[go: up one dir, main page]

JP4079564B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4079564B2
JP4079564B2 JP35411099A JP35411099A JP4079564B2 JP 4079564 B2 JP4079564 B2 JP 4079564B2 JP 35411099 A JP35411099 A JP 35411099A JP 35411099 A JP35411099 A JP 35411099A JP 4079564 B2 JP4079564 B2 JP 4079564B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
compressor
valve
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35411099A
Other languages
Japanese (ja)
Other versions
JP2001174082A (en
Inventor
和秀 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP35411099A priority Critical patent/JP4079564B2/en
Publication of JP2001174082A publication Critical patent/JP2001174082A/en
Application granted granted Critical
Publication of JP4079564B2 publication Critical patent/JP4079564B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ハイドロフルオロカーボンを主成分とする冷媒を用いて、コンプレッサを運転し、商品収納庫を冷却する冷凍装置に関する。
【0002】
【従来の技術】
缶飲料を販売する缶自動販売機には、種々の飲料を収納できるようにしている商品収納庫を設け、商品収納庫には蒸発器を設け、複数の商品収納庫を設けた場合には各々の商品収納庫に設けた蒸発器の入口側に接続した冷媒電磁弁と、冷凍サイクル(コンプレッサ、温度センサ、膨張弁、ファンモータなど)を制御して、商品を冷却・保存できるようになっている。
【0003】
ところで従来、冷媒としてCFC12やHCFC22を使用した冷凍装置では、コンプレッサに鉱物油やアルキルベンゼン系油などの冷凍機油を用いていた。鉱物油やアルキルベンゼン系油は、CFC12やHCFC22と相互溶解性があるため、冷凍機油が冷凍サイクル中に余分に滞留することがなくコンプレッサに返油され、信頼性・耐久性の高いレベルを持った冷凍装置を実現することができた。
【0004】
しかし、CFC12やHCFC22は大気中に放出されるとオゾン層を破壊するため、オゾン層を破壊する可能性の少ないハイドロフルオロカーボンを主成分とする冷媒が、冷凍機に使用されるようになった。ハイドロフルオロカーボンを主成分とする冷媒に、鉱物油やアルキルベンゼン系油などの相互溶解性がほとんどない冷凍機油を使用すると、コンプレッサから冷媒とともに吐出された冷凍機油が冷凍サイクル中に滞留してしまう場合がある。冷凍機油が冷凍サイクル中に滞留すると、コンプレッサ内のオイルレベルが低下して摺動部の摩耗などの不具合を生じる、という問題があった。
【0005】
そこで、ハイドロフルオロカーボンを主成分とする冷媒を使用する冷凍装置において、冷凍機油を確実に返油するため様々な方法が試みられている。コンプレッサから吐出した冷凍機油は、断面積形状の大きいアキュムレータでは低流速になるため、また、温度がもっとも低い蒸発器では高粘性となって滞留し易い。しかし、高粘性、低温の冷凍機油であっても一定以上の冷媒流速があれば冷媒管路内面に沿いながら移動し、コンプレッサに戻ることが確認されている。例えば、特開平7−174439号公報には、冷凍サイクルを構成する冷媒管路の内径を所定値以下にすることにより、冷媒の流速を一定以上に保持して、冷凍サイクル中に冷凍機油が滞留するのを防止する技術が開示されている。
【0006】
このように冷媒流速が一定以上になるようにコンプレッサのストロークボリュームと冷媒管路の内径を構成することができる場合は有効だが、例えば多種多様な機種揃えを要求される上記缶自動販売機のように、内容量が小容量のものから大容量のものまで容量比率が3〜6倍程度ある場合には、商品収納庫内の温度を設定値に保持するための冷凍能力を得るには、コンプレッサのストロークボリュームを商品収容庫の内容量に合せ数種類用意し、冷媒管路もコンプレッサのストロークボリュームに合わせた数種類の内径の構成とすることが望ましい。しかし、冷媒管路をコンプレッサのストロークボリュームに合わせて、数種類の内径を使用することは、現在使用している凝縮器、蒸発器の構造上、冷媒管路内径の種類数の生産設備を必要とし、生産性が大幅に低下し、コストアップ要因となる。そのため、生産コストを最小にするために、商品収納庫内の温度を設定値に保持するための必要最小の冷凍能力を得ることができる数種類のストロークボリュームのコンプレッサと、限られた種類の内径の冷媒配管と凝縮器、蒸発器、及び、そのほかの部品の組み合せを使用している。
【0007】
【発明が解決しようとする課題】
しかし、冷媒配管は大容量の商品収納庫の冷却に必要とする冷媒流量を得ることができ、尚且つ、一定以上の冷媒流速が得られる内径の冷媒管路を使用している。このため、商品収納庫が大容量の缶自動販売機では、一定以上の冷媒流速が得られる内径の冷媒管路を使用しているため、ハイドロフルオロカーボンを主成分とする冷媒に、鉱物油やアルキルベンゼン系油などの相互溶解性がほとんどない冷凍機油を使用しても、冷媒管路内に冷凍機油が滞留することはないが、小容量の缶自動販売機ではストロークボリュームの小さいコンプレッサを使用するため冷媒管路内を流れる冷媒の流速が低下して返油限界冷媒流速以下になる場合がある。冷媒流速が返油限界冷媒流速以下のままで冷凍サイクルの運転を行うと、冷凍機油が冷媒管路内に滞留してしまい、適正量の冷凍機油がコンプレッサに返油されないこととなり、しいては、コンプレッサ内のオイルレベルが低下して摺動部の摩耗などの不具合を生じる場合がある。また、一般に冷凍サイクルには種々の部品が配置され、冷媒の流れる配管断面積は複雑に変化している。このため、もっとも断面積の大きい部品(部分)に冷凍機油が滞留し、冷凍機油が返油されないという不具合が生じる。
【0008】
本発明は、上記問題点を解決するためになされたものであり、ハイドロフルオロカーボンを主成分とする冷媒に、鉱物油やアルキルベンゼン系油などの相互溶解性がほとんどない冷凍機油を用いて、商品収納庫を冷却する冷凍装置において、小容量の缶自動販売機の商品収納庫内の温度を設定値に保持するための必要最小の冷凍能力を得ることができるストロークボリュームのコンプレッサと、大容量の商品収納庫の缶自動販売機の使用にも適する内径の冷媒管路を組み合せて使用したときにも、冷媒管路内での冷凍機油の滞留を防止することを目的とする。
【0009】
【課題を解決するための手段】
請求項1に記載の本発明は、コンプレッサ、凝縮器、弁開度が調整可能な膨張弁、蒸発器、及びこれらを連結して閉回路を形成する冷媒管路から成り、前記コンプレッサの冷凍機油との相互溶解性が小なる冷媒を使用して冷凍サイクルを実行する冷却部と、前記膨張弁を一定の弁開度とする前記冷却部の定常運転時において、前記膨張弁が所定時間だけ定常運転時と異なる弁開度となるように、前記膨張弁の弁開度を制御する制御部と、を備え、前記凝縮器及び前記蒸発器における冷媒の圧力を変動させると共に、前記制御部は、前記膨張弁を第1の時間だけ定常運転時より小なる弁開度とし、その後、前記膨張弁を第2の時間だけ定常運転時より大なる弁開度とするように、前記膨張弁の弁開度を制御することを特徴とするものである。
【0010】
【発明の実施の形態】
本発明の実施の形態を図を参照して説明する。
【0011】
図1は、本発明の実施の形態にかかる冷凍装置の構成図であって、コンプレッサ1、凝縮器2、ドライヤ3、冷媒の流量を変える働きをする膨張弁4、蒸発器6、チェック弁8、アキュムレータ9及びこれらを連結する冷媒管路10で構成される。蒸発器6は配管接続され、商品収納庫(図示せず)に設けられている。また、11は凝縮器ファンモータ11Mにより駆動する凝縮器用の送風機、12は蒸発器ファンモータ12Mにより駆動する蒸発器用の送風機である。7は、商品収納庫内の温度を検出し、検出温度信号を後述する制御部13に出力する温度センサ、例えばサーミスタである。冷媒は、ハイドロフルオロカーボンを主成分とするものを、冷凍機油はハイドロフルオロカーボンと相互溶解性のない鉱物油やアルキルベンゼン系油を、それぞれ用いている。商品収納庫内を冷却する場合、コンプレッサ1で圧縮された冷媒は、冷凍機油とともに凝縮器2で凝縮され、ドライヤ3、膨張弁4を通過した後、蒸発器6で気化し、蒸発器用の送風機12の運転により冷気が商品収納庫内を循環して、商品収納庫内が冷却される。蒸発器6を通過した冷媒は、チェック弁8、アキュムレータ9を介してコンプレッサ1に戻るようになっている。
【0012】
図3は、本発明の実施の形態にかかる冷凍装置の冷凍システムの制御ブロック図である。制御部13は、起動スイッチ14のON・OFF信号、温度センサ7の検出信号に基づき、コンプレッサ1、膨張弁4、冷媒電磁弁5、凝縮器ファンモータ11M、蒸発器ファンモータ12Mを制御している。尚、図1で説明した構成の場合には、冷媒電磁弁5は必要としない。
【0013】
図4は、実施の形態にかかる冷凍装置の第1の運転状態を示すタイムチャート図である。起動スイッチ14がONであり、商品収納庫内の温度が冷却温度設定値以上になっている状態では温度センサ7がONになり、制御部13に検出温度信号が出力されている。この検出温度信号に基づき、制御部13から制御信号が出力され、コンプレッサ1が運転(ON)し、膨張弁4が通常の弁開度で開いた状態になっている。このためコンプレッサ1で圧縮された冷媒は、冷凍機油とともに凝縮器2で凝縮され、膨張弁4を通過した後、蒸発器6に送出され、商品収納庫内が冷却されている。この状態から時刻T1になると、制御部13から膨張弁4へ制御信号が出力され、膨張弁4の弁開度を小にすることにより、膨張弁4の低圧側圧力が低下する。時刻T1から時間t1経過して時刻T2になると、制御部13から制御信号が出力され、膨張弁4の弁開度を大にすることにより、冷媒が時間t1滞っていた反動で加速され、冷媒流量が急増することにより、冷媒流速が大きくなり、冷媒は蒸発器6の管路内を高速で流れる。時刻T2から時間t2経過して時刻T3になると、膨張弁4を通常の弁開度にする。
【0014】
図5は、実施の形態にかかる冷凍装置の第2の運転状態を示すタイムチャート図である。起動スイッチ14がONであり、商品収納庫内の温度が冷却温度設定値以上になっている場合に、この状態から時刻T4になると、制御部13から膨張弁4へ制御信号が出力され、膨張弁4の弁開度を小にすることにより、膨張弁4の低圧側圧力が低下する。時刻T4から時間t3経過して時刻T5になると、膨張弁4を通常の弁開度にすることにより、冷媒が時間t3滞っていた反動で加速され、冷媒流量が増すことにより、冷媒流速が大きくなり、冷媒は蒸発器6の管路内を高速で流れる。
【0015】
図6は、実施の形態にかかる冷凍装置の第3の運転状態を示すタイムチャート図である。起動スイッチ14がONであり、商品収納庫内の温度が冷却温度設定値以上になっている場合に、この状態から時刻T6になると、制御部13から膨張弁4へ制御信号が出力され、膨張弁4の弁開度を大にすることにより冷媒流量が増し、冷媒流速が大きくなり、冷媒は蒸発器6の管路内を高速で流れる。時刻T6から時間t4経過して時刻T7になると、膨張弁4を通常の弁開度にする。
【0016】
図2は、複数の商品収納庫を設けた場合の参考例にかかる冷凍装置の構成図であって、図1と同一の部分は同一の引用数字で示しているので重複する説明は省略する。コンプレッサ1、凝縮器2、ドライヤ3、膨張弁4、冷媒電磁弁5、複数の蒸発器6、チェック弁8、アキュムレータ9及びこれらを連結する冷媒管路10で構成される。それぞれの蒸発器6は並列に配管接続され、各蒸発器6の入口側に冷媒電磁弁5が直列に配管接続され、それぞれ異なる商品収納庫(図示せず)に設けられている。商品収納庫内を冷却する場合、コンプレッサ1で圧縮された冷媒は、冷凍機油とともに凝縮器2で凝縮され、ドライヤ3、膨張弁4を通過した後、冷媒電磁弁5を通過して蒸発器6で気化し、蒸発器用の送風機12の運転により冷気が循環して、商品収納庫内が冷却される。蒸発器6を通過した冷媒は、チェック弁8、アキュムレータ9を介してコンプレッサ1に戻るようになっている。参考例においても、上記第1〜第3の運転状態を示すタイムチャート図のように各冷媒電磁弁5を2個同時または3個同時に制御することによって、実施形態と同様の効果が得られる。
【0017】
図7は、参考例にかかる冷凍装置の第4の運転状態を示すタイムチャート図である。起動スイッチ14がONであり、商品収納庫内の温度が冷却温度設定値以上になっている場合に、この状態から時刻T8になると、制御部13から冷媒電磁弁5へ制御信号が出力され、冷媒電磁弁5を全閉(OFF)し、冷媒の流れを止める。時刻T8から時間t5経過して時刻T9になると、冷媒電磁弁5を解放(ON)する事により、冷媒が時間t5止まっていた反動で加速され、冷媒流量が急増することにより、冷媒流速が大きくなり、冷媒は蒸発器6の管路内を高速で流れる。
【0018】
以上のように冷凍サイクルを制御する事により、蒸発器へ高速で冷媒を流すことができる。この結果、ハイドロフルオロカーボンを主成分とする冷媒と相互溶解性のない冷凍機油を用いて、小容量の缶自動販売機の商品収納庫内の温度を設定値に保持するための必要最小の冷凍能力を得ることができるストロークボリュームのコンプレッサと、大容量の商品収納庫の缶自動販売機の使用にも適する内径の冷媒管路を組み合せて使用しても冷媒管路内に冷凍機油が長時間滞留してしまい、コンプレッサへの返油が不充分となり、コンプレッサ内のオイルレベルが低下して摺動部の摩耗などの不具合を生じることを防ぐことができる。
【0019】
上記第1〜第4の運転状態を示すタイムチャート図における冷凍サイクル運転所定時間t1〜t5は、あらかじめ返油特性数値を把握し安全率を加味して設定した時間(例えば数秒〜数分間)であり、外気温度の変化による蒸発温度の変化特性、コンプレッサ特性、冷媒管路の内径による冷媒流速の変化特性、等を考慮して最適時間を決める。また、所定時間t1〜t5は、確実に冷媒管路内の冷凍機油をコンプレッサに返油する時間範囲で、できるだけ短い時間が望ましい。該缶自動販売機は、商品収納庫内の温度を、冷凍サイクルを制御して、例えば、1〜5℃の適温に保つようにしているが、所定時間t1〜t5が長すぎた場合、1〜5℃の温度範囲から外れてしまうと、販売商品(冷却負荷)を適温に保持できなくなってしまう。
【0020】
また、膨張弁4の弁開度を変える、または、冷媒電磁弁5の弁を開閉することにより凝縮器2及び蒸発器6の冷媒圧力を変動させる間隔は、あらかじめ返油特性数値を把握し安全率を加味して設定した時間(例えば数時間〜数十時間)であり、外気温度の変化による蒸発温度の変化特性、コンプレッサ特性、冷媒管路の内径による冷媒流速の変化特性、等を考慮して最適時間を決める。
【0021】
【発明の効果】
以上説明したように請求項1に記載の本発明によれば、ハイドロフルオロカーボンを主成分とする冷媒と、鉱物油やアルキルベンゼン系油などの冷凍機油を用いて、商品収納庫を冷却する冷凍装置において、コンプレッサ、凝縮器、凝縮器に送風する凝縮器用送風機、冷媒の流量を変える膨張弁、商品収納庫に設けられた蒸発器、蒸発器の冷気を送る働きをする蒸発器用送風機と、これらを連結する冷媒管路と、膨張弁を一定の弁開度とする冷却部の定常運転時において、膨張弁が所定時間だけ定常運転時と異なる弁開度となるように、膨張弁の弁開度を制御する制御部とを備え、この制御部からの信号に基づいて、コンプレッサ、凝縮器用送風機を運転し、膨張弁を一定の弁開度に開き、商品収納庫を冷却している場合、膨張弁を所定時間だけ定常運転時と異なる弁開度にした後、一定の弁開度として弁開度の変化によって冷媒の流速を一定以上にすることにより、ハイドロフルオロカーボンを主成分とする冷媒と相互溶解性のない冷凍機油を用いても、確実に冷媒管路内の冷凍機油をコンプレッサに戻すことができるため、冷媒管路内に冷凍機油が滞留することがない。
【0022】
また、膨張弁を所定時間だけ定常運転時より小なる弁開度とし、その後、定常運転時より大なる弁開度として弁開度の変化を一層大きくし、冷媒の流速を一定以上にすることにより、ハイドロフルオロカーボンを主成分とする冷媒と相互溶解性のない冷凍機油を用いても、一層確実に冷媒管路内の冷凍機油をコンプレッサに戻すことができるため、冷媒管路内に冷凍機油が滞留することがない。
