[go: up one dir, main page]

JP4049526B2 - Method for starting reformer for fuel cell - Google Patents

Method for starting reformer for fuel cell Download PDF

Info

Publication number
JP4049526B2
JP4049526B2 JP2000259013A JP2000259013A JP4049526B2 JP 4049526 B2 JP4049526 B2 JP 4049526B2 JP 2000259013 A JP2000259013 A JP 2000259013A JP 2000259013 A JP2000259013 A JP 2000259013A JP 4049526 B2 JP4049526 B2 JP 4049526B2
Authority
JP
Japan
Prior art keywords
reformer
temperature
catalyst layer
carbon monoxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000259013A
Other languages
Japanese (ja)
Other versions
JP2002075426A (en
Inventor
収 田島
昭 藤生
浩二 進藤
丈俊 黄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000259013A priority Critical patent/JP4049526B2/en
Publication of JP2002075426A publication Critical patent/JP2002075426A/en
Application granted granted Critical
Publication of JP4049526B2 publication Critical patent/JP4049526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池発電装置における一酸化炭素除去装置の触媒層の温度を、その反応温度以上に昇温させ、また改質器の触媒層の温度を改質反応温度にまで昇温させる、燃料電池用改質装置の起動方法に関する。
【0002】
【従来の技術】
燃料電池発電システムは、燃料電池に改質器からの水素ガスに富んだ改質ガス及び空気を導入することにより、水素と空気中の酸素とを反応させて、電気を取り出す発電システムである。改質ガスは水素、二酸化炭素および一酸化炭素を含むが、一酸化炭素は燃料電池の触媒毒となるので除去する必要があり、そのため改質器と燃料電池の間には一酸化炭素除去装置が設けられる。一酸化炭素除去装置は一酸化炭素を除くために触媒層を内包している。改質器からの改質ガスは、一酸化炭素除去装置内の触媒層の温度がその反応温度にまで上昇した状態で前記触媒層に通すことが必要である。
常温あるいは発電停止状態から前記触媒層の温度を昇温させるには、種々の方法が採用されている。たとえば一酸化炭素を除去する変成器の反応温度は200〜300℃の範囲であるが、この温度に加熱された窒素ガスを触媒層に導入する方法がある。しかし、窒素ガスは比熱(熱容量)が小さいため、昇温時間が1時間30分ないし2時間と長く、また、家庭用などオンサイトで発電をする場合、新たに窒素ガスボンベを備えることが必要になり、ランニングコストの面からみて家庭用としては実現性に乏しい。
【0003】
特開平4−71169号公報には、窒素ガスを用いることなく燃料電池発電装置を起動する方法として、改質ガスを変成器を通らず直接燃料電池の燃料室に導入するためのバイパス回路を設け、最初は改質器における水蒸気の比を高くして一酸化炭素濃度が低い改質ガスを生成させ、これを前記バイパス回路を通して燃料室に導入し発電を行い、これと併行して一酸化炭素除去装置の触媒温度をヒーターによって加熱し、燃料電池および変成器の触媒温度が所定の温度にまで昇温したら、改質ガスをバイパス回路に流すのを止め、定常運転に切り替える方法である。しかし、この方法では変成器の昇温はヒーターを用いているため、触媒の温度が反応温度に達するまでに数時間を要し、また、改質ガス中の一酸化炭素濃度を水蒸気の比率だけで低減させることは難しいという問題がある。
【0004】
また、特開平5−275103号公報には、改質器をバーナで加熱し、変成器をヒーターで加熱しつつ、水蒸気と窒素ガスの混合ガスを改質器に導入し、加熱された混合ガスにより管路、変成器、燃料電池発電部を昇温させる起動方法が記載されている。この方法は、窒素ガスに水蒸気を混ぜているため熱容量が窒素単独の場合よりも大きくなっていること、水蒸気パージを行う必要がないことなどの利点を有している。しかし、この方法も窒素ガスを用いるので、家庭用には向いていない。また、変成器にはヒーターを設ける必要がある。
【0005】
このように、燃料電池発電において、一酸化炭素除去装置の触媒層の温度が所定の反応温度に達するまでの時間が短く、高価な窒素ガスを用いる必要がない、起動方法は未だ知られていない。
【特許文献1】
特開平04−071169号公報
【特許文献2】
特開平05−275103号公報
【特許文献3】
特開平08−050908号公報
【特許文献4】
特開平11−149931号公報
【0006】
【発明が解決しようとする課題】
本発明は、前記問題点に鑑みてなされたものであり、その目的は、一酸化炭素除去装置に触媒加熱用のバーナを設ける必要がなく、定常運転に至るまでの起動時間が短く、窒素ガス等を用いる必要のない、したがってランニングコストが低い、燃料電池用改質装置の起動方法を提供することにある。
【0007】
【課題を解決するための手段】
前記目的は、以下の方法を提供することにより解決される。
少なくとも原燃ガスと水蒸気とを反応させて改質する改質器と、前記改質ガスから排出された排出ガスと水蒸気または酸素とを反応させて前記排出ガスに含まれる一酸化炭素を除去する一酸化炭素除去装置と、前記改質器へ供給する水蒸気を発生する水蒸気発生器と、を備える燃料電池用改質装置の起動方法であって、改質器バーナに点火し前記改質器触媒層を加熱する第1の工程と、改質器触媒層の温度を、前記改質器触媒層を通って前記改質器から排出された前記排出ガスが前記一酸化炭素除去装置の触媒層の温度を反応温度以上に加熱することが可能で、かつ前記原燃ガスから前記改質器触媒層に炭素を析出させない設定温度にする第2の工程と、前記改質器触媒層が前記設定温度に達した後に、前記改質器に前記原燃ガスを導入する第3の工程と、前記排出ガスを前記一酸化炭素除去装置に導入し一酸化炭素除去装置触媒層を前記反応温度以上に加熱する第4の工程と、前記改質器触媒層が前記設定温度に達した後に、前記改質器に前記水蒸気を導入する第5の工程と、前記改質器触媒層の温度を、改質反応温度に加熱する第6の工程と、を含むことを特徴とする燃料電池用改質装置の起動方法。
る工程を含む、燃料電池発電装置の起動方法。
【0008】
請求項1記載の燃料電池用改質装置の起動方法において、前記水蒸気は、前記改質器触媒層が前記設定温度に達した後で、かつ前記一酸化炭素除去装置触媒層が100℃以上となった後に、前記改質器に導入することを特徴とする燃料電池用改質装置の起動方法。
本発明の起動方法は、高価な窒素ガスを用いる必要がないため燃料電池発電のランニングコストを下げることができ、また、従来窒素ガスを用いて一酸化炭素除去装置の触媒層を予備加熱していた場合、該触媒層の反応温度に昇温させるまでおよそ1時間30分ないし2時間を要していたのに対し、1時間以内で所定の反応温度にまで加熱することができる。
【0009】
【発明の実施の形態】
本発明の燃料電池の起動方法は、昇温された原燃ガスを一酸化炭素除去装置に導入しこのガスが保持する熱で一酸化炭素除去装置の触媒層の温度を反応温度以上に加熱することを特徴とする。
本願発明において一酸化炭素除去装置とは、触媒により一酸化炭素を除去する装置であり、固体高分子型燃料電池の場合には、少なくとも一酸化炭素変成器と一酸化炭素除去器を備える。また、リン酸型燃料電池等他の燃料電池の場合には少なくとも一酸化炭素変成器を備える。一酸化炭素変成器は、一酸化炭素を水蒸気と反応させて二酸化炭素に変換させる装置であり、触媒としてたとえばCu系の触媒を備え、その反応温度は200〜300℃の範囲内である。また、一酸化炭素除去器は、一酸化炭素変成器からの排出ガスに空気(酸素)を加えて、選択酸化反応に基づき一酸化炭素を二酸化炭素に転換する装置であり、触媒としてたとえばRuを備え、その反応温度は120〜200℃の範囲内である。一酸化炭素変成器によりCO濃度は1%程度に低減され、さらに一酸化炭素除去器により10ppm程度に低減される。
【0010】
したがって、本願発明において、一酸化炭素除去装置の触媒層の温度を反応温度以上に加熱するとは、前記一酸化炭素変成器、または一酸化炭素変成器と一酸化炭素除去器の触媒層の温度をその反応温度以上に昇温させることを意味する。固体高分子型燃料電池発電装置の場合、通常一酸化炭素除去器の触媒の反応温度は一酸化炭素変成器の触媒の反応温度より低く、そして、一酸化炭素除去器は一酸化炭素変成器の下流側に位置しているので、一酸化炭素変成器を通り温度がある程度下がった原燃ガスが一酸化炭素除去器を通ることにより、一酸化炭素除去器の触媒層の温度を適切な反応温度に昇温させることができる。
【0011】
改質器の触媒層の温度は、該触媒層を通った原燃ガスが一酸化炭素除去装置の触媒層の温度を反応温度以上に加熱することが可能で、かつ原燃ガスから前記触媒層に炭素を析出させない設定温度であることが必要であるが、この条件を満足する温度範囲は200〜400℃である。
前記温度範囲に加熱された改質器の触媒層を通った原燃ガスは、上記の一酸化炭素変成器あるいは一酸化炭素変成器と一酸化炭素除去器の触媒層の温度を比較的短時間にその反応温度以上に昇温させることができる。改質器の触媒層の前記設定温度は好ましくは、250〜300℃である。
【0012】
次に、本発明の起動方法について順次説明する。最初に原燃ガスを連続的に導入する方法(以下において「第1の方法」ということがある。)について説明する。
第1の方法ではまず、改質器バーナに点火し改質器触媒層を加熱し、改質器の触媒層の温度を、該触媒層を通った原燃ガスが一酸化炭素除去装置の触媒層の温度を反応温度以上に加熱することが可能で、かつ原燃ガスから前記触媒層に炭素を析出させない設定温度に維持する。改質器への原燃ガスの導入は、バーナに点火すると同時に行ってもよいし、改質器の触媒層の温度が、前記設定温度に達した時点、あるいはバーナ点火と前記設定温度に達した時点の間のいずれの時点でもよい。起動時間短縮の観点からは、バーナに点火したときに原燃ガスを導入することが好ましい。
前記設定温度に維持された改質器触媒層を通った原燃ガスにより一酸化炭素除去装置の触媒層の温度はその反応温度以上に昇温される。この間の改質器の触媒の温度は一定でもまた上記設定温度の範囲内で昇温させてもよい。
【0013】
一酸化炭素除去装置の触媒層の温度が反応温度以上になった時点で、改質器の触媒層の温度を(さらに)昇温させる。昇温とともに原燃ガスから改質器の触媒層に炭素が析出する温度に達するが、少なくともこの時点では、改質器触媒層に炭素を析出させないために、改質器に水蒸気を導入し、水蒸気が混入した原燃ガスを一酸化炭素除去装置に導入しておく。たとえば、一酸化炭素除去装置の触媒層の温度が、反応温度に達した時点で、水蒸気を導入することができる。この時点では一酸化炭素除去装置の触媒層の温度は露点を超えているので水蒸気が結露することはない。そして、改質器の触媒層の温度をさらに昇温させ、改質反応温度にまで昇温させる。なお、水蒸気の導入は、一酸化炭素除去装置の触媒層の温度が100℃以上になった時点でいつでも行うことができる。
第1の方法では、バーナ点火から一酸化炭素除去装置の触媒層温度が前記反応温度に達するまでおよそ10〜40分、この時点から改質器触媒が改質反応温度に達するまでの時間がおよそ5〜15分であり、バーナ点火から改質器触媒が改質反応温度に達するまでの時間、すなわち、起動時間は1時間以内となる。
【0014】
次に、原燃ガスを非連続的に一酸化炭素除去装置に導入する方法(以下において「第2の方法」ということがある。)について説明する。
第2の方法は、まず改質器バーナに点火し改質器の触媒層を加熱する。次に、改質器の触媒層の温度が、該触媒層を通った原燃ガスが一酸化炭素除去装置の触媒層の温度を反応温度以上に加熱することが可能で、かつ原燃ガスから前記触媒層に炭素を析出させない設定温度に達した時点で、原燃ガスを改質器に導入する。改質器の触媒層の温度を前記設定温度に維持した状態で、改質器からの排出ガスを一酸化炭素除去装置に、一酸化炭素除去装置の触媒層温度が前記反応温度に達するまで導入し、達した後は、原燃ガスの導入を絶つ。その後改質器の触媒層の温度を昇温させ、改質器の触媒層に原燃ガスから炭素が析出する温度に達する直前に水蒸気を改質器に導入する。この水蒸気導入は、改質器に残存している可能性がある原燃ガスから炭素を析出させないためである。その後、さらに改質器の触媒層の温度を昇温させ、改質反応温度にまで昇温させる。
第2の方法は、原燃ガスを連続的に流さないため、原燃ガスの消費を少なくすることができる他、第1の方法より炭素の析出を防ぎやすいという利点を有する。
また、第2の方法では、バーナ点火から一酸化炭素除去装置の触媒層温度が前記反応温度に達する時点までおよそ20〜40分、この時点から水蒸気導入まではおよそ10分以下、水蒸気導入から改質器触媒が反応温度に達するまでの時間がおよそ10分以下であり、バーナ点火から改質器触媒が改質反応温度に達するまでの時間、すなわち、起動時間が1時間以内となる。
本発明の起動運転における原燃ガスは、定常運転の場合のおよそ10〜100%の消費量とすることが適切である。
【0015】
本発明の起動方法は、一酸化炭素除去装置の触媒層温度を昇温された原燃ガスにより加熱し、窒素ガスを用いないので、燃料電池による発電のランニングコストが低く、また、起動時間が従来1時間30分ないし2時間もかかっていたのに対し、1時間以内という短縮された時間となる。
また、第1および第2の方法においても、改質器に水蒸気を導入する際は、水蒸気が一酸化炭素除去装置の中で結露しないことが必要であるが、本発明の起動方法においては、いずれの方法も、水蒸気を改質器に導入する時点では、一酸化炭素除去装置の触媒層の温度はその反応温度以上、すなわち100℃以上になっているので、水蒸気が結露する虞はない。
【0016】
次に、本発明の起動方法が適用される燃料電池発電装置について説明する。図1は、固体高分子型燃料電池を用いる発電システムの概念図を示す。図1中、1は原燃ガス、2は脱硫器、3は改質器、4は一酸化炭素変成器、5は一酸化炭素除去器、6は固体高分子型燃料電池、10は昇圧ポンプ、12は改質器バーナ、13は原燃ガスパイプ、14は送風機、17は熱交換器、21は水タンク、22はポンプ、34はPG(プロセスガス)バーナ、35は管路,36は開閉弁、45は排ガス、46は熱交換器、91、92は開閉弁、98は貯湯タンクをそれぞれ示す。
【0017】
起動時においては、上記第1の方法および第2の方法においても、まず脱硫器2で脱硫された原燃ガス1がパイプ13を通ってバーナ12に送られ、送風機14からの空気と混ぜられ燃焼させられ、改質器の触媒層を前記設定温度まで加熱する。原燃ガスとしては天然ガス、都市ガス、メタノール、LPG、ブタン等が用いられる。
第1の方法においては、原燃ガスは、バーナの点火と同時あるいは触媒層の温度が前記設定温度に達したとき、あるいは、この温度に達するいずれの段階で導入してもよい。第2の方法では、原燃ガスは改質器触媒層の温度が前記設定温度に達した時点で導入する。10は原燃ガスを改質器に送るための昇圧ポンプである。
改質器触媒層を通った原燃ガスは、一酸化炭素除去装置、すなわち一酸化炭素変成器4および一酸化炭素除去器5の触媒層の温度をそれぞれ反応温度にまで昇温させる。開閉弁91は閉じ、36は開いているので、一酸化炭素除去装置を通った原燃ガスは、管路35を経てPGバーナ34に入り送風機37からの空気とともに燃焼し、熱交換器46において貯湯タンク98からの水と熱交換した後、排ガス45となる。なお、改質器3と一酸化炭素変成器4の間、一酸化炭素変成器4と一酸化炭素除去器5の間、および該除去器の下流に熱交換器18、19、20が設置されているが、起動時はポンプ23、24および25を停止して水の供給を止めるか、あるいは最小流量で流すのがよい。
【0018】
第1の方法では、一酸化炭素除去装置の触媒層の温度が反応温度に達した後、改質器の触媒層の温度はさらに昇温させられるが、この過程で、改質器の触媒層の温度が原燃ガスから炭素を析出する温度に達するので、少なくともこの温度に達する前には改質器に水蒸気を導入することが必要である。そして、改質器触媒層は改質反応温度に達するまでさらに昇温される。一酸化炭素除去装置からの排出ガスは後述のように、改質ガス組成が安定するまでは、前記と同様に熱交換器46を経た後排ガスとなる。
また、第2方法では一酸化炭素除去装置への原燃ガス導入は該装置の触媒層の温度が反応温度に達した時点で一旦止められ、改質器触媒層の温度が、定常運転時の設定触媒層温度より若干低い温度で再び導入される。これは改質器触媒層の温度制御におけるオーバーショットを考慮するためである。この温度は550〜750℃、好ましくは620〜680℃である。
【0019】
改質器への水蒸気の導入は、改質器に接続した熱交換器17に水タンク21からの水をポンプ22を介して供給し、熱交換器17で蒸発させ、得られた水蒸気を改質器への原燃ガス管路へ導入することにより行われる。
第1および第2方法において、改質器の反応設定温度は650〜800℃、好ましくは700〜750℃である。
【0020】
改質ガスは、ガス組成が安定するまでは燃料電池6に導入することができないので、改質器3、一酸化炭素変成器4および一酸化炭素除去器5の各触媒層の温度が安定するまでは、開閉弁91は閉じられ開閉弁36が開かれ、一酸化炭素除去器からの改質ガスは、管路35を経てPG(プロセスガス)バーナに送られ、送風機37により供給された空気により燃焼させられ、その燃焼ガスは熱交換器46を通り、貯湯タンク98からの水と熱交換した後、排ガス45として排気される。
一酸化炭素変成器4および一酸化炭素除去器5の各触媒層の温度が安定した段階で、開閉弁36を閉じ開閉弁91を開き、一酸化炭素除去器5からの改質ガスを燃料電池6の燃料極(アノード)6aに、空気を空気極(カソード)6bに導入して発電を開始する。燃料電池6の温度が安定するまでは、開閉弁39は開かれ、開閉弁92が閉じられて燃料電池6からのガスはPCバーナに供給される。安定的な定常運転に移行した時点において開閉弁91、92が開かれ、開閉弁36、39が閉じられて燃料電池のアノード6aを経た未反応ガスは管路15を経てバーナ12に供給される。未反応ガスは全量バーナで燃焼させるが、これだけでは改質器触媒層の温度を改質反応温度に保つことができない場合には、原燃ガスがバーナ12に供給される。カソードから排出された空気は、燃料電池本体6の発熱反応によって温度上昇しているので、管路26を経て熱交換器27を通した後、排気される。
【0021】
また、改質ガスからの熱、燃料電池からの熱は各熱交換器を用いて回収し、湯として供給する。改質器と燃料電池を結ぶラインに設けられた熱交換器18、19、20を通って、水タンク21からの水がポンプ23、24、25により循環し、その結果、このラインを通る改質ガスは冷却され、一方水タンク21の水は加熱される。また、水タンク21の水はポンプ42により熱交換器41内を循環し、貯湯タンクの水と熱交換する。また、カソード6bからの排ガスは、ガス管路26に接続された熱交換器27の中を通って、その中を通る水と熱交換する。貯湯タンク98からの水はポンプ28により熱交換器27内を、ポンプ33により熱交換器32内を、ポンプ43により熱交換器41内を、ポンプ47により熱交換器46内を、それぞれ循環し、加熱させられる。さらに、燃料電池6の冷却部6cにはポンプ48を介して水タンク21の水が循環する。
改質器からの排ガス管路31には熱交換器32が接続され、熱交換器32には、貯湯タンク98からの水がポンプ33を介して循環し、排熱回収が行われる。
【0022】
前記説明では、固体高分子型燃料電池発電システムについて説明したが、リン酸塩型燃料電池発電システムにおいても同様の起動運転方法により短時間で一酸化炭素除去装置の触媒層の温度を上昇させることができる。すなわち、リン酸塩型燃料電池発電システムにおいては、一酸化炭素除去器は設けられず、一酸化炭素変成器のみが設けられる点が異なるだけである。
【0023】
【実施例】
以下に実施例を示し本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
実施例1(第1の方法)
図1で示すような固体高分子型燃料電池発電システムを用いて、起動運転を行った。改質器触媒、一酸化炭素変成器触媒および一酸化炭素除去器触媒としてそれぞれRu、Cu−ZnおよびRuを用いた。また、改質器触媒層を通った原燃ガスが一酸化炭素除去装置の触媒層の温度を反応温度以上に加熱することが可能で、かつ原燃ガスから前記触媒層に炭素を析出させない設定温度は300℃とした。
バーナに原燃ガスを供給して点火するとともに、改質器に原燃ガスを導入した。改質器に供給する原燃ガスの流量は燃料電池発電装置を定常運転する場合に要する原燃ガスの100%とした。改質器触媒層の温度が300℃に達したときに改質器に水蒸気を導入した。さらに、同量の原燃ガスを流し続けるとともに、バーナによる改質器触媒層の加熱を触媒層の温度が改質反応温度になるまで行った。
40分で一酸化炭素変成器の触媒層の温度および一酸化炭素除去器の触媒層の温度が、反応温度に達した。また、この時点から、改質器触媒層の温度が改質反応温度に達するまでの時間は15分であり、起動運転に要する時間は60分であった。
【0024】
実施例2(第2の方法)
実施例1と同様の固体高分子型燃料電池発電装置を用いて起動運転を行った。また、前記設定温度は280℃とした。
バーナに原燃ガスを供給して点火し、改質器触媒層を加熱した。触媒層の温度が前記設定温度に達した時点で改質器に原燃ガスを導入した。改質器に供給する原燃ガスの流量は燃料電池発電装置を定常運転する場合に要する原燃ガスの100%とした。一酸化炭素変成器および一酸化炭素除去器の温度が反応温度に達したときに原燃ガスの供給を止め、改質器触媒層の温度が300℃に達したときに改質器に水蒸気を導入した。改質器触媒が改質反応温度になるまで改質器触媒を加熱し、起動運転を続けた。
一酸化炭素変成器および一酸化炭素除去器の温度が反応温度に達する時点まで45分、この時点から水蒸気導入までは1分、水蒸気導入から改質器触媒が反応温度に達するまでの時間が10分であり、起動運転に要する時間は60分であった。
【0025】
【発明の効果】
本発明の起動方法は、高価な窒素ガスを用いる必要がないため燃料電池発電のランニングコストを下げることができ、また、従来窒素ガスを用いて一酸化炭素除去装置の触媒層を予備加熱していた場合、該触媒層の反応温度に昇温させるまでおよそ1時間30分ないし2時間を要していたのに対し、1時間以内で所定の反応温度にまで加熱することができる。
【図面の簡単な説明】
【図1】 本発明の起動方法が用いられる燃料電池発電装置の一例を示す概念図である。
【符号の説明】
1 原燃ガス
3 改質器
4 一酸化炭素変成器
5 一酸化炭素除去器
6 燃料電池
[0001]
BACKGROUND OF THE INVENTION
The present invention raises the temperature of the catalyst layer of the carbon monoxide removal device in the fuel cell power generation device to a temperature equal to or higher than the reaction temperature, and raises the temperature of the catalyst layer of the reformer to the reforming reaction temperature. The present invention relates to a method for starting a reformer for a fuel cell.
[0002]
[Prior art]
A fuel cell power generation system is a power generation system that takes out electricity by reacting hydrogen and oxygen in air by introducing reformed gas rich in hydrogen gas and air from a reformer into the fuel cell. The reformed gas contains hydrogen, carbon dioxide, and carbon monoxide. Since carbon monoxide is a catalyst poison for the fuel cell, it must be removed. Therefore, a carbon monoxide removal device is required between the reformer and the fuel cell. Is provided. The carbon monoxide removing device includes a catalyst layer in order to remove carbon monoxide. The reformed gas from the reformer needs to pass through the catalyst layer in a state where the temperature of the catalyst layer in the carbon monoxide removing apparatus has risen to the reaction temperature.
Various methods are employed to raise the temperature of the catalyst layer from room temperature or a power generation stop state. For example, the reaction temperature of the transformer for removing carbon monoxide is in the range of 200 to 300 ° C., and there is a method of introducing nitrogen gas heated to this temperature into the catalyst layer. However, since the specific heat (heat capacity) of nitrogen gas is small, the temperature rise time is as long as 1 hour 30 minutes to 2 hours, and it is necessary to provide a new nitrogen gas cylinder when generating electricity on-site such as home use. Therefore, in terms of running cost, it is not feasible for home use.
[0003]
Japanese Patent Laid-Open No. 4-71169 provides a bypass circuit for directly introducing the reformed gas into the fuel chamber of the fuel cell without passing through the transformer as a method for starting the fuel cell power generator without using nitrogen gas. First, a reformed gas having a low carbon monoxide concentration is generated by increasing the ratio of water vapor in the reformer, and this is introduced into the fuel chamber through the bypass circuit to generate electric power. This is a method in which the catalyst temperature of the removal device is heated by a heater, and when the catalyst temperature of the fuel cell and the transformer is increased to a predetermined temperature, the reformed gas is stopped flowing to the bypass circuit and switched to steady operation. However, in this method, since the heater is used to raise the temperature of the transformer, it takes several hours for the temperature of the catalyst to reach the reaction temperature, and the carbon monoxide concentration in the reformed gas is equal to the ratio of water vapor. However, there is a problem that it is difficult to reduce it.
[0004]
Japanese Patent Application Laid-Open No. 5-275103 discloses that a mixed gas of water vapor and nitrogen gas is introduced into the reformer while the reformer is heated with a burner and the transformer is heated with a heater, and the mixed gas is heated. Describes a starting method for raising the temperature of a pipeline, a transformer, and a fuel cell power generation unit. This method has the advantages that the heat capacity is larger than that of nitrogen alone because steam is mixed with nitrogen gas, and that it is not necessary to perform steam purge. However, this method uses nitrogen gas and is not suitable for home use. Moreover, it is necessary to provide a heater in the transformer.
[0005]
Thus, in the fuel cell power generation, the time until the temperature of the catalyst layer of the carbon monoxide removal device reaches the predetermined reaction temperature is short, and it is not necessary to use expensive nitrogen gas, and the starting method is not yet known. .
[Patent Document 1]
Japanese Patent Laid-Open No. 04-071169 [Patent Document 2]
Japanese Patent Laid-Open No. 05-275103 [Patent Document 3]
Japanese Patent Laid-Open No. 08-050908 [Patent Document 4]
JP-A-11-149931 [0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and the object thereof is not to provide a burner for heating the catalyst in the carbon monoxide removal device, the start-up time until steady operation is short, and the nitrogen gas It is an object of the present invention to provide a method for starting a fuel cell reforming apparatus that does not require the use of a fuel cell and therefore has low running costs.
[0007]
[Means for Solving the Problems]
The object is solved by providing the following method.
A reformer that reforms by reacting at least a raw gas and water vapor, and a reaction between the exhaust gas discharged from the reformed gas and water vapor or oxygen to remove carbon monoxide contained in the exhaust gas. a carbon monoxide oxidizer, wherein the reformer steam generator for generating steam to be supplied to, a method of starting a fuel cell reforming apparatus comprising, in the reformer ignites the reformer burner The first step of heating the catalyst layer, the temperature of the reformer catalyst layer, the exhaust gas discharged from the reformer through the reformer catalyst layer is the catalyst layer of the carbon monoxide removal device A second step of setting the temperature to a set temperature at which carbon is not deposited on the reformer catalyst layer from the raw gas, and the reformer catalyst layer is set to the setting temperature. after reaching the temperature, to introduce the raw fuel gas to the reformer Third step and the fourth step and the reformer catalyst layer is the set temperature for heating the carbon monoxide remover catalyst layer by introducing the exhaust gas to the carbon monoxide oxidizer than the reaction temperature after reaching a fifth step of introducing the steam into the reformer, the temperature of the reformer catalyst layer, and characterized in that it includes a sixth step of heating the reforming reaction temperature, the To start the reformer for the fuel cell.
A method for starting a fuel cell power generation apparatus, comprising the step of:
[0008]
2. The fuel cell reforming apparatus start-up method according to claim 1, wherein the steam is used after the reformer catalyst layer reaches the set temperature and the carbon monoxide removing device catalyst layer is 100 ° C. or higher. After that, the method for starting the reformer for the fuel cell is introduced into the reformer.
Since the start-up method of the present invention does not require the use of expensive nitrogen gas, the running cost of fuel cell power generation can be reduced, and the catalyst layer of the carbon monoxide removal device is preheated using conventional nitrogen gas. In this case, it took about 1 hour 30 minutes to 2 hours to raise the temperature to the reaction temperature of the catalyst layer, but it can be heated to a predetermined reaction temperature within 1 hour.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the fuel cell start-up method of the present invention, the heated raw fuel gas is introduced into the carbon monoxide removal apparatus, and the temperature of the catalyst layer of the carbon monoxide removal apparatus is heated to the reaction temperature or higher by the heat held by the gas. It is characterized by that.
In the present invention, the carbon monoxide removing device is a device that removes carbon monoxide with a catalyst. In the case of a solid polymer fuel cell, the device includes at least a carbon monoxide converter and a carbon monoxide remover. In the case of another fuel cell such as a phosphoric acid fuel cell, at least a carbon monoxide transformer is provided. The carbon monoxide converter is a device that reacts carbon monoxide with water vapor to convert it into carbon dioxide, and includes, for example, a Cu-based catalyst as a catalyst, and the reaction temperature is in the range of 200 to 300 ° C. The carbon monoxide remover is a device that adds air (oxygen) to the exhaust gas from the carbon monoxide converter and converts carbon monoxide to carbon dioxide based on a selective oxidation reaction. For example, Ru is used as a catalyst. And the reaction temperature is in the range of 120-200 ° C. The CO concentration is reduced to about 1% by the carbon monoxide transformer, and further reduced to about 10 ppm by the carbon monoxide remover.
[0010]
Therefore, in the present invention, heating the catalyst layer of the carbon monoxide removal device to a temperature higher than the reaction temperature means that the temperature of the catalyst layer of the carbon monoxide converter or the carbon monoxide converter and the carbon monoxide remover is It means that the temperature is raised above the reaction temperature. In the case of a polymer electrolyte fuel cell power generator, the reaction temperature of a carbon monoxide remover catalyst is usually lower than that of a carbon monoxide converter catalyst, and the carbon monoxide remover is a carbon monoxide converter. Because it is located on the downstream side, the raw fuel gas that has passed through the carbon monoxide converter passes the carbon monoxide remover and the temperature of the catalyst layer of the carbon monoxide remover is set to an appropriate reaction temperature. The temperature can be increased.
[0011]
The temperature of the catalyst layer of the reformer is such that the raw gas passing through the catalyst layer can heat the temperature of the catalytic layer of the carbon monoxide removing device to a reaction temperature or higher, and from the raw gas to the catalyst layer. However, the temperature range that satisfies this condition is 200 to 400 ° C.
The raw fuel gas that has passed through the catalyst layer of the reformer heated to the above temperature range causes the temperature of the catalyst layer of the carbon monoxide converter or the carbon monoxide converter and the carbon monoxide remover to be relatively short. The temperature can be raised above the reaction temperature. The set temperature of the catalyst layer of the reformer is preferably 250 to 300 ° C.
[0012]
Next, the activation method of the present invention will be described sequentially. First, a method for continuously introducing the raw fuel gas (hereinafter sometimes referred to as “first method”) will be described.
In the first method, first, the reformer burner is ignited to heat the reformer catalyst layer, the temperature of the catalyst layer of the reformer is changed, and the raw gas passing through the catalyst layer is converted to the catalyst of the carbon monoxide removal apparatus. The temperature of the layer can be heated to the reaction temperature or higher, and is maintained at a set temperature at which carbon is not deposited on the catalyst layer from the raw gas. The introduction of the raw fuel gas to the reformer may be performed simultaneously with the ignition of the burner, or when the temperature of the catalyst layer of the reformer reaches the set temperature, or when the burner ignition and the set temperature are reached. It can be at any point in time. From the viewpoint of shortening the starting time, it is preferable to introduce the raw fuel gas when the burner is ignited.
The temperature of the catalyst layer of the carbon monoxide removal device is raised to the reaction temperature or higher by the raw fuel gas that has passed through the reformer catalyst layer maintained at the set temperature. During this time, the temperature of the catalyst of the reformer may be constant or may be raised within the set temperature range.
[0013]
When the temperature of the catalyst layer of the carbon monoxide removing apparatus becomes equal to or higher than the reaction temperature, the temperature of the catalyst layer of the reformer is raised (further). As the temperature rises, it reaches a temperature at which carbon is deposited from the raw gas into the reformer catalyst layer, but at least at this point, in order not to deposit carbon in the reformer catalyst layer, steam is introduced into the reformer, The raw fuel gas mixed with water vapor is introduced into the carbon monoxide removal device. For example, when the temperature of the catalyst layer of the carbon monoxide removal apparatus reaches the reaction temperature, water vapor can be introduced. At this time, since the temperature of the catalyst layer of the carbon monoxide removing device exceeds the dew point, water vapor does not condense. Then, the temperature of the catalyst layer of the reformer is further raised to the reforming reaction temperature. It should be noted that the introduction of water vapor can be performed at any time when the temperature of the catalyst layer of the carbon monoxide removal apparatus reaches 100 ° C. or higher.
In the first method, approximately 10 to 40 minutes from the burner ignition until the catalyst layer temperature of the carbon monoxide removal device reaches the reaction temperature, and the time from this point until the reformer catalyst reaches the reforming reaction temperature is approximately 5 to 15 minutes, and the time from the burner ignition until the reformer catalyst reaches the reforming reaction temperature, that is, the startup time is within 1 hour.
[0014]
Next, a method for introducing the raw fuel gas discontinuously into the carbon monoxide removal apparatus (hereinafter, sometimes referred to as “second method”) will be described.
In the second method, the reformer burner is first ignited to heat the catalyst layer of the reformer. Next, the temperature of the catalyst layer of the reformer is such that the raw fuel gas that has passed through the catalyst layer can heat the temperature of the catalyst layer of the carbon monoxide removal device to a reaction temperature or higher, and from the raw fuel gas. When a set temperature at which carbon is not deposited on the catalyst layer is reached, the raw gas is introduced into the reformer. With the temperature of the catalyst layer of the reformer maintained at the set temperature, the exhaust gas from the reformer is introduced into the carbon monoxide removal device until the catalyst layer temperature of the carbon monoxide removal device reaches the reaction temperature. However, after reaching it, the introduction of nuclear fuel gas will be cut off. Thereafter, the temperature of the catalyst layer of the reformer is raised, and steam is introduced into the reformer immediately before reaching the temperature at which carbon is deposited from the raw gas in the catalyst layer of the reformer. This steam introduction is to prevent carbon from being deposited from the raw gas that may remain in the reformer. Thereafter, the temperature of the catalyst layer of the reformer is further raised to the reforming reaction temperature.
The second method has the advantage that the deposition of carbon is easier to prevent than the first method because the consumption of the raw fuel gas can be reduced because the raw fuel gas is not continuously flowed.
Further, in the second method, approximately 20 to 40 minutes from the burner ignition to the time when the catalyst layer temperature of the carbon monoxide removal device reaches the reaction temperature, approximately 10 minutes or less from this point to the introduction of steam, The time until the mass catalyst reaches the reaction temperature is approximately 10 minutes or less, and the time from the burner ignition until the reformer catalyst reaches the reforming reaction temperature, that is, the startup time is within 1 hour.
It is appropriate that the fuel gas in the start-up operation of the present invention is approximately 10 to 100% consumed in the steady operation.
[0015]
In the start-up method of the present invention, the catalyst layer temperature of the carbon monoxide removal apparatus is heated by the heated nuclear fuel gas, and nitrogen gas is not used. Therefore, the running cost of power generation by the fuel cell is low, and the start-up time is Compared to the conventional time of 1 hour 30 minutes to 2 hours, the time is shortened to within 1 hour.
Also in the first and second methods, when introducing steam into the reformer, it is necessary that the steam does not condense in the carbon monoxide removal apparatus. In any of the methods, when the steam is introduced into the reformer, the temperature of the catalyst layer of the carbon monoxide removing apparatus is equal to or higher than the reaction temperature, that is, 100 ° C. or higher.
[0016]
Next, a fuel cell power generator to which the starting method of the present invention is applied will be described. FIG. 1 is a conceptual diagram of a power generation system using a polymer electrolyte fuel cell. In FIG. 1, 1 is a fuel gas, 2 is a desulfurizer, 3 is a reformer, 4 is a carbon monoxide converter, 5 is a carbon monoxide remover, 6 is a polymer electrolyte fuel cell, and 10 is a booster pump. , 12 is a reformer burner, 13 is a raw gas pipe, 14 is a blower, 17 is a heat exchanger, 21 is a water tank, 22 is a pump, 34 is a PG (process gas) burner, 35 is a conduit, and 36 is open / close Reference numeral 45 denotes exhaust gas, 46 denotes a heat exchanger, 91 and 92 denote on-off valves, and 98 denotes a hot water storage tank.
[0017]
At the time of startup, also in the first method and the second method, the raw fuel gas 1 desulfurized by the desulfurizer 2 is first sent to the burner 12 through the pipe 13 and mixed with the air from the blower 14. The reformed catalyst layer is heated to the set temperature. As the raw fuel gas, natural gas, city gas, methanol, LPG, butane, or the like is used.
In the first method, the raw fuel gas may be introduced at the same time as the ignition of the burner, when the temperature of the catalyst layer reaches the set temperature, or at any stage where this temperature is reached. In the second method, the raw fuel gas is introduced when the temperature of the reformer catalyst layer reaches the set temperature. Reference numeral 10 denotes a booster pump for sending the raw fuel gas to the reformer.
The raw fuel gas that has passed through the reformer catalyst layer raises the temperature of the catalyst layers of the carbon monoxide removal apparatus, that is, the carbon monoxide converter 4 and the carbon monoxide remover 5, to the reaction temperature. Since the on-off valve 91 is closed and 36 is open, the raw fuel gas that has passed through the carbon monoxide removing device enters the PG burner 34 through the pipe 35 and burns with the air from the blower 37, and in the heat exchanger 46. After exchanging heat with the water from the hot water storage tank 98, the exhaust gas 45 is obtained. Heat exchangers 18, 19, and 20 are installed between the reformer 3 and the carbon monoxide converter 4, between the carbon monoxide converter 4 and the carbon monoxide remover 5, and downstream of the remover. However, at the time of start-up, it is preferable to stop the pumps 23, 24 and 25 to stop the supply of water or to flow at a minimum flow rate.
[0018]
In the first method, after the temperature of the catalyst layer of the carbon monoxide removal apparatus reaches the reaction temperature, the temperature of the catalyst layer of the reformer is further raised. In this process, the catalyst layer of the reformer Therefore, it is necessary to introduce water vapor into the reformer at least before this temperature is reached. The reformer catalyst layer is further heated until reaching the reforming reaction temperature. As will be described later, the exhaust gas from the carbon monoxide removal device becomes exhaust gas after passing through the heat exchanger 46 as described above until the reformed gas composition is stabilized.
Further, in the second method, the introduction of the raw gas into the carbon monoxide removal apparatus is temporarily stopped when the temperature of the catalyst layer of the apparatus reaches the reaction temperature, and the temperature of the reformer catalyst layer is changed during the steady operation. It is reintroduced at a temperature slightly lower than the set catalyst layer temperature. This is because an overshot in the temperature control of the reformer catalyst layer is taken into consideration. This temperature is 550 to 750 ° C, preferably 620 to 680 ° C.
[0019]
The introduction of water vapor into the reformer is performed by supplying water from the water tank 21 to the heat exchanger 17 connected to the reformer via the pump 22 and evaporating the water vapor with the heat exchanger 17. It is carried out by introducing it into the raw gas line to the pledge.
In the first and second methods, the reaction set temperature of the reformer is 650 to 800 ° C, preferably 700 to 750 ° C.
[0020]
Since the reformed gas cannot be introduced into the fuel cell 6 until the gas composition is stabilized, the temperatures of the catalyst layers of the reformer 3, the carbon monoxide converter 4, and the carbon monoxide remover 5 are stabilized. Until the on-off valve 91 is closed, the on-off valve 36 is opened, and the reformed gas from the carbon monoxide remover is sent to the PG (process gas) burner through the pipe 35 and is supplied by the blower 37. The combustion gas passes through the heat exchanger 46, exchanges heat with water from the hot water storage tank 98, and is then exhausted as exhaust gas 45.
When the temperature of each catalyst layer of the carbon monoxide converter 4 and the carbon monoxide remover 5 is stabilized, the on-off valve 36 is closed and the on-off valve 91 is opened, and the reformed gas from the carbon monoxide remover 5 is supplied to the fuel cell. Then, air is introduced into the air electrode (cathode) 6b into the fuel electrode (anode) 6a and power generation is started. Until the temperature of the fuel cell 6 is stabilized, the on-off valve 39 is opened, the on-off valve 92 is closed, and the gas from the fuel cell 6 is supplied to the PC burner. At the time of shifting to stable steady operation, the on-off valves 91 and 92 are opened, the on-off valves 36 and 39 are closed, and the unreacted gas that has passed through the anode 6a of the fuel cell is supplied to the burner 12 through the conduit 15. . Unreacted gas is burned in the burner in all amounts, but if this alone cannot keep the temperature of the reformer catalyst layer at the reforming reaction temperature, the raw fuel gas is supplied to the burner 12. Since the temperature of the air exhausted from the cathode rises due to the exothermic reaction of the fuel cell main body 6, it is exhausted after passing through the heat exchanger 27 via the pipe line 26.
[0021]
Further, heat from the reformed gas and heat from the fuel cell are recovered using each heat exchanger and supplied as hot water. The water from the water tank 21 is circulated by the pumps 23, 24 and 25 through the heat exchangers 18, 19 and 20 provided in the line connecting the reformer and the fuel cell. The quality gas is cooled while the water in the water tank 21 is heated. The water in the water tank 21 is circulated in the heat exchanger 41 by the pump 42 to exchange heat with the water in the hot water storage tank. Further, the exhaust gas from the cathode 6b passes through the heat exchanger 27 connected to the gas pipe 26 and exchanges heat with water passing through the heat exchanger 27. Water from the hot water storage tank 98 circulates in the heat exchanger 27 by the pump 28, in the heat exchanger 32 by the pump 33, in the heat exchanger 41 by the pump 43, and in the heat exchanger 46 by the pump 47. Heated. Further, the water in the water tank 21 is circulated through the pump 48 to the cooling unit 6 c of the fuel cell 6.
A heat exchanger 32 is connected to the exhaust gas conduit 31 from the reformer, and water from the hot water storage tank 98 is circulated through the pump 33 to the heat exchanger 32 to recover exhaust heat.
[0022]
In the above description, the polymer electrolyte fuel cell power generation system has been described. However, in the phosphate fuel cell power generation system, the temperature of the catalyst layer of the carbon monoxide removal apparatus can be increased in a short time by the same startup operation method. Can do. In other words, the phosphate fuel cell power generation system is different in that a carbon monoxide remover is not provided and only a carbon monoxide transformer is provided.
[0023]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
Example 1 (first method)
A start-up operation was performed using a polymer electrolyte fuel cell power generation system as shown in FIG. Ru, Cu-Zn, and Ru were used as the reformer catalyst, carbon monoxide shifter catalyst, and carbon monoxide remover catalyst, respectively. In addition, the fuel gas that has passed through the reformer catalyst layer can heat the catalyst layer of the carbon monoxide removal device to a temperature higher than the reaction temperature, and the carbon is not deposited on the catalyst layer from the fuel gas. The temperature was 300 ° C.
The fuel gas was supplied to the burner and ignited, and the fuel gas was introduced into the reformer. The flow rate of the raw fuel gas supplied to the reformer was 100% of the raw fuel gas required for steady operation of the fuel cell power generator. When the temperature of the reformer catalyst layer reached 300 ° C., steam was introduced into the reformer. Further, the same amount of the raw fuel gas was kept flowing, and the reformer catalyst layer was heated by the burner until the temperature of the catalyst layer reached the reforming reaction temperature.
In 40 minutes, the temperature of the carbon monoxide converter catalyst layer and the temperature of the carbon monoxide remover catalyst layer reached the reaction temperature. From this point, the time required for the temperature of the reformer catalyst layer to reach the reforming reaction temperature was 15 minutes, and the time required for start-up operation was 60 minutes.
[0024]
Example 2 (second method)
The start-up operation was performed using the same polymer electrolyte fuel cell power generator as in Example 1. The set temperature was 280 ° C.
The raw fuel gas was supplied to the burner and ignited to heat the reformer catalyst layer. When the temperature of the catalyst layer reached the set temperature, the raw fuel gas was introduced into the reformer. The flow rate of the raw fuel gas supplied to the reformer was 100% of the raw fuel gas required for steady operation of the fuel cell power generator. When the temperature of the carbon monoxide converter and the carbon monoxide remover reaches the reaction temperature, the supply of the raw gas is stopped, and when the temperature of the reformer catalyst layer reaches 300 ° C., steam is supplied to the reformer. Introduced. The reformer catalyst was heated until the reformer catalyst reached the reforming reaction temperature, and the startup operation was continued.
45 minutes until the temperature of the carbon monoxide converter and carbon monoxide remover reaches the reaction temperature, 1 minute from this point to the introduction of steam, and the time from the introduction of steam to the reaction temperature of the reformer catalyst being 10 minutes. Minutes, and the time required for the start-up operation was 60 minutes.
[0025]
【The invention's effect】
Since the start-up method of the present invention does not require the use of expensive nitrogen gas, the running cost of fuel cell power generation can be reduced, and the catalyst layer of the carbon monoxide removal device is preheated using conventional nitrogen gas. In this case, it took about 1 hour 30 minutes to 2 hours to raise the temperature to the reaction temperature of the catalyst layer, but it can be heated to a predetermined reaction temperature within 1 hour.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an example of a fuel cell power generator in which a starting method of the present invention is used.
[Explanation of symbols]
1 Nuclear Fuel Gas 3 Reformer 4 Carbon Monoxide Transformer 5 Carbon Monoxide Remover 6 Fuel Cell

Claims (2)

少なくとも原燃ガスと水蒸気とを反応させて改質する改質器と、前記改質ガスから排出された排出ガスと水蒸気または酸素とを反応させて前記排出ガスに含まれる一酸化炭素を除去する一酸化炭素除去装置と、前記改質器へ供給する水蒸気を発生する水蒸気発生器と、を備える燃料電池用改質装置の起動方法であって、
改質器バーナに点火し前記改質器触媒層を加熱する第1の工程と、
改質器触媒層の温度を、前記改質器触媒層を通って前記改質器から排出された前記排出ガスが前記一酸化炭素除去装置の触媒層の温度を反応温度以上に加熱することが可能で、かつ前記原燃ガスから前記改質器触媒層に炭素を析出させない設定温度にする第2の工程と、
前記改質器触媒層が前記設定温度に達した後に、前記改質器に前記原燃ガスを導入する第3の工程と、
前記排出ガスを前記一酸化炭素除去装置に導入し一酸化炭素除去装置触媒層を前記反応温度以上に加熱する第4の工程と、
前記改質器触媒層が前記設定温度に達した後に、前記改質器に前記水蒸気を導入する第5の工程と、
前記改質器触媒層の温度を、改質反応温度に加熱する第6の工程と、
を含むことを特徴とする燃料電池用改質装置の起動方法。
A reformer that reforms by reacting at least a raw gas and water vapor, and a reaction between the exhaust gas discharged from the reformed gas and water vapor or oxygen to remove carbon monoxide contained in the exhaust gas. A method for starting a reformer for a fuel cell, comprising: a carbon monoxide removing device; and a steam generator for generating steam to be supplied to the reformer ,
A first step of igniting the reformer burner and heating the catalyst layer of the reformer ;
The temperature of the reformer catalyst layer may be such that the exhaust gas discharged from the reformer through the reformer catalyst layer heats the temperature of the catalyst layer of the carbon monoxide removal device to a reaction temperature or higher. A second step which is possible and is set to a set temperature at which carbon is not deposited from the raw gas into the reformer catalyst layer ;
A third step of introducing the raw gas into the reformer after the reformer catalyst layer reaches the set temperature ;
A fourth step of heating the carbon monoxide remover catalyst layer by introducing the exhaust gas to the carbon monoxide oxidizer than the reaction temperature,
A fifth step of introducing the steam into the reformer after the reformer catalyst layer has reached the set temperature ;
A sixth step of heating the temperature of the reformer catalyst layer to a reforming reaction temperature ;
A method for starting a reformer for a fuel cell , comprising :
請求項1記載の燃料電池用改質装置の起動方法において、In the starting method of the reformer for a fuel cell according to claim 1,
前記水蒸気は、前記改質器触媒層が前記設定温度に達した後で、かつ前記一酸化炭素除去装置触媒層が100℃以上となった後に、前記改質器に導入することを特徴とする燃料電池用改質装置の起動方法。The steam is introduced into the reformer after the reformer catalyst layer reaches the set temperature and after the carbon monoxide removal device catalyst layer reaches 100 ° C. or higher. A method for starting a reformer for a fuel cell.
JP2000259013A 2000-08-29 2000-08-29 Method for starting reformer for fuel cell Expired - Fee Related JP4049526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000259013A JP4049526B2 (en) 2000-08-29 2000-08-29 Method for starting reformer for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259013A JP4049526B2 (en) 2000-08-29 2000-08-29 Method for starting reformer for fuel cell

Publications (2)

Publication Number Publication Date
JP2002075426A JP2002075426A (en) 2002-03-15
JP4049526B2 true JP4049526B2 (en) 2008-02-20

Family

ID=18747237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259013A Expired - Fee Related JP4049526B2 (en) 2000-08-29 2000-08-29 Method for starting reformer for fuel cell

Country Status (1)

Country Link
JP (1) JP4049526B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065627B2 (en) * 2006-06-28 2012-11-07 Jx日鉱日石エネルギー株式会社 Starting method of fuel cell system
JP5283330B2 (en) * 2006-12-22 2013-09-04 パナソニック株式会社 Operation method of hydrogen generator and hydrogen generator
JP5351764B2 (en) * 2007-11-13 2013-11-27 パナソニック株式会社 FUEL PROCESSING DEVICE AND ITS START-UP METHOD

Also Published As

Publication number Publication date
JP2002075426A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
JP5292389B2 (en) Hydrogen system and method for starting hydrogen system
CN100391037C (en) Proton exchange membrane fuel cell power generation device
WO2006073150A1 (en) Method of starting solid oxide fuel cell system
JP2003002605A (en) Starting and stopping methods of the steam reformer
JP2005166283A (en) Hydrogen manufacturing device for fuel cell
JP4049526B2 (en) Method for starting reformer for fuel cell
JP2001313053A (en) Fuel cell system
JP2003086210A (en) Polymer electrolyte fuel cell power generator and operation method thereof
JP4052784B2 (en) Combined heat and power fuel cell power generator and method of operating the same
JP4283980B2 (en) Starting method of fuel cell power generator
JP2005507137A (en) System and method for preparing fuel for a fuel processing system
JP3789706B2 (en) CO conversion unit and polymer electrolyte fuel cell power generation system
JP3139574B2 (en) Fuel cell generator
JP3062219B2 (en) Heat medium heating device of fuel reformer for fuel cell
JP4590872B2 (en) Operation method of fuel cell power generator
JP4660910B2 (en) Fuel cell power generation apparatus and starting method thereof
JP4145573B2 (en) Start-up method of reformer
JP2004103358A (en) Hydrogen supply system for fuel cells
KR100830161B1 (en) Operation start method of domestic fuel cell system
JP2001155747A (en) Fuel cell system
JP2004164868A (en) Hot water storage method and device in cogeneration system
JP2003077511A (en) Method for starting reforming device in fuel cell system
JP2002329516A (en) Hydrogen supply device for fuel cells
JP2001176533A (en) Fuel cell system and fuel cell cogeneration hot water supply system
JP2004296396A (en) Fuel cell power generator and start-up method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees