JP4086444B2 - Lithium secondary battery - Google Patents
Lithium secondary battery Download PDFInfo
- Publication number
- JP4086444B2 JP4086444B2 JP2000062927A JP2000062927A JP4086444B2 JP 4086444 B2 JP4086444 B2 JP 4086444B2 JP 2000062927 A JP2000062927 A JP 2000062927A JP 2000062927 A JP2000062927 A JP 2000062927A JP 4086444 B2 JP4086444 B2 JP 4086444B2
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- secondary battery
- alloy
- current collector
- lithium secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、リチウム二次電池に関するものである。
【0002】
【従来の技術】
近年、高出力でかつ高エネルギー密度を示す二次電池として、リチウム二次電池が実用化されているが、さらなる高エネルギー密度化を目指して研究開発が盛んに行われている。リチウム二次電池用負極として、リチウム金属を用いると、最も高い理論容量3.86Ah/gを得ることができる。
【0003】
しかしながら、負極にリチウム金属を用いるリチウム二次電池の場合、充放電に伴うリチウム金属の溶解析出過程で、負極上でのリチウム金属のデンドライトの生成や、リチウム金属と電解質との反応が起こるため、充放電効率が悪く、充放電サイクル特性に劣るという問題があった。このような問題を解決するため、例えば特開平7−142090号公報では、電解液に添加剤を添加することが提案されているが、充放電効率の改善及び充放電サイクル特性の改善は未だ不十分なものであった。
【0004】
【発明が解決しようとする課題】
上記の問題は、充電時に負極の負極集電体上にリチウム金属を析出させ、放電時にこのリチウム金属を溶解させるタイプのリチウム二次電池においても同様に解決すべき問題であった。
【0005】
本発明の目的は、このようなタイプのリチウム二次電池において、リチウム金属のデンドライト状析出を抑制することができ、充放電サイクル特性に優れたリチウム二次電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明のリチウム二次電池は、正極と負極と非水電解質とを備え、充電時に負極の負極集電体上にリチウム金属が析出し、放電時に該リチウム金属が溶解するリチウム二次電池であり、リチウム二次電池の組み立て直後には負極集電体表面上に負極活物質がなく、負極集電体のリチウム金属が析出する表面(リチウム金属析出面)が、実質的に粒界のないCu−Ni合金、Cu−Mn−Ni合金、またはCu−Sn合金からなるアモルファス合金から形成されていることを特徴としている。
【0007】
本発明において用いる負極集電体は、少なくともリチウム金属析出面が、実質的に粒界のないCu−Ni合金、Cu−Mn−Ni合金、またはCu−Sn合金からなるアモルファス合金から形成されていればよい。従って、負極集電体全体が、実質的に粒界のないアモルファス合金から形成されていてもよいし、他の導電材料の上にこれらのアモルファス合金を被覆した負極集電体を用いてもよい。
【0008】
本発明によれば、充電時に負極集電体のリチウム金属析出面でのリチウム金属の局所的な析出が起こり難くなる。この結果、二次電池内でのリチウム金属のデンドライト状析出を抑制することができ、良好な充放電サイクル特性及び保存特性を得ることができる。
【0009】
上記のようにリチウム金属のデンドライト状析出が抑制される理由について詳細は明らかでないが、負極集電体のリチウム金属析出面が、実質的に粒界のないアモルファス合金から形成されているため、結晶粒界や配向面のくい違い等が存在せず、充電初期の段階で、負極集電体表面の電流分布が均一化することにより、リチウム金属が負極集電体上に均一に析出し易くなるためであると考えられる。
【0010】
本発明において、リチウム金属析出面を形成するアモルファス合金は、銅を含有する。銅を含有することにより、負極集電体表面の電気伝導率が良好になるため、リチウム二次電池の充放電サイクル特性をさらに向上させることができる。
【0011】
本発明において用いるCu−Ni合金、Cu−Mn−Ni合金、またはCu−Sn合金からなるアモルファス合金は種々の方法により製造することができ、その製造方法は特に限定されるものではないが、例えば気相あるいは液相からの急冷法によって製造することができる。
【0012】
本発明において、非水電解質を構成する溶媒は、リチウム二次電池に用いることができるものであれば特に限定されるものではないが、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、スルホラン、ジメトキシエタン、テトラヒドロフラン、ジオキソランなどを挙げることができ、これらを単独であるいは複数成分を混合して使用することができる。
【0013】
本発明において、非水電解質を構成する溶質は、リチウム二次電池に用いることができる溶質であれば特に限定されるものではないが、例えば、LiPF6 ,LiBF4 ,LiClO4 ,LiAsF6 ,LiN(CF3SO2)2 ,LiN(C2F5SO2)2 ,LiN(CF3SO2)(C4F9SO2),LiC(CF3SO2)3 ,LiCF3(CF2)3SO3 などが挙げられ、これらを単独あるいは複数成分を混合して使用することができる。
【0014】
また、本発明においては、固体電解質あるいはゲル状電解質として多く用いられているポリエチレンオキシドを含む非水電解質を使用してもよい。
本発明において用いる正極としては、リチウム二次電池の正極として用いることができるものであれば特に限定されるものではないが、マンガン、コバルト、ニッケル、バナジウム、またはニオブを少なくとも1種含む金属酸化物などを用いることができる。
【0015】
【発明の実施の形態】
以下、本発明を実施例に基づいて説明するが、本発明は以下の実施例に限定されるものではなく、その要旨を変更しない範囲において、適宜変更して実施することが可能なものである。
【0016】
(実施例)
本発明に従うコイン型リチウム二次電池を作製した。図1は、作製したコイン型リチウム二次電池を示す模式的断面図である。
【0017】
図1に示すように負極集電体1及び正極5は、非水電解質を含浸したポリエチレンからなるセパレータ6を介して対向しており、負極缶2及び正極缶3からなる電池ケース内に収納されている。負極缶2及び正極缶3はステンレス鋼から形成されている。正極5は、アルミニウムからなる正極集電体4を介して正極缶3に接続され、負極集電体1は負極缶2に接続され、電池内部に生じた化学エネルギーを正極缶3及び負極缶2の両端子から電気エネルギーとして外部へ取り出し得るようになっている。負極缶2と正極缶3との間には、電池内部を密閉するためのポリプロピレンからなる絶縁パッキング7が設けられている。
【0018】
充電時、セパレータ6に含浸された非水電解質中のリチウムイオンが還元されて、負極集電体1の表面上にリチウム金属が析出する。このリチウム金属は、放電時に酸化され、リチウムイオンとして再び非水電解質中に溶解される。本発明のリチウム二次電池においては、このように負極集電体1上に析出するリチウム金属が負極活物質となる。
【0019】
上記負極集電体1としては、Cu−Niアモルファス合金(Cu80重量%、Ni20重量%)、Cu−Mn−Niアモルファス合金(Cu84重量%、Mn12重量%、Ni4重量%)、及びCu−Snアモルファス合金(Cu80重量%、Sn20重量%)を用いた。アモルファス合金は、高周波コイルにより溶かした合金を鋳型に噴射・急冷し、凝固させる液体急冷法により作製した。なお、各アモルファス合金は、直径18mm、厚み0.1mmの金属板の形状に加工したものを用いた。
【0020】
上記正極5としては、LiCoO2 を活物質とした正極を用いた。具体的には、正極活物質としてのLiCoO2 と、導電剤としての人造黒鉛と、結着剤としてのポリフッ化ビニリデンとを90:5:5の重量比で混合し、これにN−メチル−2−ピロリドン(NMP)を加えることによりスラリー化させ、このスラリーを正極集電体4の片面にドクターブレード法により塗布し、150℃で2時間真空乾燥し、これを直径18mm、厚み0.1mmに加工したものを用いた。
【0021】
上記非水電解質としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比1:1の割合で混合させた混合溶媒にLiPF6 を1.0mol/kgの割合で溶解させたものを使用した。
【0022】
(比較例)
負極集電体1として、上記実施例と同様の寸法形状を有するCu多結晶体を用いる以外は、上記実施例と同様にしてコイン型リチウム二次電池を作製した。
【0023】
〔充放電特性の評価〕
以上のようにして作製した実施例及び比較例の各電池について、充放電試験を行い、20サイクル目の各電池の充放電効率を求めた。その結果を表1に示す。なお、本測定においては、充放電電流を1.0mA、充電終止容量を4.0mAh、放電終止電圧を2.75Vとし、20サイクル目の充電容量と放電容量を測定して、下記の式から20サイクル目の充放電効率を求めた。
【0024】
充放電効率(%)=放電容量÷充電容量×100
【0025】
【表1】
【0026】
表1に示す結果から明らかなように、本発明に従う実施例の各電池は、比較例の電池に比べ、高い充放電効率を示している。このことから、負極集電体のリチウム金属析出面を、実質的に粒界のないCu−Ni合金、Cu−Mn−Ni合金、またはCu−Sn合金からなるアモルファス合金から形成することにより、充放電サイクル特性が顕著に向上することがわかる。
【0027】
本発明のリチウム二次電池は、上記のコイン型電池以外にも適用することができ、円筒型電池やその他各種の形状の電池に適用することができる。
【0028】
【発明の効果】
本発明のリチウム二次電池は、負極集電体のリチウム金属析出面が実質的に粒界のないCu−Ni合金、Cu−Mn−Ni合金、またはCu−Sn合金からなるアモルファス合金から形成されているので、充電時における負極集電体表面の電流密度分布を均一化することができ、リチウム金属の局所的な析出を抑制することができる。このため、充放電サイクル特性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に従う実施例において作製したコイン型リチウム二次電池を示す模式的断面図。
【符号の説明】
1…負極集電体
2…負極缶
3…正極缶
4…正極集電体
5…正極
6…セパレータ
7…絶縁パッキング[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lithium secondary battery.
[0002]
[Prior art]
In recent years, lithium secondary batteries have been put to practical use as secondary batteries having high output and high energy density, and research and development have been actively conducted with the aim of further increasing energy density. When lithium metal is used as the negative electrode for a lithium secondary battery, the highest theoretical capacity of 3.86 Ah / g can be obtained.
[0003]
However, in the case of a lithium secondary battery using lithium metal for the negative electrode, in the process of dissolution and precipitation of lithium metal accompanying charging and discharging, the formation of lithium metal dendrites on the negative electrode and the reaction between lithium metal and the electrolyte occur. There existed a problem that charging / discharging efficiency was bad and it was inferior to charging / discharging cycling characteristics. In order to solve such a problem, for example, Japanese Patent Laid-Open No. 7-142900 proposes to add an additive to the electrolytic solution, but improvement of charge / discharge efficiency and charge / discharge cycle characteristics are still unsatisfactory. It was enough.
[0004]
[Problems to be solved by the invention]
The above-mentioned problem is also a problem to be solved in the same manner in a lithium secondary battery in which lithium metal is deposited on the negative electrode current collector of the negative electrode during charging and this lithium metal is dissolved during discharging.
[0005]
An object of the present invention is to provide a lithium secondary battery that can suppress dendrite-like precipitation of lithium metal and has excellent charge / discharge cycle characteristics in such a type of lithium secondary battery.
[0006]
[Means for Solving the Problems]
The lithium secondary battery of the present invention is a lithium secondary battery that includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, in which lithium metal is deposited on the negative electrode current collector of the negative electrode, and the lithium metal dissolves during discharge. the lithium secondary battery without the negative electrode active material in the negative electrode current collector on the surface immediately after the assembly of the surface of the lithium metal of the anode current collector is deposited (lithium metal deposition surface) is substantially free of grain boundary Cu It is characterized by being formed from an amorphous alloy made of -Ni alloy, Cu-Mn-Ni alloy, or Cu-Sn alloy .
[0007]
The negative electrode current collector used in the present invention is formed of an amorphous alloy made of a Cu-Ni alloy, a Cu-Mn-Ni alloy, or a Cu-Sn alloy having at least a lithium metal precipitation surface substantially free of grain boundaries. That's fine. Thus, the entire negative electrode current collector, may be formed from a substantially intergranular of such ear Amorphous alloys, using the negative electrode current collector coated with these A Amorphous alloy on the other conductive material May be.
[0008]
According to the present invention, local deposition of lithium metal on the lithium metal deposition surface of the negative electrode current collector hardly occurs during charging. As a result, dendritic precipitation of lithium metal in the secondary battery can be suppressed, and good charge / discharge cycle characteristics and storage characteristics can be obtained.
[0009]
Although dendritic deposition of lithium metal as described above is not clear details about why is suppressed, since the lithium metal deposition surface of the negative electrode current collector is formed from a substantially no grain boundary in amorpha scan alloy In the initial stage of charging, the current distribution on the surface of the negative electrode current collector is made uniform, so that lithium metal is uniformly deposited on the negative electrode current collector. This is considered to be easy.
[0010]
In the present invention, amorpha scan alloy to form a lithium metal deposition surface is you containing copper. By containing copper, the electrical conductivity of the surface of the negative electrode current collector is improved, so that the charge / discharge cycle characteristics of the lithium secondary battery can be further improved.
[0011]
Cu-Ni alloy used in the present invention, Cu-Mn-Ni alloy or amorpha scan alloy consisting of Cu-Sn alloy, may be prepared by various methods, but are not particularly limited its manufacturing method For example, it can be produced by a rapid cooling method from a gas phase or a liquid phase.
[0012]
In the present invention, the solvent constituting the nonaqueous electrolyte is not particularly limited as long as it can be used for a lithium secondary battery. For example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl Examples include carbonate, sulfolane, dimethoxyethane, tetrahydrofuran, dioxolane, and the like. These can be used alone or in admixture of a plurality of components.
[0013]
In the present invention, the solute constituting the nonaqueous electrolyte is not particularly limited as long as it is a solute that can be used in a lithium secondary battery. For example, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiCF 3 (CF 2 ) 3 SO 3 and the like can be mentioned, and these can be used alone or as a mixture of plural components.
[0014]
In the present invention, a non-aqueous electrolyte containing polyethylene oxide, which is often used as a solid electrolyte or a gel electrolyte, may be used.
The positive electrode used in the present invention is not particularly limited as long as it can be used as a positive electrode of a lithium secondary battery, but a metal oxide containing at least one of manganese, cobalt, nickel, vanadium, or niobium Etc. can be used.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on examples. However, the present invention is not limited to the following examples, and can be appropriately modified and implemented without departing from the scope of the present invention. .
[0016]
(Example)
A coin-type lithium secondary battery according to the present invention was produced. FIG. 1 is a schematic cross-sectional view showing the produced coin-type lithium secondary battery.
[0017]
As shown in FIG. 1, the negative electrode current collector 1 and the positive electrode 5 are opposed to each other via a
[0018]
At the time of charging, lithium ions in the nonaqueous electrolyte impregnated in the
[0019]
Examples of the negative electrode current collector 1 include Cu—Ni amorphous alloy (Cu 80 wt%, Ni 20 wt%), Cu—Mn—Ni amorphous alloy (Cu 84 wt%, Mn 12 wt%, Ni 4 wt%), and Cu—Sn amorphous. An alloy (Cu 80% by weight, Sn 20% by weight) was used. The amorphous alloy was produced by a liquid quenching method in which an alloy melted by a high frequency coil was injected into a mold, quenched, and solidified. Each amorphous alloy used was processed into the shape of a metal plate having a diameter of 18 mm and a thickness of 0.1 mm.
[0020]
As the positive electrode 5, a positive electrode using LiCoO 2 as an active material was used. Specifically, LiCoO 2 as a positive electrode active material, artificial graphite as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a weight ratio of 90: 5: 5, and N-methyl- 2-Pyrrolidone (NMP) was added to make a slurry, and this slurry was applied to one side of the positive electrode current collector 4 by a doctor blade method and vacuum-dried at 150 ° C. for 2 hours. This was 18 mm in diameter and 0.1 mm in thickness. What was processed into was used.
[0021]
As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a rate of 1.0 mol / kg in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio of 1: 1 is used. used.
[0022]
(Comparative example)
A coin-type lithium secondary battery was fabricated in the same manner as in the above example, except that a Cu polycrystal having the same size and shape as in the above example was used as the negative electrode current collector 1.
[0023]
[Evaluation of charge / discharge characteristics]
A charge / discharge test was performed on the batteries of Examples and Comparative Examples produced as described above, and the charge / discharge efficiency of each battery at the 20th cycle was determined. The results are shown in Table 1. In this measurement, the charge / discharge current is 1.0 mA, the charge end capacity is 4.0 mAh, the discharge end voltage is 2.75 V, and the charge capacity and discharge capacity at the 20th cycle are measured. The charge / discharge efficiency at the 20th cycle was determined.
[0024]
Charging / discharging efficiency (%) = discharge capacity / charge capacity × 100
[0025]
[Table 1]
[0026]
As is clear from the results shown in Table 1, each battery of the example according to the present invention shows higher charge / discharge efficiency than the battery of the comparative example. Therefore, the lithium metal deposition surface of the negative electrode current collector is formed from an amorphous alloy made of a Cu-Ni alloy, a Cu-Mn-Ni alloy, or a Cu-Sn alloy substantially free of grain boundaries. It can be seen that the discharge cycle characteristics are significantly improved.
[0027]
The lithium secondary battery of the present invention can be applied to a battery other than the above coin-type battery, and can be applied to a cylindrical battery and other various shapes of batteries.
[0028]
【The invention's effect】
The lithium secondary battery of the present invention is formed of an amorphous alloy made of a Cu-Ni alloy, a Cu-Mn-Ni alloy, or a Cu-Sn alloy in which the lithium metal deposition surface of the negative electrode current collector is substantially free of grain boundaries. Therefore, the current density distribution on the surface of the negative electrode current collector during charging can be made uniform, and local precipitation of lithium metal can be suppressed. For this reason, charge / discharge cycle characteristics can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a coin-type lithium secondary battery manufactured in an example according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Negative electrode collector 2 ... Negative electrode can 3 ... Positive electrode can 4 ... Positive electrode collector 5 ...
Claims (1)
前記リチウム二次電池の組み立て直後には前記負極集電体表面上に負極活物質がなく、
前記負極集電体のリチウム金属析出面が、実質的に粒界のないCu−Ni合金、Cu−Mn−Ni合金、またはCu−Sn合金からなるアモルファス合金から形成されていることを特徴とするリチウム二次電池。A lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein lithium metal is deposited on the negative electrode current collector of the negative electrode during charging, and the lithium metal is dissolved during discharge,
Immediately after the assembly of the lithium secondary battery, there is no negative electrode active material on the negative electrode current collector surface,
The lithium metal deposition surface of the negative electrode current collector is formed of an amorphous alloy composed of a Cu-Ni alloy, a Cu-Mn-Ni alloy, or a Cu-Sn alloy that is substantially free of grain boundaries. Lithium secondary battery.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000062927A JP4086444B2 (en) | 2000-03-08 | 2000-03-08 | Lithium secondary battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2000062927A JP4086444B2 (en) | 2000-03-08 | 2000-03-08 | Lithium secondary battery |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2001250559A JP2001250559A (en) | 2001-09-14 |
| JP4086444B2 true JP4086444B2 (en) | 2008-05-14 |
Family
ID=18582876
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2000062927A Expired - Fee Related JP4086444B2 (en) | 2000-03-08 | 2000-03-08 | Lithium secondary battery |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JP4086444B2 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20160138120A (en) * | 2014-03-24 | 2016-12-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Lithium-ion secondary battery |
| WO2018004229A1 (en) * | 2016-07-01 | 2018-01-04 | 이창규 | Electrochemical energy device having high energy density and method for manufacturing same |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007118281A1 (en) * | 2006-04-18 | 2007-10-25 | Commonwealth Scientific And Industrial Research Organisation | Flexible energy storage devices |
| EP2608296A1 (en) * | 2011-12-21 | 2013-06-26 | The Swatch Group Research and Development Ltd. | Amorphous-metal current collector |
| EP2738831B1 (en) * | 2012-11-29 | 2017-10-25 | The Swatch Group Research and Development Ltd. | Electrochemical cell |
| FR3015118B1 (en) * | 2013-12-18 | 2016-01-22 | Electricite De France | ANODIC COMPARTMENT WITH AMORPHOUS ALLOY MANIFOLD |
| JP6954904B2 (en) | 2016-07-14 | 2021-10-27 | パナソニック株式会社 | Lithium secondary power |
| WO2019123951A1 (en) * | 2017-12-22 | 2019-06-27 | 昭和電工株式会社 | Lithium-ion secondary cell |
| US20210013501A1 (en) * | 2018-03-23 | 2021-01-14 | Panasonic Intellectual Property Management Co., Ltd. | Lithium secondary battery |
| JP7262061B2 (en) * | 2018-03-23 | 2023-04-21 | パナソニックIpマネジメント株式会社 | lithium secondary battery |
| JP7077736B2 (en) * | 2018-04-09 | 2022-05-31 | トヨタ自動車株式会社 | Secondary battery |
| JP6958462B2 (en) * | 2018-04-09 | 2021-11-02 | トヨタ自動車株式会社 | Sulfide all-solid-state battery |
| JP2020091997A (en) * | 2018-12-05 | 2020-06-11 | 昭和電工株式会社 | Lithium ion secondary battery |
| CN113493887A (en) * | 2021-06-25 | 2021-10-12 | 天津中能锂业有限公司 | Method for non-crystallizing surface of metal lithium strip, product and application thereof |
| JP2024067441A (en) | 2022-11-04 | 2024-05-17 | トヨタ自動車株式会社 | Lithium metal secondary battery and method for charging and discharging the same |
| JP7726193B2 (en) | 2022-11-21 | 2025-08-20 | トヨタ自動車株式会社 | Lithium metal secondary battery, method for manufacturing negative electrode, and method for charging and discharging lithium metal secondary battery |
-
2000
- 2000-03-08 JP JP2000062927A patent/JP4086444B2/en not_active Expired - Fee Related
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20160138120A (en) * | 2014-03-24 | 2016-12-02 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Lithium-ion secondary battery |
| KR102341434B1 (en) * | 2014-03-24 | 2021-12-22 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Lithium-ion secondary battery |
| WO2018004229A1 (en) * | 2016-07-01 | 2018-01-04 | 이창규 | Electrochemical energy device having high energy density and method for manufacturing same |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2001250559A (en) | 2001-09-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4049506B2 (en) | Lithium secondary battery | |
| JP4086444B2 (en) | Lithium secondary battery | |
| JP4804686B2 (en) | Nonaqueous electrolyte secondary battery and manufacturing method thereof | |
| JP4798964B2 (en) | Nonaqueous electrolyte secondary battery | |
| JP7301449B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
| JP2000215897A (en) | Lithium secondary battery | |
| JP2007035434A (en) | Non-aqueous electrolyte battery | |
| JP2007149604A (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
| JP2010161078A (en) | Nonaqueous electrolyte secondary cell | |
| JP3670938B2 (en) | Lithium secondary battery | |
| CN113135947A (en) | Lithium acetylsulfanilate complex, preparation method thereof and application thereof in non-aqueous electrolyte | |
| JP3723444B2 (en) | Positive electrode for lithium secondary battery, method for producing the same, and lithium secondary battery | |
| US20090061311A1 (en) | Non-aqueous electrolyte secondary battery | |
| JPH08115742A (en) | Lithium secondary battery | |
| JP4162457B2 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
| JP4056278B2 (en) | Non-aqueous electrolyte battery | |
| JPH0883606A (en) | Lithium secondary battery | |
| JP3848187B2 (en) | Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
| US6403258B1 (en) | Lithium secondary battery comprising tungsten composite oxide | |
| JP4436624B2 (en) | Lithium secondary battery | |
| JP3825571B2 (en) | Non-aqueous electrolyte battery | |
| JP3717783B2 (en) | Lithium secondary battery | |
| JP4078864B2 (en) | Negative electrode for secondary battery and secondary battery | |
| JP2006236887A (en) | Nonaqueous electrolyte secondary battery | |
| WO2000033403A1 (en) | Non-aqueous electrolyte secondary cell and its charging method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040513 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060322 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070918 |
|
| A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071112 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080122 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080219 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110228 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120229 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130228 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140228 Year of fee payment: 6 |
|
| LAPS | Cancellation because of no payment of annual fees |