【0023】
したがって、コンプレッサのオイルレベルの低下を防止でき、コンプレッサの摺動部の油膜切れを防ぎ、冷凍能力の低下を押さえるとともに、長期にわたり安定して冷凍システムを運転できる。
【0024】
また、従来のCFC12やHCFC22を冷媒として使用する冷凍装置に対して最小の変更で、ハイドロフルオロカーボンを主成分とする冷媒を用いる冷凍装置に改造することが可能になる。
【図面の簡単な説明】
【図1】 本発明の実施の形態にかかる冷凍装置の構成図である。
【図2】 複数の商品収納庫を設けた場合の参考例にかかる冷凍装置の構成図である。
【図3】 本発明の実施の形態にかかる冷凍装置の冷凍システムの制御ブロック図である。
【図4】 実施の形態にかかる冷凍装置の第1の運転状態を示すタイムチャート図である。
【図5】 実施の形態にかかる冷凍装置の第2の運転状態を示すタイムチャート図である。
【図6】 実施の形態にかかる冷凍装置の第3の運転状態を示すタイムチャート図である。
【図7】 参考例にかかる冷凍装置の第4の運転状態を示すタイムチャート図である。
【符号の説明】
1 コンプレッサ
2 凝縮器
3 ドライヤ
4 膨張弁
5 冷媒電磁弁
6 蒸発器
7 温度センサ
8 チェック弁
9 アキュムレータ
10 冷媒管路
11 凝縮器用送風機
11M 凝縮器ファンモータ
12 蒸発器用送風機
12M 蒸発器ファンモータ
13 制御部
14 起動スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus that uses a refrigerant mainly composed of hydrofluorocarbon to operate a compressor and cool a commodity storage.
[0002]
[Prior art]
A can vending machine that sells can beverages is provided with a product storage that can store various beverages, an evaporator is provided in the product storage, and a plurality of product storages are provided. The product can be cooled and stored by controlling the refrigerant solenoid valve connected to the inlet side of the evaporator provided in the product storage and the refrigeration cycle (compressor, temperature sensor, expansion valve, fan motor, etc.) Yes.
[0003]
Conventionally, in a refrigerating apparatus using CFC 12 or HCFC 22 as a refrigerant, a refrigerating machine oil such as mineral oil or alkylbenzene oil has been used for the compressor. Mineral oils and alkylbenzene oils are mutually soluble with CFC12 and HCFC22, so refrigeration oil does not stay excessively in the refrigeration cycle and is returned to the compressor, which has a high level of reliability and durability. A refrigeration system could be realized.
[0004]
However, since CFC12 and HCFC22 destroy the ozone layer when released into the atmosphere, refrigerants mainly composed of hydrofluorocarbons that are less likely to destroy the ozone layer have been used in refrigerators. If a refrigerating machine oil with almost no mutual solubility such as mineral oil or alkylbenzene oil is used for the refrigerant mainly composed of hydrofluorocarbon, the refrigerating machine oil discharged together with the refrigerant from the compressor may stay in the refrigerating cycle. is there. If the refrigerating machine oil stays in the refrigeration cycle, there is a problem that the oil level in the compressor is lowered to cause problems such as wear of sliding parts.
[0005]
Therefore, various methods have been tried in order to reliably return the refrigeration oil in the refrigeration apparatus using the refrigerant mainly composed of hydrofluorocarbon. The refrigerating machine oil discharged from the compressor has a low flow rate in an accumulator having a large cross-sectional area, and tends to stay with high viscosity in an evaporator having the lowest temperature. However, it has been confirmed that even if the refrigeration oil has a high viscosity and a low temperature, it moves along the inner surface of the refrigerant pipe and returns to the compressor if the refrigerant flow rate exceeds a certain level. For example, in Japanese Patent Laid-Open No. 7-174439, by setting the inner diameter of the refrigerant pipe constituting the refrigeration cycle to a predetermined value or less, the refrigerant flow rate is maintained at a certain level or more, and the refrigeration oil stays in the refrigeration cycle. Techniques for preventing this are disclosed.
[0006]
It is effective if the stroke volume of the compressor and the inner diameter of the refrigerant pipe can be configured so that the refrigerant flow rate becomes a certain level or more. However, for example, as in the above can vending machine that requires a wide variety of models. In addition, when the capacity ratio is about 3 to 6 times from the small capacity to the large capacity, the compressor can be used to obtain the refrigeration capacity for maintaining the temperature in the product storage at the set value. It is desirable to prepare several types of stroke volumes according to the internal volume of the product storage, and to configure the refrigerant pipes with several types of inner diameters according to the stroke volume of the compressor. However, the use of several types of inner diameters in accordance with the stroke volume of the compressor for the refrigerant pipe requires production equipment with the same number of kinds of inner diameter of the refrigerant pipe due to the structure of the condenser and evaporator currently used. , Productivity is greatly reduced, and the cost increases. Therefore, in order to minimize production costs, several types of stroke volume compressors that can obtain the minimum refrigerating capacity necessary to maintain the temperature in the product storage at the set value, and limited types of internal diameters It uses a combination of refrigerant piping and condenser, evaporator, and other parts.
[0007]
[Problems to be solved by the invention]
However, the refrigerant pipe uses a refrigerant pipe having an inner diameter capable of obtaining a refrigerant flow rate required for cooling a large-capacity product storage and obtaining a refrigerant flow rate higher than a certain level. For this reason, since the vending machine with a large product storage capacity uses a refrigerant pipe with an inner diameter that can obtain a refrigerant flow rate above a certain level, mineral oil or alkylbenzene can be used as a refrigerant mainly composed of hydrofluorocarbon. Even if refrigeration oil that has little mutual solubility such as system oil is used, the refrigeration oil will not stay in the refrigerant line, but a small-volume can vending machine uses a compressor with a small stroke volume. In some cases, the flow rate of the refrigerant flowing in the refrigerant pipe decreases and becomes less than the oil return limit refrigerant flow rate. If the refrigeration cycle is operated while the refrigerant flow rate is below the oil return limit refrigerant flow rate, the refrigeration oil will stay in the refrigerant pipeline, and the appropriate amount of refrigeration oil will not be returned to the compressor. In some cases, the oil level in the compressor is lowered to cause problems such as wear of the sliding portion. In general, various parts are arranged in the refrigeration cycle, and the cross-sectional area of the pipe through which the refrigerant flows changes in a complicated manner. For this reason, the malfunction that refrigeration oil stays in components (parts) with the largest cross-sectional area and refrigeration oil is not returned.
[0008]
The present invention has been made in order to solve the above-described problems, and uses a refrigerating machine oil having almost no mutual solubility such as mineral oil or alkylbenzene oil as a refrigerant mainly composed of hydrofluorocarbon, and stores products. In a refrigeration system that cools a refrigerator, a compressor with a stroke volume that can obtain the minimum refrigeration capacity required to maintain the temperature in the product storage of a small-capacity can vending machine at a set value, and a large-capacity product It is an object to prevent the refrigeration oil from staying in the refrigerant pipe when the refrigerant pipe having an inner diameter suitable for use in the can vending machine of the storage is used in combination.
[0009]
[Means for Solving the Problems]
The present invention according to claim 1 comprises a compressor, a condenser, an expansion valve whose valve opening degree can be adjusted, an evaporator, and a refrigerant pipe that connects these to form a closed circuit, and the compressor oil of the compressor In the steady operation of the cooling unit that executes a refrigeration cycle using a refrigerant having a low mutual solubility with the refrigerant and the cooling unit having a constant valve opening, the expansion valve is stationary for a predetermined time. A control unit that controls the valve opening of the expansion valve so as to have a valve opening different from that during operation, and varies the pressure of the refrigerant in the condenser and the evaporator, and the control unit includes: The valve of the expansion valve is set so that the expansion valve has a valve opening smaller than that during steady operation for a first time, and then the valve opening is larger than that during steady operation for a second time. The opening degree is controlled.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0011]
FIG. 1 is a configuration diagram of a refrigeration apparatus according to an embodiment of the present invention, which includes a compressor 1, a condenser 2, a dryer 3, an expansion valve 4, an evaporator 6, and a check valve 8 that function to change the flow rate of refrigerant. And an accumulator 9 and a refrigerant pipe 10 connecting them. The evaporator 6 is connected by piping and is provided in a commodity storage (not shown). Further, 11 is a condenser blower driven by a condenser fan motor 11M, and 12 is an evaporator blower driven by an evaporator fan motor 12M. Reference numeral 7 denotes a temperature sensor, for example, a thermistor, which detects the temperature in the product storage and outputs a detected temperature signal to the control unit 13 which will be described later. The refrigerant is mainly composed of hydrofluorocarbon, and the refrigerating machine oil is made of mineral oil or alkylbenzene oil that is not mutually soluble with hydrofluorocarbon. When the inside of the product storage is cooled, the refrigerant compressed by the compressor 1 is condensed by the condenser 2 together with the refrigerating machine oil, passes through the dryer 3 and the expansion valve 4, is vaporized by the evaporator 6, and is blower for the evaporator. The cool air circulates in the product storage by the operation of 12, and the product storage is cooled. The refrigerant that has passed through the evaporator 6 returns to the compressor 1 via the check valve 8 and the accumulator 9.
[0012]
FIG. 3 is a control block diagram of the refrigeration system of the refrigeration apparatus according to the embodiment of the present invention. The control unit 13 controls the compressor 1, the expansion valve 4, the refrigerant electromagnetic valve 5, the condenser fan motor 11M, and the evaporator fan motor 12M based on the ON / OFF signal of the start switch 14 and the detection signal of the temperature sensor 7. Yes. In the case of the configuration described in FIG. 1, the refrigerant solenoid valve 5 is not necessary.
[0013]
FIG. 4 is a time chart illustrating a first operation state of the refrigeration apparatus according to the embodiment . In the state where the start switch 14 is ON and the temperature in the product storage is equal to or higher than the cooling temperature set value, the temperature sensor 7 is ON and a detected temperature signal is output to the control unit 13. Based on this detected temperature signal, a control signal is output from the control unit 13, the compressor 1 is operated (ON), and the expansion valve 4 is opened at a normal valve opening. For this reason, the refrigerant compressed by the compressor 1 is condensed by the condenser 2 together with the refrigerating machine oil, passes through the expansion valve 4, is sent to the evaporator 6, and the inside of the product storage is cooled. When the time T1 is reached from this state, a control signal is output from the control unit 13 to the expansion valve 4, and the low-pressure side pressure of the expansion valve 4 is reduced by reducing the valve opening of the expansion valve 4. When time t1 elapses from time T1 and time T2 is reached, a control signal is output from the control unit 13, and by increasing the valve opening of the expansion valve 4, the refrigerant is accelerated by the reaction that has been delayed for time t1, As the flow rate rapidly increases, the refrigerant flow rate increases, and the refrigerant flows in the pipe line of the evaporator 6 at a high speed. When time t2 elapses from time T2 and time T3 is reached, the expansion valve 4 is set to a normal valve opening.
[0014]
FIG. 5 is a time chart illustrating a second operation state of the refrigeration apparatus according to the embodiment . When the start switch 14 is ON and the temperature in the product storage is equal to or higher than the cooling temperature set value, when the time T4 comes from this state, a control signal is output from the control unit 13 to the expansion valve 4 to expand the expansion. By reducing the valve opening degree of the valve 4, the low pressure side pressure of the expansion valve 4 decreases. When time t3 elapses from time T4 and time T5 is reached, the expansion valve 4 is set to a normal valve opening, whereby the refrigerant is accelerated by the reaction that has been delayed for time t3, and the refrigerant flow rate increases, resulting in a large refrigerant flow rate. Therefore, the refrigerant flows in the pipe line of the evaporator 6 at a high speed.
[0015]
FIG. 6 is a time chart illustrating a third operation state of the refrigeration apparatus according to the embodiment . When the start switch 14 is ON and the temperature in the product storage is equal to or higher than the cooling temperature set value, when the time T6 is reached from this state, a control signal is output from the control unit 13 to the expansion valve 4 and the expansion is performed. Increasing the valve opening degree of the valve 4 increases the refrigerant flow rate, increases the refrigerant flow velocity, and the refrigerant flows in the pipe line of the evaporator 6 at high speed. When time t4 elapses from time T6 and time T7 is reached, the expansion valve 4 is set to a normal valve opening.
[0016]
FIG. 2 is a configuration diagram of a refrigeration apparatus according to a reference example in the case where a plurality of product storages are provided, and the same parts as those in FIG. A compressor 1, a condenser 2, a dryer 3, an expansion valve 4, a refrigerant electromagnetic valve 5, a plurality of evaporators 6, a check valve 8, an accumulator 9, and a refrigerant pipe 10 connecting these components. The evaporators 6 are connected in parallel, and the refrigerant solenoid valves 5 are connected in series on the inlet side of the evaporators 6, and are provided in different product storages (not shown). When the inside of the product storage is cooled, the refrigerant compressed by the compressor 1 is condensed by the condenser 2 together with the refrigerating machine oil, passes through the dryer 3 and the expansion valve 4, then passes through the refrigerant electromagnetic valve 5, and the evaporator 6. Then, the vapor is circulated by the operation of the blower 12 for the evaporator, and the inside of the product storage is cooled. The refrigerant that has passed through the evaporator 6 returns to the compressor 1 via the check valve 8 and the accumulator 9. Also in the reference example , the same effect as the embodiment can be obtained by controlling two or three of the refrigerant solenoid valves 5 simultaneously as shown in the time charts showing the first to third operating states.
[0017]
FIG. 7 is a time chart showing a fourth operation state of the refrigeration apparatus according to the reference example . When the start switch 14 is ON and the temperature in the product storage is equal to or higher than the cooling temperature set value, a control signal is output from the control unit 13 to the refrigerant solenoid valve 5 at time T8 from this state. The refrigerant solenoid valve 5 is fully closed (OFF) to stop the refrigerant flow. When time t5 elapses from time T8 and time T9 is reached, the refrigerant solenoid valve 5 is released (ON), whereby the refrigerant is accelerated by the reaction that has stopped at time t5, and the refrigerant flow rate suddenly increases, thereby increasing the refrigerant flow rate. Therefore, the refrigerant flows in the pipe line of the evaporator 6 at a high speed.
[0018]
By controlling the refrigeration cycle as described above, the refrigerant can flow at a high speed to the evaporator. As a result, the minimum refrigerating capacity required to maintain the temperature in the product storage of a small-capacity can vending machine using a refrigerating machine oil that is not mutually soluble with a refrigerant mainly composed of hydrofluorocarbon. Refrigerating machine oil stays in the refrigerant line for a long time even when used in combination with a stroke volume compressor capable of obtaining a high-capacity product storage can vending machine with an inner diameter suitable for use in a vending machine As a result, it is possible to prevent the oil from returning to the compressor from becoming insufficient and the oil level in the compressor from being lowered to cause problems such as wear of the sliding portion.
[0019]
The predetermined refrigeration cycle operation times t1 to t5 in the time charts showing the first to fourth operation states are times (for example, several seconds to several minutes) set in advance by grasping the oil return characteristic numerical value and taking into account the safety factor. Yes, the optimum time is determined in consideration of evaporative temperature change characteristics due to changes in the outside air temperature, compressor characteristics, refrigerant flow rate change characteristics due to the refrigerant pipe inner diameter, and the like. The predetermined times t1 to t5 are desirably as short as possible within a time range in which the refrigeration oil in the refrigerant pipe is reliably returned to the compressor. The can vending machine controls the refrigeration cycle to keep the temperature in the product storage box at an appropriate temperature of, for example, 1 to 5 ° C. If the predetermined time t1 to t5 is too long, 1 If it deviates from the temperature range of ˜5 ° C., it will not be possible to keep the commercial product (cooling load) at an appropriate temperature.
[0020]
Also, the interval at which the refrigerant pressure of the condenser 2 and the evaporator 6 is changed by changing the valve opening of the expansion valve 4 or opening and closing the refrigerant electromagnetic valve 5 is obtained by grasping the oil return characteristic value in advance. The time is set taking into account the rate (for example, several hours to several tens of hours), taking into account evaporative temperature change characteristics due to changes in outside air temperature, compressor characteristics, refrigerant flow rate change characteristics due to refrigerant pipe inner diameter, etc. To determine the optimal time.
[0021]
【The invention's effect】
As described above, according to the first aspect of the present invention, in the refrigeration apparatus that cools the commodity storage using the refrigerant mainly composed of hydrofluorocarbon and the refrigerating machine oil such as mineral oil or alkylbenzene oil. , Compressor, condenser, condenser blower that blows to condenser, expansion valve that changes the flow rate of refrigerant, evaporator provided in product storage, evaporator blower that works to send cool air of evaporator The valve opening of the expansion valve is set so that the expansion valve has a valve opening different from that during the normal operation for a predetermined time during the steady operation of the refrigerant pipe and the cooling unit having a constant valve opening. And a control unit for controlling, when the compressor and condenser blower are operated based on a signal from the control unit, the expansion valve is opened at a certain valve opening, and the product storage is cooled, the expansion valve The predetermined time After making the valve opening different from that during steady operation, the flow rate of the refrigerant is set to a certain level or more by changing the valve opening as a constant valve opening, so that there is no mutual solubility with the refrigerant mainly composed of hydrofluorocarbon. Even if the refrigeration oil is used, the refrigeration oil in the refrigerant pipe can be reliably returned to the compressor, so that the refrigeration oil does not stay in the refrigerant pipe.
[0022]
In addition, the expansion valve is set to a valve opening smaller than that during steady operation for a predetermined time, and then the change in the valve opening is further increased as the valve opening is larger than during steady operation, so that the flow rate of the refrigerant exceeds a certain level. This makes it possible to return the refrigerating machine oil in the refrigerant pipe line to the compressor more reliably even when using a refrigerating machine oil that is not mutually soluble with the refrigerant mainly composed of hydrofluorocarbon. There is no stagnation.
[0023]
Accordingly, the oil level of the compressor can be prevented from being lowered, the oil film of the sliding portion of the compressor can be prevented from being cut off, the refrigerating capacity can be prevented from being lowered, and the refrigeration system can be stably operated over a long period of time.
[0024]
In addition, the conventional refrigeration apparatus using the CFC 12 or HCFC 22 as a refrigerant can be modified to a refrigeration apparatus using a refrigerant mainly composed of hydrofluorocarbon with a minimum change.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a refrigeration apparatus according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a refrigeration apparatus according to a reference example when a plurality of commodity storages are provided.
FIG. 3 is a control block diagram of the refrigeration system of the refrigeration apparatus according to the embodiment of the present invention.
FIG. 4 is a time chart showing a first operation state of the refrigeration apparatus according to the embodiment .
FIG. 5 is a time chart showing a second operation state of the refrigeration apparatus according to the embodiment .
FIG. 6 is a time chart showing a third operation state of the refrigeration apparatus according to the embodiment .
FIG. 7 is a time chart showing a fourth operation state of the refrigeration apparatus according to the reference example .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Dryer 4 Expansion valve 5 Refrigerant solenoid valve 6 Evaporator 7 Temperature sensor 8 Check valve 9 Accumulator 10 Refrigerant line 11 Condenser fan 11M Condenser fan motor 12 Evaporator fan 12M Evaporator fan motor 13 Control part 14 Start switch

Claims (1)

コンプレッサ、凝縮器、弁開度が調整可能な膨張弁、蒸発器、及びこれらを連結して閉回路を形成する冷媒管路から成り、前記コンプレッサの冷凍機油との相互溶解性が小なる冷媒を使用して冷凍サイクルを実行する冷却部と、前記膨張弁を一定の弁開度とする前記冷却部の定常運転時において、前記膨張弁が所定時間だけ定常運転時と異なる弁開度となるように、前記膨張弁の弁開度を制御する制御部と、を備え、前記凝縮器及び前記蒸発器における冷媒の圧力を変動させると共に、前記制御部は、前記膨張弁を第1の時間だけ定常運転時より小なる弁開度とし、その後、前記膨張弁を第2の時間だけ定常運転時より大なる弁開度とするように、前記膨張弁の弁開度を制御することを特徴とする冷凍装置。  A refrigerant comprising a compressor, a condenser, an expansion valve whose valve opening can be adjusted, an evaporator, and a refrigerant pipe that connects these together to form a closed circuit, and that has a low mutual solubility with the refrigerating machine oil of the compressor. During the steady operation of the cooling unit that uses and executes the refrigeration cycle and the cooling unit with the expansion valve at a constant valve opening, the expansion valve has a valve opening that is different from that during steady operation for a predetermined time. And a control unit for controlling the valve opening degree of the expansion valve, and fluctuates the pressure of the refrigerant in the condenser and the evaporator, and the control unit keeps the expansion valve steady for a first time. The valve opening of the expansion valve is controlled so that the valve opening is smaller than that during operation, and then the expansion valve is made larger during the second time than during normal operation. Refrigeration equipment.
JP35411099A 1999-12-14 1999-12-14 Refrigeration equipment Expired - Fee Related JP4079564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35411099A JP4079564B2 (en) 1999-12-14 1999-12-14 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35411099A JP4079564B2 (en) 1999-12-14 1999-12-14 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2001174082A JP2001174082A (en) 2001-06-29
JP4079564B2 true JP4079564B2 (en) 2008-04-23

Family

ID=18435367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35411099A Expired - Fee Related JP4079564B2 (en) 1999-12-14 1999-12-14 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4079564B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100565038C (en) * 2002-04-08 2009-12-02 大金工业株式会社 Refrigerating plant
JP6540666B2 (en) * 2016-11-24 2019-07-10 ダイキン工業株式会社 Refrigeration system

Also Published As

Publication number Publication date
JP2001174082A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
US8528359B2 (en) Economized refrigeration cycle with expander
EP2545331B1 (en) Defrost operations and apparatus for a transport refrigeration system
EP2417406B1 (en) Refrigerant vapor compression system with hot gas bypass
US8424326B2 (en) Refrigerant vapor compression system and method of transcritical operation
JP5196452B2 (en) Transcritical refrigerant vapor compression system with charge control
US8671703B2 (en) Refrigerant vapor compression system with flash tank economizer
EP2504641B1 (en) Low suction pressure protection in a refrigerant vapor compression system
US20050217292A1 (en) Refrigeration system
WO2010039630A2 (en) High-side pressure control for transcritical refrigeration system
CA2645814A1 (en) Vapor compression refrigerating cycle, control method thereof, and refrigerating apparatus to which the cycle and the control method are applied
WO2010036540A1 (en) Capacity boosting during pulldown
JP3461736B2 (en) refrigerator
WO2010047420A1 (en) Gas injection refrigeration system
JP2002107027A (en) Refrigerators and refrigerators operating methods
JP2018132224A (en) Binary refrigeration system
JP4079564B2 (en) Refrigeration equipment
JP2006125843A (en) Cooling cycle and refrigerator
JP4169080B2 (en) Freezer refrigerator
JP2005214442A (en) Refrigerator
JP3835074B2 (en) Refrigeration equipment
HK1142664B (en) Refrigerant vapor compression system and method of transcritical operation
HK1142389B (en) Refrigerant vapor compression system with flash tank economizer
JPH11230623A (en) Freezer and its operation control method
HK1138059B (en) Economized refrigeration cycle with expander
HK1175837B (en) Low suction pressure protection for refrigerant vapor compression system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees