、
前記分岐冷媒の一方が前記暖房用減圧装置(27)により減圧されて低圧状態となって前記室外熱交換器(24)に流入し、
前記分岐冷媒の他方は、前記バイパス側減圧装置(26)により中間圧まで減圧し、この中間圧冷媒に前記第1熱交換手段(74、320)により前記発熱部品(81)の廃熱を吸熱させて、この中間圧冷媒をガス化し、この中間圧ガス冷媒を前記ガスインジェクションポート(22c)に流入させるようになっており、
前記暖房モード時には、前記室外熱交換器(24)通過後の低圧冷媒が前記吸入ポート(22b)に吸入され、前記冷房モード時には、前記蒸発器(11)通過後の低圧冷媒が前記吸入ポート(22b)に吸入され、前記除霜モード時には、前記室外熱交換器(24)通過後の低圧冷媒及び前記蒸発器(11)通過後の低圧冷媒が前記吸入ポート(22b)に吸入されることを特徴とする請求項2に記載の冷凍サイクル装置。
The compressor (22) includes a discharge port (22a) for discharging a compressed refrigerant, a suction port (22b) for sucking a refrigerant on the low pressure side of the refrigeration cycle, and a gas injection port (6) for introducing a gas refrigerant on the intermediate pressure side of the refrigeration cycle. 22c)
Even in the heating mode, the high-pressure refrigerant condensed in the condenser (12) branches into a flow toward the heating decompression device (27) and a flow toward the refrigerant bypass passage (63),
One of the branch refrigerants is decompressed by the heating decompression device (27) to become a low pressure state and flows into the outdoor heat exchanger (24),
The other of the branch refrigerants is depressurized to an intermediate pressure by the bypass side depressurization device (26 ), and the waste heat of the heat generating component (81) is absorbed into the intermediate pressure refrigerant by the first heat exchange means (74, 320). The intermediate pressure refrigerant is gasified, and the intermediate pressure gas refrigerant flows into the gas injection port (22c) .
In the heating mode, the low-pressure refrigerant after passing through the outdoor heat exchanger (24) is sucked into the suction port (22b), and in the cooling mode, the low-pressure refrigerant after passing through the evaporator (11) is sucked into the suction port (22). 22b), and in the defrosting mode, the low-pressure refrigerant after passing through the outdoor heat exchanger (24) and the low-pressure refrigerant after passing through the evaporator (11) are sucked into the suction port (22b). The refrigeration cycle apparatus according to claim 2, characterized in that:
前記暖房モード時に、前記暖房用減圧装置(27)に向かう前記一方の分岐冷媒である高圧冷媒と、前記バイパス側減圧装置(26)により減圧された前記中間圧冷媒との間で熱交換を行う第2熱交換手段(23、230)を有することを特徴とする請求項3に記載の冷凍サイクル装置。In the heating mode, heat exchange is performed between the high-pressure refrigerant that is the one of the branched refrigerants toward the heating decompression device (27) and the intermediate-pressure refrigerant decompressed by the bypass-side decompression device (26). The refrigeration cycle apparatus according to claim 3, further comprising second heat exchange means (23, 230). 前記第1熱交換手段と前記第2熱交換手段とを1つの熱交換器(230)として一体に構成したことを特徴とする請求項4に記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to claim 4, wherein the first heat exchange means and the second heat exchange means are integrally configured as one heat exchanger (230). 発熱部品(81)の廃熱を回収する第1熱交換手段(74、320)を有し、
前記暖房モード時に前記圧縮機(22)に吸入される、前記室外熱交換器(24)通過後の低圧冷媒に前記第1熱交換手段(74、320)により前記発熱部品(81)の廃熱を吸熱させ、
前記除霜モード時には、前記圧縮機(22)に吸入される、前記室外熱交換器(24)通過後の低圧冷媒、及び前記圧縮機(22)に吸入される、前記蒸発器(11)通過後の低圧冷媒に前記第1熱交換手段(74、320)により前記発熱部品(81)の廃熱を吸熱させることを特徴とする請求項1に記載の冷凍サイクル装置。
Having first heat exchange means (74, 320) for recovering waste heat of the heat generating component (81);
Waste heat of the heat generating component (81) is discharged by the first heat exchange means (74, 320) into the low-pressure refrigerant that has passed through the outdoor heat exchanger (24) and is sucked into the compressor (22) in the heating mode. Endotherm,
Wherein the defrost mode, the sucked into the compressor (22) is sucked into the outdoor heat exchanger (24) low-pressure refrigerant after passing through, and the compressor (22), the evaporator (11) 2. The refrigeration cycle apparatus according to claim 1, wherein the waste heat of the heat generating component (81) is absorbed into the low-pressure refrigerant after passing by the first heat exchange means (74, 320).
前記吸入ポート(22b)の入口側に、冷媒の気液を分離するアキュームレータ(25)を備え、
このアキュームレータ(25)から、オイルの溶け込んだ液冷媒をガス冷媒に混合して前記吸入ポート(22b)に吸入させるようになっており、
前記アキュームレータ(25)の入口側に前記第1熱交換手段(74、320)を配置したことを特徴とする請求項6に記載の冷凍サイクル装置。
An accumulator (25) for separating the gas-liquid refrigerant is provided on the inlet side of the suction port (22b),
From the accumulator (25), liquid refrigerant in which oil is dissolved is mixed with gas refrigerant and sucked into the suction port (22b).
The refrigeration cycle apparatus according to claim 6, wherein the first heat exchange means (74, 320) is disposed on an inlet side of the accumulator (25).
JP21090999A 1999-07-26 1999-07-26 Refrigeration cycle equipment Expired - Fee Related JP4048654B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP21090999A JP4048654B2 (en) 1999-07-26 1999-07-26 Refrigeration cycle equipment
DE60031808T DE60031808T2 (en) 1999-07-26 2000-07-24 A refrigeration cycle apparatus
US09/624,697 US6347528B1 (en) 1999-07-26 2000-07-24 Refrigeration-cycle device
EP00115019A EP1072453B1 (en) 1999-07-26 2000-07-24 Refrigeration-cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21090999A JP4048654B2 (en) 1999-07-26 1999-07-26 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2001030744A JP2001030744A (en) 2001-02-06
JP4048654B2 true JP4048654B2 (en) 2008-02-20

Family

ID=16597085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21090999A Expired - Fee Related JP4048654B2 (en) 1999-07-26 1999-07-26 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4048654B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316355B1 (en) 2011-09-14 2013-10-08 기아자동차주식회사 Heating system for electric car using heat pump system
CN107356020A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
CN107356019A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
CN107356023A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
CN107356022A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
CN107356004A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4667651B2 (en) * 2001-06-08 2011-04-13 パナソニック株式会社 Compressor with built-in electric motor and mobile vehicle equipped with this
JP5533207B2 (en) 2010-05-06 2014-06-25 株式会社日本自動車部品総合研究所 Heat pump cycle
JP5984544B2 (en) * 2011-12-08 2016-09-06 サンデンホールディングス株式会社 Air conditioner for vehicles
WO2013084736A1 (en) * 2011-12-08 2013-06-13 サンデン株式会社 Vehicle air-conditioning device
JP5984543B2 (en) * 2011-12-08 2016-09-06 サンデンホールディングス株式会社 Air conditioner for vehicles
CN104271373B (en) * 2012-02-28 2016-10-05 日本空调系统股份有限公司 Vehicle air conditioner
JP6049313B2 (en) * 2012-06-11 2016-12-21 株式会社日本クライメイトシステムズ Air conditioner for vehicles
JP5912052B2 (en) * 2012-02-28 2016-04-27 株式会社日本クライメイトシステムズ Air conditioner for vehicles
WO2013128897A1 (en) * 2012-02-28 2013-09-06 株式会社日本クライメイトシステムズ Air conditioning device for vehicle
JP2014019179A (en) * 2012-07-12 2014-02-03 Japan Climate Systems Corp Air conditioner for vehicle
EP2636548B1 (en) 2012-03-05 2017-09-06 Hanon Systems Heat pump system for vehicle
KR101430005B1 (en) 2012-03-05 2014-08-19 한라비스테온공조 주식회사 Heat pump system for vehicle and its control method
KR101418854B1 (en) 2012-03-05 2014-08-14 한라비스테온공조 주식회사 Heat pump system for vehicle
JP6088753B2 (en) * 2012-06-13 2017-03-01 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6049338B2 (en) * 2012-07-24 2016-12-21 株式会社日本クライメイトシステムズ Air conditioner for vehicles
JP6049339B2 (en) * 2012-07-24 2016-12-21 株式会社日本クライメイトシステムズ Air conditioner for vehicles
EP2878468B1 (en) * 2012-07-24 2018-06-06 Japan Climate Systems Corporation Air conditioning device for vehicle
KR101511508B1 (en) * 2012-08-17 2015-04-14 한라비스테온공조 주식회사 Heat pump system for vehicle
KR101338464B1 (en) * 2012-10-24 2013-12-10 기아자동차주식회사 Heat pump system for vehicle
KR101544877B1 (en) * 2012-12-26 2015-08-20 한온시스템 주식회사 Heat pump system for vehicle
KR101669826B1 (en) * 2013-01-29 2016-10-28 한온시스템 주식회사 Heat pump system for vehicle
JP2014228190A (en) * 2013-05-22 2014-12-08 株式会社デンソー Refrigeration cycle device
CN105408143A (en) * 2013-07-25 2016-03-16 松下知识产权经营株式会社 Vehicular air conditioning device, and constituent unit thereof
KR101714459B1 (en) * 2013-08-22 2017-03-10 한온시스템 주식회사 Heat pump system for vehicle
JP6223753B2 (en) * 2013-09-04 2017-11-01 サンデンホールディングス株式会社 Air conditioner for vehicles
JP5845225B2 (en) * 2013-10-03 2016-01-20 サンデンホールディングス株式会社 Vehicle air conditioner
KR101637755B1 (en) * 2014-12-02 2016-07-07 현대자동차주식회사 Heat pump system for electric car and method for controlling for the same
CN107356021B (en) * 2016-05-10 2019-11-22 比亚迪股份有限公司 Heat Pump Air Conditioning Systems and Electric Vehicles
DE112017003010T5 (en) * 2016-06-16 2019-02-28 Denso Corporation Refrigeration cycle device
CN108248333B (en) * 2016-12-29 2023-10-13 比亚迪股份有限公司 Heat pump air conditioning system and electric automobile
JP2019034587A (en) * 2017-08-10 2019-03-07 株式会社デンソー Air conditioner
JP2020199849A (en) * 2019-06-07 2020-12-17 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP2020199850A (en) * 2019-06-07 2020-12-17 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
US20240253426A1 (en) * 2023-01-27 2024-08-01 Ford Global Technologies, Llc Dehumidification control strategy
DE102024107366A1 (en) * 2024-03-14 2025-09-18 Denso Automotive Deutschland Gmbh Refrigerant circuit with gas injection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538845B2 (en) * 1991-04-26 2004-06-14 株式会社デンソー Automotive air conditioners
JP3563094B2 (en) * 1993-10-14 2004-09-08 サンデン株式会社 Vehicle air conditioner
JPH1058961A (en) * 1996-08-22 1998-03-03 Zexel Corp Air conditioner for vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101316355B1 (en) 2011-09-14 2013-10-08 기아자동차주식회사 Heating system for electric car using heat pump system
CN107356020A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
CN107356019A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
CN107356023A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
CN107356022A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
CN107356004A (en) * 2016-05-10 2017-11-17 比亚迪股份有限公司 Heat pump type air conditioning system and electric automobile
CN107356023B (en) * 2016-05-10 2019-12-10 比亚迪股份有限公司 Heat Pump Air Conditioning Systems and Electric Vehicles
CN107356022B (en) * 2016-05-10 2021-02-23 比亚迪股份有限公司 Heat Pump Air Conditioning Systems and Electric Vehicles
CN107356004B (en) * 2016-05-10 2021-04-20 比亚迪股份有限公司 Heat Pump Air Conditioning Systems and Electric Vehicles
CN107356019B (en) * 2016-05-10 2023-06-16 比亚迪股份有限公司 Heat pump air conditioning system and electric automobile

Also Published As

Publication number Publication date
JP2001030744A (en) 2001-02-06

Similar Documents

Publication Publication Date Title
JP4048654B2 (en) Refrigeration cycle equipment
JP3985394B2 (en) Refrigeration cycle equipment
JP3985384B2 (en) Refrigeration cycle equipment
JP4061820B2 (en) Refrigeration cycle equipment
JP6323489B2 (en) Heat pump system
JP6015636B2 (en) Heat pump system
JP6794964B2 (en) Refrigeration cycle equipment
US6430951B1 (en) Automotive airconditioner having condenser and evaporator provided within air duct
US6212900B1 (en) Automotive air conditioner having condenser and evaporator provided within air duct
JP3484871B2 (en) Vehicle air conditioner
JP5005122B2 (en) Air conditioner for vehicles
JP3939445B2 (en) Air conditioner for automobile
CN111278670A (en) Thermal management systems for vehicles
JP2003291635A (en) Air-conditioner
JP2011237052A (en) Heat pump cycle
JP2004224107A (en) Air conditioner for vehicle
JP7120152B2 (en) Air conditioner
JP2001324237A (en) Equipment for refrigerating cycle
JPH09328013A (en) Air conditioner for vehicle
JP2004042759A (en) Automotive air conditioners
JP5510374B2 (en) Heat exchange system
JP2001050572A (en) Air conditioner for automobile
JP2020037881A (en) Compressor and refrigeration cycle device
CN211390887U (en) Thermal management system and vehicle with same
JP3830242B2 (en) Heat pump type automotive air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees