[go: up one dir, main page]

JP4099177B2 - Heat exchange device with preheating function and preheating method thereof - Google Patents

Heat exchange device with preheating function and preheating method thereof Download PDF

Info

Publication number
JP4099177B2
JP4099177B2 JP2005076363A JP2005076363A JP4099177B2 JP 4099177 B2 JP4099177 B2 JP 4099177B2 JP 2005076363 A JP2005076363 A JP 2005076363A JP 2005076363 A JP2005076363 A JP 2005076363A JP 4099177 B2 JP4099177 B2 JP 4099177B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heater
preheating
heat
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005076363A
Other languages
Japanese (ja)
Other versions
JP2006257963A (en
Inventor
健夫 西浦
武清 木村
浩司 武
康治 辰巳
亮嗣 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2005076363A priority Critical patent/JP4099177B2/en
Publication of JP2006257963A publication Critical patent/JP2006257963A/en
Application granted granted Critical
Publication of JP4099177B2 publication Critical patent/JP4099177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Supply (AREA)

Description

本発明は、再生サイクルガスタービンで用いられる熱交換装置に関し、詳しくは予熱機能付きの熱交換装置およびその予熱方法に関する。   The present invention relates to a heat exchange device used in a regenerative cycle gas turbine, and more particularly to a heat exchange device with a preheating function and a preheating method thereof.

再生サイクルガスタービンは、熱交換器(再生器)で排ガスと圧縮空気との間で熱交換し、熱交換によって高温となった圧縮空気を燃焼器に供給することで、燃焼に必要な燃料の低減を図り、ガスタービン全体の熱効率を高めることができる。   The regeneration cycle gas turbine exchanges heat between exhaust gas and compressed air with a heat exchanger (regenerator), and supplies the compressed air that has become high temperature by heat exchange to the combustor. Reduction can be achieved and the thermal efficiency of the entire gas turbine can be increased.

しかしながら、前記熱交換器は、運転中に500℃以上の排ガスに曝され、運転停止中は常温となるため、運転と停止の繰り返しによって大きな熱応力が繰り返し作用する。これにより、細かいひび割れ(クラック)のような損傷が発生し、熱交換器の寿命を短くしていた。   However, since the heat exchanger is exposed to an exhaust gas of 500 ° C. or higher during operation and becomes normal temperature during operation stop, a large thermal stress acts repeatedly by repeated operation and stop. Thereby, damage such as fine cracks (cracks) occurred, and the life of the heat exchanger was shortened.

なお、燃料電池発電プラントに付設される改質器の圧縮空気予熱器およびプロセスガス予熱器について、高温側流体と低温側流体との温度差により生じる繰り返し熱応力に対する寿命を延ばすように改良したものがあるが(例えば特許文献1参照)、運転と停止の繰り返しにより熱交換器(予熱器)に加わる熱応力については何ら考慮されていない。
特開平5―105402号公報
In addition, the reformer's compressed air preheater and process gas preheater attached to the fuel cell power plant have been improved to extend the life against repeated thermal stress caused by the temperature difference between the high temperature side fluid and the low temperature side fluid. However, no consideration is given to thermal stress applied to the heat exchanger (preheater) by repeated operation and stoppage.
JP-A-5-105402

そこで、本発明は、再生サイクルガスタービンの熱交換器に対して簡易な構造を付加するだけで、熱交換器に対する熱応力の負荷を低減して熱交換器の長寿命化を実現する予熱機能付きの熱交換装置およびその予熱方法を提供することを目的とする。   Therefore, the present invention provides a preheating function that reduces the load of thermal stress on the heat exchanger and extends the life of the heat exchanger by simply adding a simple structure to the heat exchanger of the regenerative cycle gas turbine. It is an object of the present invention to provide a heat exchange device with a heat exchanger and a preheating method thereof.

上記目的を達成するために、本発明に係る予熱機能を備えた熱交換装置は、ガスタービンの排ガスと圧縮機からの圧縮空気との間で熱交換を行う熱交換器と、前記熱交換器の作動停止中に熱交換器を予備加熱して運転再開時に前記熱交換器を作動時の温度に近づける電気式ヒータとを備え、前記ヒータは前記熱交換器におけるコアへの排ガスの流入口付近に装着されているIn order to achieve the above object, a heat exchange device having a preheating function according to the present invention includes a heat exchanger for exchanging heat between exhaust gas from a gas turbine and compressed air from a compressor, and the heat exchanger. An electric heater that preheats the heat exchanger while the operation is stopped and brings the heat exchanger close to the operating temperature when the operation is resumed , and the heater is near the exhaust gas inlet to the core in the heat exchanger It is attached to .

この構成によれば、熱交換器の作動停止中にヒータで熱交換器が加熱される、言い換えれば、熱交換器の作動開始時(ガスタービンの運転開始時)には熱交換器がヒータによって事前に加熱されて暖められた状態にあり、熱交換器に流入する排ガスと熱交換器との間の温度差が小さくなるので、排ガス流入時、熱交換器にかかる熱負荷が小さくなり、熱応力が低減される。これにより、熱交換器の長寿命化を図ることができる。また、熱交換器におけるコアへの排ガスの流入口付近が排ガス流入時に大きな熱負荷がかかって熱応力が集中するので、この流入口付近をヒータにより加熱することで、損傷の原因となる前記熱負荷を抑制して熱応力を低減することができる。さらに、ヒータは熱交換器の流入口から流出口にわたる全域ではなく、流入口付近に装着されるので、ヒータの取付作業が行いやすく、かつコストも低く抑えることができる。 According to this configuration, the heat exchanger is heated by the heater while the operation of the heat exchanger is stopped. In other words, when the operation of the heat exchanger starts (when the operation of the gas turbine starts), the heat exchanger is heated by the heater. Since the temperature difference between the exhaust gas flowing into the heat exchanger and the heat exchanger is reduced, the heat load on the heat exchanger is reduced when the exhaust gas flows in, and the heat is heated. Stress is reduced. Thereby, lifetime improvement of a heat exchanger can be achieved. In addition, since a large heat load is applied to the vicinity of the exhaust gas inlet to the core in the heat exchanger and the thermal stress is concentrated when the exhaust gas flows in, the heat that causes damage can be obtained by heating the vicinity of the inlet with a heater. The load can be suppressed and the thermal stress can be reduced. Furthermore, since the heater is mounted not in the entire area from the inlet to the outlet of the heat exchanger but in the vicinity of the inlet, the heater can be easily attached and the cost can be reduced.

本発明の好ましい実施形態では、前記ヒータは熱交換器の外周に装着されている。   In a preferred embodiment of the present invention, the heater is mounted on the outer periphery of the heat exchanger.

この構成によれば、ヒータが熱交換器の内周側でなく、外周側に位置するので、ヒータ取付作業および保守作業が行いやすくなって、作業性が向上する。   According to this configuration, since the heater is positioned not on the inner peripheral side of the heat exchanger but on the outer peripheral side, the heater mounting work and the maintenance work are facilitated, and workability is improved.

本発明の好ましい実施形態では、さらに、前記熱交換器の作動停止と作動開始のタイミングに基づいてそれぞれ前記ヒータをオフおよびオンするコントローラを備えている。   In a preferred embodiment of the present invention, there is further provided a controller for turning off and on the heater based on the timing of operation stop and operation start of the heat exchanger, respectively.

この構成によれば、ヒータのオン・オフ操作は、熱交換器の作動停止と作動開始のタイミングに基づいてコントローラにより自動的に行われるので、現場作業者が手動でヒータをオン・オフ操作する煩わしい作業が不要となる。しかも、タイミングを誤ることなく、適切なオン・オフ操作が行える。   According to this configuration, the heater on / off operation is automatically performed by the controller based on the operation stop timing and the operation start timing of the heat exchanger, so the field worker manually turns on / off the heater. Troublesome work becomes unnecessary. Moreover, an appropriate on / off operation can be performed without timing errors.

本発明に係る予熱機能付き熱交換器の予熱方法は、本発明の熱交換装置における熱交換器の作動停止と作動開始のタイミングに合わせて、それぞれ前記ヒータをオフおよびオンする。   In the preheating method of the heat exchanger with a preheating function according to the present invention, the heater is turned off and on in accordance with the timing of stopping and starting the operation of the heat exchanger in the heat exchange apparatus of the present invention.

この構成によれば、ヒータが熱交換器の作動停止と作動開始のタイミングに合わせてそれぞれオフおよびオンされるので、ガスタービンの停止中にのみヒータを作動させて熱交換器を効率よく予熱できる。   According to this configuration, since the heater is turned off and on in accordance with the timing of operation stop and operation start of the heat exchanger, the heater can be operated only while the gas turbine is stopped to efficiently preheat the heat exchanger. .

本発明に係る予熱機能を備えた熱交換装置およびその予熱方法によれば、熱交換器の作動開始時には熱交換器が既に加熱されて暖まった状態にあるので、熱交換器への排ガス流入時に熱交換器にかかる熱負荷が小さくなり、熱応力が低減される。これにより、熱交換器の長寿命化を図ることができる。   According to the heat exchange device having the preheating function and the preheating method according to the present invention, the heat exchanger is already heated and warmed at the start of the operation of the heat exchanger, so when the exhaust gas flows into the heat exchanger, The heat load applied to the heat exchanger is reduced, and the thermal stress is reduced. Thereby, lifetime improvement of a heat exchanger can be achieved.

以下、本発明の好ましい実施形態について図面を参照しながら説明する。図1は、本発明に係る予熱機能付きの熱交換装置を適用した再生サイクルガスタービンを示す系統図である。同図に示す再生サイクルガスタービンは、ガスタービン1と、これに付設されたレキュペレータ(再生器)と呼ばれる熱交換装置2とを備えている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a regeneration cycle gas turbine to which a heat exchange device with a preheating function according to the present invention is applied. The regeneration cycle gas turbine shown in FIG. 1 includes a gas turbine 1 and a heat exchange device 2 called a recuperator (regenerator) attached thereto.

前記ガスタービン1は、外部から空気を吸引して圧縮空気Aを生成する圧縮機3と、圧縮空気Aに燃料Fを供給して燃焼させる燃焼器4と、燃焼器4からの燃焼ガスGにより駆動されるタービン5とを有しており、負荷である例えば発電機7を駆動する。一軸型である場合、単一の回転軸6に圧縮機3、タービン5および発電機7が連結される。   The gas turbine 1 includes a compressor 3 that sucks air from the outside to generate compressed air A, a combustor 4 that supplies fuel F to the compressed air A and burns it, and a combustion gas G from the combustor 4. It has a turbine 5 to be driven and drives, for example, a generator 7 as a load. In the case of the single shaft type, the compressor 3, the turbine 5, and the generator 7 are connected to the single rotating shaft 6.

前記熱交換装置2は、タービン5からの排ガスEGと圧縮機3からの圧縮空気Aとの間で熱交換を行う熱交換器21と、この熱交換器21を加熱するヒータ22とを備えている。ヒータ22はコントローラ8により制御される。   The heat exchange device 2 includes a heat exchanger 21 that performs heat exchange between the exhaust gas EG from the turbine 5 and the compressed air A from the compressor 3, and a heater 22 that heats the heat exchanger 21. Yes. The heater 22 is controlled by the controller 8.

前記熱交換器21と圧縮機3とは空気導入通路11Aで接続されており、圧縮機3からの圧縮空気Aが空気導入通路11Aを経由して熱交換器21に送られる。タービン5と前記熱交換器21とは排ガス導入通路11Bで接続されており、タービン5からの排ガスEGが排ガス導入通路11Bを経由して熱交換器21に送られる。また、前記熱交換器21と燃焼器4とは空気導出通路11Cで接続されており、熱交換器21で前記排ガスEGと熱交換されて高温となった圧縮空気Aが、空気導出通路11Cを経由して燃焼器4に送られる。一方、圧縮空気Aと熱交換された後の排ガスEGは、例えば排熱ボイラに導入されて蒸気の生成に利用された後、大気中に放出される。   The heat exchanger 21 and the compressor 3 are connected by an air introduction passage 11A, and the compressed air A from the compressor 3 is sent to the heat exchanger 21 through the air introduction passage 11A. The turbine 5 and the heat exchanger 21 are connected by an exhaust gas introduction passage 11B, and the exhaust gas EG from the turbine 5 is sent to the heat exchanger 21 via the exhaust gas introduction passage 11B. The heat exchanger 21 and the combustor 4 are connected to each other through an air outlet passage 11C. The compressed air A, which has been heated to the exhaust gas EG in the heat exchanger 21 and has reached a high temperature, passes through the air outlet passage 11C. To the combustor 4. On the other hand, the exhaust gas EG after heat exchange with the compressed air A is introduced into, for example, an exhaust heat boiler and used to generate steam, and then released into the atmosphere.

図2は熱交換器21へのヒータ22の装着状態を模式的に示す拡大斜視図である。同図に示すように、熱交換器21は前面側に排ガスEGの流入開口21a、後面側に排ガスEGの流出開口21bが形成され、一方の側面側に圧縮空気Aを流入させるためのヘッダタンク21c、他方の側面側に熱交換後の圧縮空気Aを流出させるためのヘッダタンク21dを有している。熱交換器21は、例えば二点鎖線で示す直方体形状のコア60を有し、このコア60の前面に前記流入開口21aを形成する排ガス導入用の入口ダクト21eが、後面に前記流出開口21bを形成する排ガス導出用の出口ダクト21fが、左右の側面にヘッダタンク21c,21dが、それぞれ溶接により接合されている。   FIG. 2 is an enlarged perspective view schematically showing the mounting state of the heater 22 to the heat exchanger 21. As shown in the figure, the heat exchanger 21 has an exhaust gas EG inflow opening 21a on the front side, an exhaust gas EG outflow opening 21b on the rear side, and a header tank for allowing compressed air A to flow into one of the side surfaces. 21c has a header tank 21d for allowing the compressed air A after heat exchange to flow out on the other side surface side. The heat exchanger 21 includes, for example, a rectangular parallelepiped core 60 indicated by a two-dot chain line, and an exhaust duct 21e for introducing exhaust gas that forms the inflow opening 21a on the front surface of the core 60, and the outflow opening 21b on the rear surface. The exhaust gas outlet outlet duct 21f to be formed is joined to the left and right side surfaces by header tanks 21c and 21d by welding.

熱交換器21のコア60は、図3に示すように、複数のプレート61とフィン62を交互に積層したプレートフィン型熱交換器である。このコア本体60は、その前面が排ガスEGの流入口63、後面が排ガスEGの流出口64となっており、前面から後面方向にかけて排ガスEGの通路65が形成され、右側側から左側面方向にかけて圧縮空気Aの通路66が形成されている。前記コア60の端部には強度部材として角柱67が配置されている。   The core 60 of the heat exchanger 21 is a plate fin type heat exchanger in which a plurality of plates 61 and fins 62 are alternately stacked as shown in FIG. The front surface of the core body 60 is an exhaust gas EG inlet 63 and the rear surface is an exhaust gas EG outlet 64. A passage 65 of the exhaust gas EG is formed from the front surface to the rear surface direction, and from the right side to the left side. A passage 66 for compressed air A is formed. A rectangular column 67 is disposed at the end of the core 60 as a strength member.

図2に示す熱交換器21の外周側におけるコア60の排ガス流入口63付近には、細管ヒータのような長尺の電気式ヒータ22が熱交換器21の外周に第1ターミナル23aを始点とし、第2ターミナル23bが終点となるように複数巻き(図示のものは3重巻き)に装着され、両ターミナル23a,23bが電源に接続されている。ヒータ22を形成する1周目のヒータ巻線22aと2周目のヒータ巻線22bおよび3周目のヒータ巻線22cはいずれも、複数の固定具24で熱交換器21に固定されている。前記ターミナル23a,23bおよび固定具24はいずれも耐熱性を有する材料で形成されている。ヒータ22は、図1のスイッチ25を介して電源に接続され、スイッチ25がコントローラ8によりオン・オフ制御される。   In the vicinity of the exhaust gas inlet 63 of the core 60 on the outer peripheral side of the heat exchanger 21 shown in FIG. 2, a long electric heater 22 such as a thin tube heater starts from the first terminal 23 a on the outer periphery of the heat exchanger 21. The second terminal 23b is mounted in multiple windings (the illustrated one is triple winding), and both terminals 23a and 23b are connected to a power source. The heater winding 22a of the first turn, the heater winding 22b of the second turn, and the heater winding 22c of the third turn forming the heater 22 are all fixed to the heat exchanger 21 by a plurality of fixtures 24. . The terminals 23a and 23b and the fixture 24 are all made of a heat resistant material. The heater 22 is connected to a power source via the switch 25 in FIG. 1, and the switch 25 is on / off controlled by the controller 8.

つぎに、上記構成に係る予熱機能付きの熱交換装置の動作について図1を参照しながら説明する。まず、再生サイクルガスタービンにおいては、大気から空気を吸入し、圧縮機3でこの空気を圧縮する。圧縮空気Aは空気導入通路11Aを経由して熱交換装置2の熱交換器21に送られ、この熱交換器21にて、排ガス導入通路11B経由で送られるタービン5からの排ガスEGと熱交換されることで、昇温された圧縮空気Aとなる。この圧縮空気Aは、空気導出通路11Cを経て燃焼器4に送られ、供給される燃料Fと混合されて燃焼することで、高温高圧のガスGが発生する。このガスGはタービン5に送られて、これを駆動し、タービン5に接続された発電機7のような負荷を駆動する。タービン5から排出された排ガスEGは、排ガス導入通路11Bを通って熱交換器21に導入されたのち、図示しない排熱ボイラを経て大気に放出される。   Next, the operation of the heat exchange device with a preheating function according to the above configuration will be described with reference to FIG. First, in the regeneration cycle gas turbine, air is sucked from the atmosphere, and this air is compressed by the compressor 3. The compressed air A is sent to the heat exchanger 21 of the heat exchange device 2 via the air introduction passage 11A, and heat exchange with the exhaust gas EG from the turbine 5 sent via the exhaust gas introduction passage 11B. Thus, the compressed air A is heated. This compressed air A is sent to the combustor 4 through the air outlet passage 11C, mixed with the supplied fuel F, and burned to generate a high-temperature and high-pressure gas G. This gas G is sent to the turbine 5 to drive it and to drive a load such as a generator 7 connected to the turbine 5. The exhaust gas EG discharged from the turbine 5 is introduced into the heat exchanger 21 through the exhaust gas introduction passage 11B, and then released to the atmosphere through an exhaust heat boiler (not shown).

前記のようにして動作する再生サイクルガスタービンにおいて、特に、ガスタービンの起動時、まだ十分に暖まっていない熱交換器21に対し、熱交換器21のコア60の流入口63付近が流入口63から熱交換器21内に流入する高温の排ガスEGに曝されると、前記流入口63付近が急激に昇温して大きな熱負荷がかかり、図3に示すプレート61と角柱67や、熱交換器11とヘッダタンク21c,21dとの溶接部に、熱応力に起因する細かいひび(クラック)のような損傷が発生し、コア60の寿命、つまり熱交換器21の寿命を短くするおそれがある。そこで、本発明では、図1のガスタービン1の起動に先立って、コントローラ8によって制御されたヒータ22によって熱交換器21の流入開口21a付近を予熱して暖める。   In the regenerative cycle gas turbine operating as described above, in particular, when the gas turbine is started, the vicinity of the inlet 63 of the core 60 of the heat exchanger 21 is closer to the inlet 63 than the heat exchanger 21 that has not been sufficiently warmed. 3 is exposed to high-temperature exhaust gas EG flowing into the heat exchanger 21, the vicinity of the inlet 63 is suddenly heated and a large heat load is applied, and the plate 61 and the prism 67 shown in FIG. There is a possibility that damage such as fine cracks (cracks) due to thermal stress occurs in the welded portion between the container 11 and the header tanks 21c and 21d, and the life of the core 60, that is, the life of the heat exchanger 21 may be shortened. . Therefore, in the present invention, before the gas turbine 1 of FIG. 1 is started, the vicinity of the inflow opening 21a of the heat exchanger 21 is preheated and warmed by the heater 22 controlled by the controller 8.

前記ヒータ22のオン・オフ自動切替え動作について具体的に説明する。図1に示す熱交換器21が作動停止した場合(例えば、夜間におけるガスタービン1の運転停止時)に、その停止命令を受けたコントローラ8の制御によりヒータ22が自動的にオンされ、次回(例えばガスタービン1の運転を再開する翌朝時)のガスタービン1の起動時に熱交換器21が一定温度以上に暖まっているように、ガスタービン1の起動に先立って前記熱交換器21をヒータ22によって事前に予備加熱しておく。   The on / off automatic switching operation of the heater 22 will be specifically described. When the operation of the heat exchanger 21 shown in FIG. 1 is stopped (for example, when the operation of the gas turbine 1 is stopped at night), the heater 22 is automatically turned on under the control of the controller 8 in response to the stop instruction, and the next time ( For example, the heat exchanger 21 is heated to a heater 22 prior to the start of the gas turbine 1 so that the heat exchanger 21 is warmed to a certain temperature or more at the start of the gas turbine 1 (for example, the next morning when the operation of the gas turbine 1 is resumed). Preheat in advance.

このヒータ22による予備加熱は、図4に示すように、ガスタービン1の運転を手動または自動で停止させたときに、その停止命令を受けて、コントローラ8(図1)の制御によって自動的にヒータオンとなり、符号Hで示すように、例えば夜間の間、継続してヒータ22(図1)が作動する。ガスタービン1の運転を再開する翌朝に、ガスタービン1を起動させ、タービン回転数が例えば95%に達して電源確立すると、コントローラ8(図1)の制御によって自動的にヒータオフとなる。このようにすることで、ガスタービン1の運転時には、図1の熱交換器21は既に予熱によって暖まっており、高温の排ガスEGが流入口63から熱交換器21のコア60内に流入しても、前記流入口63と排ガスEGとの間の温度差が小さいので、流入口63に大きな熱負荷がかからない。その結果、コア60に対する熱応力の負荷が低減されるので、流入口63付近の強度部材である、図3のプレート61と角柱67や、図2の熱交換器21とヘッダタンク21c,21dとの溶接部に、熱応力に起因する細かいひび割れ(クラック)のような損傷が発生するのを抑制できる。   As shown in FIG. 4, the preliminary heating by the heater 22 is automatically performed by the control of the controller 8 (FIG. 1) in response to a stop command when the operation of the gas turbine 1 is stopped manually or automatically. The heater is turned on, and the heater 22 (FIG. 1) is continuously operated, for example, at night, as indicated by the symbol H. The next morning when the operation of the gas turbine 1 is resumed, the gas turbine 1 is started, and when the turbine rotation speed reaches, for example, 95% and the power supply is established, the heater is automatically turned off under the control of the controller 8 (FIG. 1). By doing so, when the gas turbine 1 is operated, the heat exchanger 21 in FIG. 1 is already warmed by the preheating, and the high-temperature exhaust gas EG flows into the core 60 of the heat exchanger 21 from the inlet 63. However, since the temperature difference between the inlet 63 and the exhaust gas EG is small, a large heat load is not applied to the inlet 63. As a result, since the load of thermal stress on the core 60 is reduced, the plate 61 and the prisms 67 of FIG. 3, which are strength members near the inflow port 63, the heat exchanger 21 and the header tanks 21c and 21d of FIG. It is possible to suppress the occurrence of damage such as fine cracks (cracks) due to thermal stress in the welded portion.

このようなヒータ22のオン・オフは、ガスタービン1の運転停止と運転中、つまり、熱交換器21の作動停止と作動開始のタイミングに基づいてコントローラ8により自動的に行われるので、ガスタービン1の運転操作に携わる現場作業者は、ガスタービン1の運転に先立ち、早朝出勤してヒータ22を手動でオンするような煩わしい作業から開放される。また、前記ヒータ22は熱交換器21の作動停止と作動開始のタイミングに合わせてそれぞれ自動的にオフおよびオンするので、タイミング時期を誤ることなく、適切なオン・オフ操作が行える。   Since the heater 22 is turned on and off automatically by the controller 8 during the operation stop and operation of the gas turbine 1, that is, based on the timing of operation stop and operation start of the heat exchanger 21, the gas turbine 1 Prior to the operation of the gas turbine 1, the on-site worker who is engaged in the operation operation 1 is freed from troublesome work such as going to work early in the morning and turning on the heater 22 manually. Further, since the heater 22 is automatically turned off and on in accordance with the operation stop timing and the operation start timing of the heat exchanger 21, respectively, an appropriate on / off operation can be performed without erroneous timing.

さらに、前記ヒータ22を外周側に装着するようにしたので、ヒータ22の取付作業および保守作業が行いやすくなって、作業性が向上する。   Furthermore, since the heater 22 is mounted on the outer peripheral side, the heater 22 can be easily attached and maintained, and workability is improved.

なお、ヒータ22は、コア60の流入口63から流出口64にわたる全域に巻き付けて装着しても差し支えないが、図示するように、流入口63付近にのみに装着することで熱交換器21のコア60に対する十分な予熱効果があり、熱交換器21の外周側にヒータ22が装着されることと合わせて、ヒータ22の取付作業が向上し、かつコストも低く抑えることができる。   The heater 22 may be wound around the entire area from the inlet 63 to the outlet 64 of the core 60, but as shown in the drawing, the heater 22 is mounted only in the vicinity of the inlet 63 so that the heat exchanger 21 can be installed. There is a sufficient preheating effect for the core 60, and in addition to the mounting of the heater 22 on the outer peripheral side of the heat exchanger 21, the mounting operation of the heater 22 can be improved and the cost can be kept low.

本発明に係る予熱機能付きの熱交換装置を適用した再生サイクルガスタービンを示す系統図である。1 is a system diagram showing a regeneration cycle gas turbine to which a heat exchange device with a preheating function according to the present invention is applied. FIG. 熱交換器へのヒータの装着状態を示す斜視図である。It is a perspective view which shows the mounting state of the heater to a heat exchanger. 熱交換器のコアを示す斜視図である。It is a perspective view which shows the core of a heat exchanger. ガスタービン運転状態とヒータのオン・オフの関係を示すタイムチャートである。It is a time chart which shows the relationship between a gas turbine operation state and heater ON / OFF.

符号の説明Explanation of symbols

1 ガスタービン
2 熱交換装置
3 圧縮機
4 燃焼器
5 タービン
21 熱交換器
22 ヒータ
8 コントローラ
60 コア
63 流入口
A 圧縮空気
EG 排ガス
1 Gas Turbine 2 Heat Exchanger 3 Compressor 4 Combustor 5 Turbine 21 Heat Exchanger 22 Heater 8 Controller 60 Core 63 Inlet A Compressed Air EG Exhaust Gas

Claims (4)

ガスタービンの排ガスと圧縮機からの圧縮空気との間で熱交換を行う熱交換器と、
前記熱交換器の作動停止中に熱交換器を予備加熱して運転再開時に前記熱交換器を作動時の温度に近づける電気式ヒータとを備え
前記ヒータは前記熱交換器におけるコアへの排ガスの流入口付近に装着されている予熱機能付きの熱交換装置。
A heat exchanger for exchanging heat between the exhaust gas of the gas turbine and the compressed air from the compressor;
An electric heater that preheats the heat exchanger during operation stop of the heat exchanger and brings the heat exchanger close to the operating temperature when the operation is resumed ,
The heater is a heat exchange device with a preheating function, which is mounted in the vicinity of an exhaust gas inlet to the core in the heat exchanger.
請求項1において、前記ヒータは熱交換器の外周に装着されている予熱機能付きの熱交換装置。   The heat exchanger according to claim 1, wherein the heater is attached to the outer periphery of the heat exchanger and has a preheating function. 請求項1または2において、さらに、前記熱交換器の作動停止と作動開始のタイミングに基づいてそれぞれ前記ヒータをオフおよびオンするコントローラを備えた予熱機能付きの熱交換装置。 3. The heat exchanging apparatus with a preheating function according to claim 1, further comprising a controller for turning off and on the heater based on the timing of operation stop and operation start of the heat exchanger. 請求項1または2に記載の熱交換装置を予熱する方法であって、
前記熱交換器の作動停止と作動開始のタイミングに合わせて、それぞれ前記ヒータをオフおよびオンする熱交換装置の予熱方法。
A method of preheating a heat exchange apparatus according to claim 1 or 2,
A preheating method for a heat exchange device in which the heater is turned off and on in accordance with the operation stop timing and operation start timing of the heat exchanger, respectively.
JP2005076363A 2005-03-17 2005-03-17 Heat exchange device with preheating function and preheating method thereof Expired - Fee Related JP4099177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076363A JP4099177B2 (en) 2005-03-17 2005-03-17 Heat exchange device with preheating function and preheating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076363A JP4099177B2 (en) 2005-03-17 2005-03-17 Heat exchange device with preheating function and preheating method thereof

Publications (2)

Publication Number Publication Date
JP2006257963A JP2006257963A (en) 2006-09-28
JP4099177B2 true JP4099177B2 (en) 2008-06-11

Family

ID=37097508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076363A Expired - Fee Related JP4099177B2 (en) 2005-03-17 2005-03-17 Heat exchange device with preheating function and preheating method thereof

Country Status (1)

Country Link
JP (1) JP4099177B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023107B2 (en) * 2009-06-25 2012-09-12 株式会社日立製作所 Regenerative cycle gas turbine system
US9995170B2 (en) * 2016-03-16 2018-06-12 General Electric Technology Gmbh System and method for heating components of a heat recovery steam generator

Also Published As

Publication number Publication date
JP2006257963A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
KR102319093B1 (en) Pressurized air supply system, fuel cell system comprising the pressurized air supply system, and starting method of the pressurized air supply system
JP4469222B2 (en) Combined power plant
JP4275690B2 (en) Gas turbine system
JP2010146934A (en) Solid oxide fuel battery, and solid oxide fuel battery system
SE531220C2 (en) Energy recovery system for a process device
CN102245861A (en) Power plant comprising a turbine unit and a generator
JP2001239129A (en) Exhaust gas treatment apparatus and operation method therefor
JP4099177B2 (en) Heat exchange device with preheating function and preheating method thereof
JP4461166B2 (en) Fuel cell-gas turbine power generation facility
JP2005069087A (en) Cogeneration system
JP4295500B2 (en) Fuel cell-gas turbine power generation facility
JP5357866B2 (en) A system for generating power, in particular electric power, by means of a gas turbine and a regenerative heat exchanger
JP2008248730A (en) Combined power plant
JP2007187352A (en) Starting method of boiler
JP5762068B2 (en) Fuel cell / gas turbine combined power generation system and method for starting the fuel cell
JP2009085182A (en) Combined cycle power plant
JP4209150B2 (en) Combined power generation facility
US20230030363A1 (en) Hybrid power system
CN103335325B (en) Coordinated type blower unit in heat-engine plant desulfurized flue gas system and method for operating thereof
JP5854369B2 (en) Cogeneration system
JP4134076B2 (en) Heat exchanger repair method
CN219283380U (en) A thermal power plant waste heat recovery and utilization system
JP6025521B2 (en) Combined power generation system and method of operating combined power generation system
CN114231680B (en) Heat exchange systems and waste heat heating systems used in steel production systems
JP2000008878A (en) Cogeneration equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080314

R150 Certificate of patent or registration of utility model

Ref document number: 4099177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150321

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees