[go: up one dir, main page]

JP4004783B2 - Quartz crucible for single crystal growth - Google Patents

Quartz crucible for single crystal growth Download PDF

Info

Publication number
JP4004783B2
JP4004783B2 JP2001359111A JP2001359111A JP4004783B2 JP 4004783 B2 JP4004783 B2 JP 4004783B2 JP 2001359111 A JP2001359111 A JP 2001359111A JP 2001359111 A JP2001359111 A JP 2001359111A JP 4004783 B2 JP4004783 B2 JP 4004783B2
Authority
JP
Japan
Prior art keywords
devitrification
crucible
concentration
single crystal
quartz crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001359111A
Other languages
Japanese (ja)
Other versions
JP2003160393A (en
Inventor
正道 大久保
清 小島
Original Assignee
シルトロニック・ジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シルトロニック・ジャパン株式会社 filed Critical シルトロニック・ジャパン株式会社
Priority to JP2001359111A priority Critical patent/JP4004783B2/en
Publication of JP2003160393A publication Critical patent/JP2003160393A/en
Application granted granted Critical
Publication of JP4004783B2 publication Critical patent/JP4004783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/003General methods for coating; Devices therefor for hollow ware, e.g. containers
    • C03C17/004Coating the inside

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、チョクラルスキー法による単結晶成長に用いられる石英ルツボに関するものであり、特にルツボの内表面に失透促進剤付着層または失透促進剤含有層を有する単結晶成長用石英ルツボに関するものである。
【0002】
【従来の技術】
シリコン半導体などの単結晶成長においては、チョクラルスキー法が広く用いられている。チョクラルスキー法においては、原料多結晶を石英ルツボ内に装入して加熱・溶解し、この溶融浴に種結晶を接触させ、種結晶を引き上げることによって単結晶インゴットを成長させる。
【0003】
石英ルツボは、ガラス質のシリカからなる。単結晶成長中において、高温で長時間にわたって融液を保持するため、融液と接触する石英ガラス表面から異物が分離して融液に放出されることがあり、この異物が育成中の単結晶の固液界面に付着すると、単結晶インゴットに転位が発生することとなる。
【0004】
最近の半導体ウェーハの大口径化に伴い、単結晶成長に用いられる石英ルツボの大型化が進み、成長中の融液とルツボの界面における温度が上昇するとともに、融液を保持する時間も長時間化している。これに伴い、前記ルツボから分離する異物の融液中への混入も多くなり、成長結晶を有転位化させる頻度が増大する傾向があった。
【0005】
単結晶成長中の高温で融液と接する石英ガラス質のルツボ内表面においては、汚染物を核として褐色のクリストバライトが島状に析出する。このクリストバライトが粒子としてルツボ内表面から融液中に放出され、結晶を有転位化させる原因になると考えられている。
【0006】
特開平9−110579、特開平9−110590号公報においては、石英ルツボ表面に予め失透促進剤を均一に被覆することによって、クリストバライト粒子の放出を防止する方法が記載されている。ルツボの内表面が失透促進剤で均一に被覆されると、結晶成長中においてルツボ内表面でガラス質シリカが結晶化し、ルツボ内表面に実質的に均一および連続的なβ−クリストバライトの失透シェルを形成する。均一および連続的な失透シェルは、融液と接触すると均一に溶解するので、従来のようにβ−クリストバライト粒子が融液中に放出されることがなくなり、成長結晶中に形成される転位が最少限になるとしている。失透促進剤としては、バリウム、マグネシウム、ストロンチウムおよびベリリウムからなるアルカリ土類金属が用いられている。ルツボ表面に被覆する失透促進剤の濃度としては、少なくとも0.10mM/1000cm2が必要であるとしている。濃度が低いと核が小さすぎて、メルトによる溶融を越える速度で成長することができない。従って結晶化が起こる前に核が溶融し、特にルツボ壁で高温メルトを有する大きい直径のルツボにおいて溶融するとしている。
【0007】
特開平8−2932号公報においても、石英ガラスルツボ内表面の厚さ1mm以内に結晶化促進剤含有塗布膜または固溶層を形成することにより、ルツボ内表面をその使用時に結晶化させ、ルツボ内壁の溶損量を少なくし、ルツボの長時間の使用を可能にするとしている。結晶化促進剤としてはマグネシウム、ストロンチウム、カルシウム、バリウムなどの2a族元素、アルミニウムなどの3b族元素が用いられている。
【0008】
ガラス質の石英ルツボは透明である。表面に結晶化層が形成されると透明性が失われ、即ち失透する。従って、上記失透促進剤と結晶化促進剤とは同じ概念を示すものである。ここでは以後「失透促進剤」という。
【0009】
特開平11−21196号公報においては、石英ルツボ中に収容されたシリコン融液からチョクラルスキー法によりシリコン単結晶を製造する場合において、シリコン融液中にCaOまたはBaOを添加してシリコン単結晶を育成することにより、シリコン融液中のCaOまたはBaOが石英ルツボ内表面にドーピングされ、石英の結晶化を促進して、均一で微細な結晶層が形成され、シリコン融液による石英ルツボの劣化、浸食、剥離を抑制することができると記載されている。
【0010】
【発明が解決しようとする課題】
半導体用シリコンウェーハの大口径化はさらに進み、300mm口径ウェーハが市場に出荷され始めてきた。シリコンウェーハの大口径化に伴い、単結晶引き上げ用の石英ルツボの口径も大きくなっている。従来の150mmや200mm口径の単結晶引き上げの場合には石英ルツボの口径は18〜22インチ程度であったが、300mm口径単結晶引き上げには26〜32インチの石英ルツボが主流になってきた。石英ルツボの口径が26〜32インチの大口径となると、従来の18〜22インチ口径の石英ルツボを使用していたときと比較し、単結晶引き上げ中の石英ルツボの温度が数10℃高くなる。加えて、結晶の高品質化要求はますます拍車がかかり、無欠陥結晶を製造するために結晶引き上げ速度をある程度低速化する場合も多くなってきた。引き上げ速度の低速化によって結晶成長に長時間を要することとなり、石英ルツボの温度上昇と相まって、石英ルツボへの負荷が格段に増えている。
【0011】
以上のような状況のもと、300mm口径単結晶引き上げや低速引き上げにおいては、石英ルツボ内面に失透促進剤を使用しているにもかかわらず、単結晶引き上げ中における転位発生を十分に防止することができなくなっている。
【0012】
本発明は、大口径の単結晶引き上げにおいて大口径石英ルツボを使用する場合においても、かつ低速引き上げを採用する長時間引き上げの場合においても、単結晶の転位発生を防止することのできる単結晶成長用石英ルツボを提供することを目的とする。
【0013】
【課題を解決するための手段】
バリウムなどの失透促進剤を石英ルツボ1の内表面2に塗布し、この石英ルツボに多結晶シリコンを装入して溶融し単結晶引き上げを行うと、融液と接触する石英ルツボ内面には結晶化した失透層が形成される。図1に単結晶引き上げ後の石英ルツボの断面顕微鏡写真を示す。ルツボの内表面に、内部の透明層と明確に区別できる失透層が形成されているのがわかる。失透層は成長し、失透層の厚さは時間の経過とともに厚くなる。本発明者らは、引き上げ終了後の石英ルツボ内表面に観察される失透層の厚さを溶解から引き上げ終了までの経過時間で割り、この値を失透層成長速度と定義した。
【0014】
本発明者らの検討の結果、失透層成長速度は石英ルツボの当該部位に付着または含有する失透促進剤の濃度の影響を受け、さらに結晶成長中の石英ルツボの当該部位における温度の影響を受けることが明らかになった。失透促進剤の濃度が高いほど失透層成長速度は速くなり、温度が高いほど失透層成長速度は速くなる。
【0015】
さらに、失透層成長速度には適正範囲があることを明らかにした。失透層成長速度が遅すぎると失透促進剤を用いた効果が見られず、失透促進剤を用いなかった場合と同様に石英ルツボ内面に発生した島状のクリストバライトが分離して異物となり、単結晶の転位発生の原因となる。逆に失透層成長速度が速すぎると、結晶化した多くのシリカを異物として失透層から溶液中に放出し、単結晶の転位発生の原因となるのである。
【0016】
石英ルツボの内表面に均一に失透促進剤を塗布した上で単結晶引き上げを行うと、失透層成長速度は石英ルツボの部位によって異なることが明らかになった。石英ルツボ1は、図2に示すように、その断面において、側壁部3、コーナー部4、底部5に分けることができる。コーナー部4の失透層成長速度が最も速く、底部5の失透層成長速度が最も遅く、側壁部3は両者の中間である。また、石英ルツボの口径が大きくなるほど失透層成長速度は増大し、特に大口径ルツボにおけるコーナー部4および側壁部3の失透層成長速度が大きな値を示す。大口径ルツボにおいては、コーナー部4の失透層成長速度と底部5の失透層成長速度をともに上記適正範囲に収めることができず、これが大口径ルツボにおいて単結晶の転位発生を防止することができない原因であることが判明した。
【0017】
単結晶成長中における石英ルツボの温度は伝熱計算を行うことによって明らかにすることができ、石英ルツボの部位によって温度が異なることが判明している。単結晶成長中において、底部5の温度が最も低く、コーナー部4の温度が最も高く、側壁部3は両者の中間の温度である。また、石英ルツボの口径が大きくなるほど石英ルツボ温度が高くなることがわかっている。
【0018】
以上の知見に基づき、石英ルツボ1の内表面2に付着または含有する失透層促進剤の濃度をルツボ各部位で均一にするのではなく、ルツボ内表面2の部位によって異ならせ、単結晶引き上げ中の温度が高くなる部位は濃度を低くし、温度が高くならない部位は濃度を高くすることにより、石英ルツボ内表面のいずれの部位においても失透層成長速度を適正範囲内に納めることができ、その結果単結晶成長における転位発生の大幅な低減を実現した。
【0019】
本発明は以上の知見に基づいてなされたものであり、その要旨とするところは以下のとおりである。
(1)ルツボの内表面2に失透促進剤付着層または失透促進剤含有層を有する単結晶成長用石英ルツボ1であって、付着または含有する失透促進剤の濃度を、ルツボ内表面の部位によって異ならせてなり、ルツボ内表面のうち、単結晶成長中の温度が低く若しくは失透層成長速度が遅くなる部位の失透促進剤の濃度を、単結晶成長中の温度が高く若しくは失透層成長速度が速くなる部位の失透促進剤の濃度よりも高くしてなることを特徴とする単結晶成長用石英ルツボ。
ここで、失透層成長速度とは、引き上げ終了後の石英ルツボ内表面に観察される失透層の厚さを溶解から引き上げ終了までの経過時間で割った値である。以下同様である。
ルツボの内表面2に失透促進剤付着層または失透促進剤含有層を有する単結晶成長用石英ルツボ1であって、付着または含有する失透促進剤の濃度を、ルツボ内表面の部位によって異ならせてなり、ルツボ内表面2のうち、底部5内表面の失透促進剤の濃度を、側壁部3およびコーナー部4内表面の失透促進剤の濃度よりも高くしてなることを特徴とする単結晶成長用石英ルツボ。
)ルツボ内表面2における前記失透促進剤の濃度は、当該石英ルツボ1をチョクラルスキー法によるシリコン単結晶成長に使用した場合において、ルツボ内表面2の失透層成長速度が0.6μm/hr以下となるように形成されてなることを特徴とする上記(1)又は(2)に記載の単結晶成長用石英ルツボ。
)高濃度側の前記失透促進剤の濃度は、低濃度側の失透促進剤濃度の2倍以上の濃度であることを特徴とする上記(1)乃至()のいずれかに記載の単結晶成長用石英ルツボ。
失透促進剤として、バリウム、マグネシウム、カルシウム、ストロンチウム、ベリリウムのうちの1又は2以上からなる2a族元素、アルミニウムを含む3b族元素もしくはこれらの化合物を用いてなることを特徴とする上記(1)乃至()のいずれかに記載の単結晶成長用石英ルツボ。
【0020】
【発明の実施の形態】
図2に石英ルツボ1の断面を示す。石英ルツボ1の形状は、側壁部3、コーナー部4、底部5から形成されている。装入した多結晶の溶解が完了した時点での融液表面は図中の初期融液表面6の位置であり、単結晶引き上げが終了した時点での融液表面は図中の末期融液表面7の位置である。
【0021】
チョクラルスキー法によるシリコン単結晶成長において、石英ルツボとして天然石英を原料とした18、22、28インチの各口径の石英ルツボを用い、バリウムを含む失透促進剤をルツボ内表面に濃度0.44mM/1000cm2で均一に塗布し、失透層成長速度の比較を行った。ここで、失透促進剤の濃度は、ルツボ内表面の表面積1000cm2当たりに付着又は含有する失透促進剤の元素量をmM(ミリモル)で表示したものである。各口径の石英ルツボ毎に、また石英ルツボ1の側壁部3、コーナー部4、底部5の各部位毎に、失透層成長速度を比較した結果を図3にに示す。石英ルツボの口径が大きくなるほど失透層成長速度が速くなることがわかる。また、いずれの口径の石英ルツボにおいても底部の失透層成長速度が最も遅くなっており、22インチと28インチ口径の石英ルツボにおいては、コーナー部の失透層成長速度が、18インチ口径では側壁部の失透層成長速度が最も速くなっている。特に28インチ口径の石英ルツボにおいて、部位毎の失透層成長速度の差が顕著に現れている。
【0022】
単結晶成長中における石英ルツボの部位毎の温度は、伝熱計算を行うことによって推定することが可能である。図4には、18、22、28インチ石英ルツボを用いた場合の石英ルツボ各部位の結晶成長中の温度を伝熱計算で求めた結果を示す。口径が大きいほど石英ルツボの温度が高いことが明らかであり、石英ルツボ部位別ではコーナー部の温度が最も高く底部の温度が最も低いことがわかる。図3と図4とを対比することにより、失透層成長速度は単結晶成長中の石英ルツボ温度の影響を強く受け、温度が高いほど失透層成長速度が速くなることが明らかである。
【0023】
次に、失透層成長速度と単結晶引き上げにおける転位の発生状況との関係について着目した。石英ルツボとして口径18インチから28インチまでの各種大きさの石英ルツボを使用し、直径300mmのシリコン単結晶インゴットを0.5mm/minという低速引き上げによって引き上げた。石英ルツボ内面に塗布する失透促進剤のバリウム濃度を0.002〜0.44mM/1000cm2の範囲で変化させ、引き上げにおける転位発生の有無を調査した。図5の横軸は石英ルツボの部位、縦軸は失透層成長速度、図中のプロットにおいて、○は転位の発生を起こさずに単結晶引き上げを完了したもの、●は結晶引き上げ中に転位が発生したものである。図5より明らかなように、石英ルツボ内の部位によらず、失透層成長速度が0.6μm/hrを超えた場合には結晶に転位が発生していることがわかる。また、失透層成長速度がゼロの場合にも結晶に転位が発生している。
【0024】
以上のとおり、直径300mmのシリコン単結晶を0.5mm/minという低速で引き上げる場合においては、失透層成長速度を0.6μm/hr以下に抑える必要があることが明らかである。同時に、失透層成長速度がゼロでは、失透促進剤を用いない場合と同様に転位発生を抑えることができず、現実的には表面の塗布均一性を考慮するならば0.05μm/hr以上は必要と考えられる。より好ましくは、失透層成長速度を0.1μm/min以上とするとよい。
【0025】
一方、直径200mm以下のシリコン単結晶を引き上げ速度0.5mm/min超の高速で成長させる場合においては、結晶に転位が発生しない上限の失透層成長速度は1.2μm/hr程度であることがわかっており、直径300mm結晶を低速で引き上げる場合と比較して失透層成長速度の適正範囲が広がっている。
【0026】
失透層成長速度が0.6μm/hrを超える単結晶成長で引き上げ中に結晶に転位が発生した場合において、引き上げ完了後に石英ルツボ内で凝固した残湯を調査してみると、図6に顕微鏡写真で示すような20μm程度の長さを有するクリストバライト(シリカが結晶化した異物)が多数観察されることがわかった。失透促進剤を使用しない引き上げにおいて転位発生の原因となるクリストバライト異物と同様のものであるが、失透層成長速度が適正範囲上限を超えた引き上げにおいてはその発生量がきわめて多い。この観察結果から明らかなことは、失透促進剤の使用によって均一な結晶層を成長させることにより、失透促進剤を使用しない場合に見られる島状のクリストバライトの成長と剥離は防止できるものの、失透層成長速度が適正範囲を超えた速い成長速度の領域に入ると、逆に成長した失透層(結晶層)から結晶化異物が多数発生し、これらの異物がシリコン融液中を浮遊して結晶成長界面に捕捉され、転位を引き起こしているものと推定される。
【0027】
次に、口径28インチの石英ルツボを使用し、石英ルツボ内表面に失透促進剤をバリウム濃度0.009、0.09,0.44mM/1000cm2に均一に塗布して単結晶成長に使用し、単結晶成長後の石英ルツボの観察から失透層成長速度を測定して比較した。図7に結果を示す。失透促進剤の濃度が高いほど失透層成長速度が速いこと、石英ルツボ部位別に失透層成長速度が異なり、底部では速度が遅く、コーナー部では速度が速いことが明らかである。ここで、失透促進剤濃度0.44mM/1000cm2では石英ルツボのいずれの個所においても失透層成長速度が適正範囲を超えており、失透促進剤濃度0.09mM/1000cm2では、底部において適正な失透層成長速度を実現するもののコーナー部と側壁部では失透層成長速度が適正範囲上限を超えている。このため、失透促進剤濃度0.09、0.44mM/1000cm2のいずれにおいても、引き上げ初期において融液表面とルツボ表面との接点がルツボの側壁部に位置する時点で結晶に転位が発生した。一方、失透促進剤濃度0.009mM/1000cm2では、コーナー部と側壁部において適正な失透層成長速度を実現するものの底部では失透層が全く成長せず、そのため失透促進剤を塗布しない場合と同様に局部的に結晶化したクリストバライトの異物剥離が発生し、結晶引き上げ中盤以降に結晶に転位が発生した。
【0028】
そこで、本発明の上記(1)にあるように付着する失透促進剤の濃度をルツボ内表面の部位によって異ならせ、具体的には石英ルツボ内表面の側壁部とコーナー部には0.009mM/1000cm2の濃度で失透促進剤を塗布し、底部には0.12mM/1000cm2の濃度で失透促進剤を塗布し、この石英ルツボを使用して直径300mmシリコン単結晶を0.5mm/min以下の低速引き上げを行ったところ、結晶に転位が発生せず、全長を単結晶として引き上げることに成功した。
【0029】
付着する失透促進剤の濃度をルツボ内表面の部位によって異ならせるに際し、本発明の上記(2)にあるように、単結晶成長中の温度が低く失透層成長速度が遅くなる部位の失透促進剤の濃度を、単結晶成長中の温度が高く失透層成長速度が速くなる部位の失透促進剤の濃度よりも高くすることにより、単結晶に転位を発生させることなく引き上げを行うことが可能になる。石英ルツボ内表面のうち、単結晶成長中の温度が低い部分は、失透層成長速度が相対的に遅くなるので、失透促進剤の濃度を相対的に高くすることにより失透層成長速度を速くし、失透層を付着または含有させることによる転位発生防止効果を発揮させることができる。逆に、石英ルツボ内表面のうち、単結晶成長中の温度が高い部分は、失透層成長速度が相対的に速くなるので、失透促進剤の濃度を相対的に低くすることにより失透層成長速度を遅くし、当該部位における失透層成長速度が適正範囲の上限を超えないようにして転位発生防止効果を発揮させることができる。
【0030】
通常のシリコン単結晶引き上げにおいては、ルツボ内表面の底部の温度が比較的低く、側壁およびコーナー部の温度が比較的高いので、本発明の上記(3)にあるように、底部内表面の失透促進剤の濃度を、側壁およびコーナー部内表面の失透促進剤の濃度よりも高くすることにより、ルツボ内表面のいずれの部位においても失透層成長速度を適正範囲内に収めることが可能になる。
【0031】
本発明の上記(4)にあるように、石英ルツボをチョクラルスキー法によるシリコン単結晶成長に使用した場合において、ルツボ内表面の失透層成長速度が0.6μm/hr以下となるように形成すれば、直径300mmシリコン単結晶を0.5mm/min以下の低速引き上げで引き上げるという最も転位発生の防止が困難である引き上げ条件においても転位発生を防止して単結晶を引き上げることが可能になる。もちろん、この条件であれば、直径300mmシリコン単結晶を0.5mm/min以上の高速で引き上げる場合、あるいは直径200mm以下のシリコン単結晶を引き上げる場合においても、転位を発生させずに単結晶を引き上げることが可能である。
【0032】
ここで、石英ルツボ内表面のうちの側壁およびコーナー部については、結晶引き上げ中における温度が高いので、失透促進剤の濃度が高すぎると失透層成長速度が速くなりすぎ、失透層(結晶層)から結晶化異物が多数発生し、これらの異物がシリコン融液とともに浮遊して結晶成長界面に捕捉され、転位を引き起こすこととなる。一方、石英ルツボ内表面のうちの底部については、結晶引き上げ中における温度が低いので相対的に失透層成長速度が遅く、一方で底部は引き上げの最終段階まで融液で覆われているために融液との接触時間が長くルツボ内表面の溶損量が多い。そのため、失透促進剤の濃度が低すぎると引き上げ末期までに失透層がすべて溶損して失われ、失透促進剤を塗布しない場合と同様に島状のクリストバライトの成長と剥離が起こるために転位が発生することになると推定することができる。
【0033】
付着または含有する失透促進剤の濃度をルツボ内表面の部位によって異ならせるに際し、高濃度側、低濃度側の各失透促進剤の濃度は、ルツボ内表面のいずれの部位においても失透層成長速度が適正範囲内に収まるように定めればよい。通常のチョクラルスキー法によるシリコン単結晶引き上げにおいては、本発明の上記(5)にあるように、高濃度側の失透促進剤の濃度が低濃度側の失透促進剤濃度の2倍以上の濃度となるように各濃度を設定すれば、ルツボ内表面における失透層成長速度をいずれの部位においても適正範囲内に収めることが可能になる。高濃度側の失透促進剤の濃度と低濃度側の失透促進剤濃度との比は、5倍以上であればより好ましい結果を得ることができる。
【0034】
本発明に用いる失透促進剤としては、バリウム、マグネシウム、カルシウム、ストロンチウム、ベリリウムのうちの1又は2以上からなる2a族元素、アルミニウムを含む3b族元素もしくはこれらの化合物を用いることができる。
【0035】
失透促進剤は、石英ルツボ内表面に塗布して付着させ、あるいは内表面に失透促進剤を含有した石英層を形成することによって、失透促進剤付着層または失透促進剤含有層を形成することができる。
【0036】
ルツボ内表面への失透促進剤の塗布方法としては、まず複数の濃度に調整された水酸化バリウム水溶液などの失透促進剤溶液を準備する。次に約200〜300℃に加熱した石英ルツボに、最初に最も薄い濃度の失透促進剤溶液を吹き付ける。その後、最も薄い濃度が必要な部分をテフロン(R)等で製造した汚染のない材料で被覆し、そのあとに別の濃度の失透促進剤溶液を吹き付ける。被覆部分の失透促進剤濃度は最初に塗布した失透促進剤の濃度に維持され、被覆のない部分については最初に塗布した失透促進剤濃度と次に塗布した失透促進剤濃度の合計濃度となる。このようにして、石英ルツボ内表面の部位別に異なった濃度の失透促進剤付着層を形成することができる。付着濃度を部位によって3条件以上に塗り分ける場合にも、被覆部位を変更して同様の方法を行うことによって形成することができる。以上の一連の操作をさらに複数回にわたって繰り返し行い、いわゆる重ね塗りを繰り返すことにより、失透促進剤濃度を精度良く調整することも可能であるが、通常は上記一連の動作を1回行って失透促進剤濃度を調整する方法がコスト的には実用的である。
【0037】
石英ルツボ内表面に失透促進剤溶液を吹き付ける際における失透促進剤溶液の付着量は、吹き付け時間などによって制御することができる。石英ルツボ内表面単位面積あたりに付着させる失透促進剤溶液の量および溶液中の失透促進剤の濃度を調整することにより、ルツボ内表面に付着する失透促進剤の濃度を目的の濃度とすることができる。
【0038】
石英ルツボの製造に際しては、真空中で回転する型を準備し、この型の内表面の形状は石英ルツボの外形を形成しており、この型に石英粒子を供給して真空中で型を回転しながら抵抗加熱により熱を加えて溶融し、石英ガラス層を形成する。本発明において、ルツボ内表面に失透促進剤含有層を形成するに際しては、石英ルツボの製造時に失透促進剤を含む石英粒子を石英ルツボの内表面側に吹き付け、失透促進剤含有層の厚さを0.1mm以内に調整する。この際、吹き付ける石英粒子中の失透促進剤濃度を吹き付け部位によって異ならせることにより、含有する失透促進剤の濃度をルツボ内表面の部位によって異ならせることができる。
【0039】
【実施例】
天然石英を原料とした口径28インチの石英ルツボの内表面に失透促進剤として水酸化バリウムを塗布するに際し、本発明を適用した。実施例1、実施例2それぞれにおいて、各2種類の濃度の水酸化バリウム水溶液を準備し、約200〜300℃に加熱した石英ルツボに第1の濃度の水酸化バリウム水溶液を吹き付け、次いでルツボ内表面のうちのルツボ側壁部およびコーナー部をテフロン(R)にて被覆し、第2の濃度の水酸化バリウム水溶液を吹き付けた。側壁部およびコーナー部には第1の濃度の水酸化バリウム水溶液濃度に対応する付着濃度が得られ、底部には第1と第2の濃度の水酸化バリウム水溶液の合計濃度に対応する付着濃度が得られる。失透促進剤の塗布はルツボを回転しながらスプレー式に吹き付けることによって行った。その結果、実施例1、実施例2それぞれの石英ルツボ内表面各部位の水酸化バリウム濃度を表1に示す濃度とすることができた。
【0040】
以上のように失透促進剤を付着した口径28インチ石英ルツボを用い、多結晶シリコンを170kg装入し、Arガス雰囲気において20mbの真空度で溶解を行い、その後種結晶をシリコン溶液に接触させ、ダッシュ、コーン過程を経て、円筒部の直径300mm長さ700mmの結晶を引き上げ速度0.5mm/minで引き上げた。その結果、実施例1、実施例2とも転位の発生はなく、単結晶インゴットの引き上げに成功した。引き上げ完了後の石英ルツボを観察した結果、各実施例毎の各部位の失透層成長速度は表1に示すとおりであり、いずれも失透層成長速度は適正範囲内であった。
【0041】
【表1】

Figure 0004004783
【0042】
引き上げが完了したシリコン単結晶を加工してシリコンウェーハを製造し、各種品質評価を行った。その結果、ウェーハの酸化誘起積層欠陥(OSF)の発生は認められず、ウェーハの酸素濃度や不純物濃度も失透促進剤を用いない石英ルツボで引き上げた結晶と同等の結果であった。
【0043】
上記実施例と同様に失透促進剤を付着した石英ルツボを用いて同様のシリコン単結晶を引き上げるに際し、引き上げ途中でそれまでに引き上げた単結晶インゴットを再溶解し、再度単結晶引き上げを行った。引き上げ速度は0.5mm/minとした。途中で再溶解を行ったため、最初の溶解から単結晶引き上げ完了までの所要時間が120時間を超えたが、転位の発生なく単結晶で引き上げを完了することができた。
【0044】
従来、失透促進剤を塗布していない天然石英ルツボを用いたシリコン単結晶引き上げにおいては、転位を発生させないためには、溶解から単結晶成長完了までの所要時間は60時間が限度であった。失透促進剤を塗布した場合においても、石英ルツボ内表面に均一に塗布した場合には、ルツボ内表面に失透層が形成されていない部位があると、所要時間は65時間が限度であった。それに対し、同じ天然石英ルツボにおいても、失透促進剤濃度をルツボ内表面の部位によって異ならせることにより、溶解から単結晶成長完了までの限界所要時間が飛躍的に向上していることが確認できた。
【0045】
【発明の効果】
本発明は、ルツボの内表面に失透促進剤付着層または失透促進剤含有層を有する単結晶成長用石英ルツボであって、付着または含有する失透促進剤の濃度を、ルツボ内表面の部位によって異ならせてなることにより、直径200mm以下、高速引き上げの場合はもちろん、直径300mmという大口径でかつ低速引き上げの場合においても、転位の発生を防止して全長単結晶として引き上げることが可能になる。
【図面の簡単な説明】
【図1】引き上げ終了後の石英ルツボ内表面付近の断面における顕微鏡写真であり、失透層の生成状況を示すものである。
【図2】石英ルツボの断面を示す図である。
【図3】石英ルツボ内表面に失透促進剤を均一に塗布した場合において、ルツボ口径別、ルツボ部位別の失透層成長速度を示す図である。
【図4】伝熱計算によって求めた引き上げ中の石英ルツボの温度について、ルツボ口径別、ルツボ部位別に示す図である。
【図5】ルツボの部位別に、失透層成長速度と単結晶における転位発生の有無との関係を示す図である。
【図6】失透層成長速度が0.6μm/hrを超える引き上げにおいて、引き上げ終了後のシリコン残湯中に見られる結晶化した異物を示す顕微鏡写真である。
【図7】口径28インチの石英ルツボに失透促進剤を均一に塗布した場合において、失透促進剤塗布濃度、石英ルツボ部位と失透層成長速度との関係を示す図である。
【符号の説明】
1 石英ルツボ
2 内表面
3 側壁部
4 コーナー部
5 底部
6 初期融液表面
7 末期融液表面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a quartz crucible used for single crystal growth by the Czochralski method, and more particularly to a quartz crucible for single crystal growth having a devitrification accelerator-attached layer or a devitrification accelerator-containing layer on the inner surface of the crucible. Is.
[0002]
[Prior art]
The Czochralski method is widely used in single crystal growth of silicon semiconductors and the like. In the Czochralski method, a raw material polycrystal is placed in a quartz crucible, heated and melted, a seed crystal is brought into contact with this molten bath, and the seed crystal is pulled up to grow a single crystal ingot.
[0003]
The quartz crucible is made of vitreous silica. During the growth of a single crystal, the melt is held at a high temperature for a long time, so that foreign matter may be separated from the quartz glass surface in contact with the melt and released into the melt. When adhering to the solid-liquid interface, dislocation occurs in the single crystal ingot.
[0004]
With the recent increase in diameter of semiconductor wafers, the size of quartz crucibles used for single crystal growth has increased, the temperature at the interface between the growing melt and the crucible has risen, and the time for holding the melt has also increased. It has become. Along with this, the foreign matter separated from the crucible also increases in the melt, and there is a tendency that the frequency of transforming the grown crystal is increased.
[0005]
On the inner surface of the quartz vitreous crucible that is in contact with the melt at a high temperature during single crystal growth, brown cristobalite is deposited in the form of islands with contaminants as nuclei. It is believed that this cristobalite is released as particles from the inner surface of the crucible into the melt, causing the crystals to dislocation.
[0006]
Japanese Patent Application Laid-Open Nos. 9-110579 and 9-110590 describe a method for preventing the release of cristobalite particles by uniformly covering the surface of a quartz crucible with a devitrification accelerator in advance. When the inner surface of the crucible is uniformly coated with a devitrification accelerator, the vitreous silica crystallizes on the inner surface of the crucible during crystal growth, and the devitrification of β-cristobalite is substantially uniform and continuous on the inner surface of the crucible. Form a shell. The uniform and continuous devitrification shell dissolves uniformly when it comes into contact with the melt, so that β-cristobalite particles are not released into the melt as in the prior art, and dislocations formed in the grown crystal It is going to be the minimum. As the devitrification accelerator, an alkaline earth metal composed of barium, magnesium, strontium and beryllium is used. The concentration of the devitrification accelerator coated on the crucible surface is at least 0.10 mM / 1000 cm.2Is said to be necessary. If the concentration is low, the nuclei are too small to grow at a rate that exceeds melting by the melt. Thus, it is assumed that the nuclei melt before crystallization occurs, especially in large diameter crucibles with a high temperature melt at the crucible wall.
[0007]
In JP-A-8-2932, a crucible inner surface is crystallized at the time of use by forming a crystallization accelerator-containing coating film or a solid solution layer within a thickness of 1 mm on the inner surface of the quartz glass crucible. The amount of erosion of the inner wall is reduced, and the crucible can be used for a long time. As the crystallization accelerator, group 2a elements such as magnesium, strontium, calcium, barium, and group 3b elements such as aluminum are used.
[0008]
The vitreous quartz crucible is transparent. When a crystallized layer is formed on the surface, transparency is lost, that is, devitrification occurs. Therefore, the devitrification accelerator and the crystallization accelerator have the same concept. Hereinafter, it is referred to as “devitrification promoter”.
[0009]
In Japanese Patent Application Laid-Open No. 11-21196, when a silicon single crystal is produced from a silicon melt accommodated in a quartz crucible by the Czochralski method, CaO or BaO is added to the silicon melt to obtain a silicon single crystal. By growing CaO or BaO in the silicon melt, the inner surface of the quartz crucible is doped to promote crystallization of the quartz, and a uniform and fine crystal layer is formed, and the quartz crucible is deteriorated by the silicon melt. It is described that erosion and peeling can be suppressed.
[0010]
[Problems to be solved by the invention]
The diameter of silicon wafers for semiconductors has further increased, and 300 mm diameter wafers have begun to be shipped to the market. As the diameter of silicon wafers has increased, the diameter of quartz crucibles for pulling single crystals has also increased. In the case of pulling a single crystal having a conventional 150 mm or 200 mm diameter, the diameter of the quartz crucible was about 18 to 22 inches, but a quartz crucible of 26 to 32 inches has become mainstream for pulling a 300 mm diameter single crystal. When the diameter of the quartz crucible is 26 to 32 inches, the temperature of the quartz crucible during single crystal pulling is higher by several tens of degrees C. than when a conventional quartz crucible having an 18 to 22 inch diameter is used. . In addition, the demand for higher quality crystals has been increasingly spurred, and the crystal pulling speed has been reduced to some extent in order to produce defect-free crystals. Crystal growth takes a long time due to the lowering of the pulling speed, and coupled with the temperature rise of the quartz crucible, the load on the quartz crucible is remarkably increased.
[0011]
Under the above situation, in the case of 300 mm diameter single crystal pulling or low speed pulling, the occurrence of dislocation during single crystal pulling is sufficiently prevented despite the use of a devitrification accelerator on the inner surface of the quartz crucible. I can't do that.
[0012]
The present invention provides single crystal growth that can prevent the occurrence of dislocations in a single crystal even when a large-diameter quartz crucible is used for pulling a large-diameter single crystal and when pulling for a long time using a low-speed pull. An object of the present invention is to provide a quartz crucible for use.
[0013]
[Means for Solving the Problems]
When a devitrification accelerator such as barium is applied to the inner surface 2 of the quartz crucible 1 and polycrystalline silicon is charged into the quartz crucible and melted to pull up the single crystal, the inner surface of the quartz crucible in contact with the melt is applied. A crystallized devitrification layer is formed. FIG. 1 shows a cross-sectional micrograph of a quartz crucible after pulling a single crystal. It can be seen that a devitrification layer that can be clearly distinguished from the inner transparent layer is formed on the inner surface of the crucible. The devitrified layer grows and the thickness of the devitrified layer increases with time. The inventors divided the thickness of the devitrified layer observed on the inner surface of the quartz crucible after the completion of the pulling by the elapsed time from the dissolution to the end of the pulling, and defined this value as the devitrified layer growth rate.
[0014]
As a result of the study by the present inventors, the growth rate of the devitrification layer is affected by the concentration of the devitrification accelerator attached to or contained in the corresponding part of the quartz crucible, and further the influence of the temperature at the corresponding part of the quartz crucible during crystal growth. It became clear to receive. The higher the concentration of the devitrification accelerator, the higher the devitrification layer growth rate, and the higher the temperature, the higher the devitrification layer growth rate.
[0015]
Furthermore, it has been clarified that the devitrification layer growth rate has an appropriate range. If the growth rate of the devitrification layer is too slow, the effect of using the devitrification accelerator is not seen, and the island-like cristobalite generated on the inner surface of the quartz crucible is separated and becomes a foreign object as in the case where the devitrification accelerator is not used. Cause dislocations in the single crystal. On the other hand, if the growth rate of the devitrified layer is too high, a large amount of crystallized silica is released as a foreign substance from the devitrified layer into the solution, causing dislocation generation of the single crystal.
[0016]
It was revealed that the growth rate of the devitrification layer differs depending on the location of the quartz crucible when the single crystal pulling is performed after the devitrification accelerator is uniformly applied to the inner surface of the quartz crucible. As shown in FIG. 2, the quartz crucible 1 can be divided into a side wall portion 3, a corner portion 4, and a bottom portion 5 in the cross section. The devitrification layer growth rate at the corner portion 4 is the fastest, the devitrification layer growth rate at the bottom portion 5 is the slowest, and the side wall portion 3 is intermediate between the two. Further, the devitrification layer growth rate increases as the diameter of the quartz crucible increases, and the devitrification layer growth rate of the corner portion 4 and the side wall portion 3 in the large-diameter crucible is particularly large. In a large-diameter crucible, both the devitrification layer growth rate of the corner portion 4 and the devitrification layer growth rate of the bottom portion 5 cannot fall within the above-mentioned appropriate range, and this prevents the occurrence of single crystal dislocations in the large-diameter crucible. Was found to be the cause of the failure.
[0017]
The temperature of the quartz crucible during single crystal growth can be clarified by performing heat transfer calculations, and it has been found that the temperature varies depending on the quartz crucible region. During single crystal growth, the temperature at the bottom 5 is the lowest, the temperature at the corner 4 is the highest, and the side wall 3 is at an intermediate temperature. It has also been found that the quartz crucible temperature increases as the diameter of the quartz crucible increases.
[0018]
Based on the above knowledge, the concentration of the devitrification layer accelerator adhering to or contained in the inner surface 2 of the quartz crucible 1 is not made uniform in each part of the crucible, but is made different depending on the part of the inner surface 2 of the crucible, and the single crystal is pulled up. The devitrification layer growth rate can be kept within the appropriate range at any part of the inner surface of the quartz crucible by decreasing the concentration at the part where the temperature is high and increasing the concentration at the part where the temperature is not high. As a result, the generation of dislocations in single crystal growth was greatly reduced.
[0019]
  This invention is made | formed based on the above knowledge, and the place made into the summary is as follows.
(1) A single crystal growth quartz crucible 1 having a devitrification accelerator adhering layer or a devitrification accelerator-containing layer on the inner surface 2 of the crucible, wherein the concentration of the devitrification accelerator adhering to or contained is determined according to the inner surface of the crucible. Different depending on the part ofOf the inner surface of the crucible where the temperature during single crystal growth is low or the devitrification layer growth rate is low, the concentration of the devitrification promoter is high, the temperature during single crystal growth is high, or the devitrification layer growth rate is Higher than the concentration of devitrification promoter in the faster partA quartz crucible for growing a single crystal characterized by
Here, the devitrification layer growth rate is a value obtained by dividing the thickness of the devitrification layer observed on the inner surface of the quartz crucible after the completion of the pulling by the elapsed time from the dissolution to the end of the pulling. The same applies hereinafter.
(2)A quartz crucible 1 for single crystal growth having a devitrification accelerator adhering layer or a devitrification accelerator-containing layer on the inner surface 2 of the crucible, wherein the concentration of the devitrification accelerator adhering or contained depends on the site of the inner surface of the crucible. Make it different,Of the crucible inner surface 2, the concentration of the devitrification accelerator on the inner surface of the bottom portion 5 is higher than the concentration of the devitrification accelerator on the inner surfaces of the side wall portion 3 and the corner portion 4.DoQuartz crucible for single crystal growth.
(3) The concentration of the devitrification accelerator on the inner surface 2 of the crucible is such that when the quartz crucible 1 is used for silicon single crystal growth by the Czochralski method, the growth rate of the devitrification layer on the inner surface 2 of the crucible is 0.6 μm / (1), characterized in that it is formed to be not more than hr.Or (2)A quartz crucible for single crystal growth as described in 1.
(4) The concentration of the devitrification accelerator on the high concentration side is a concentration that is at least twice the concentration of the devitrification accelerator on the low concentration side.3The quartz crucible for single crystal growth according to any one of the above.
(5)Devitrification accelerator(1) to (1), characterized by using a 2a group element consisting of one or more of barium, magnesium, calcium, strontium, and beryllium, a 3b group element containing aluminum, or a compound thereof.4The quartz crucible for single crystal growth according to any one of the above.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 shows a cross section of the quartz crucible 1. The shape of the quartz crucible 1 is formed from a side wall part 3, a corner part 4, and a bottom part 5. The melt surface when the charged polycrystal is completely dissolved is the position of the initial melt surface 6 in the figure, and the melt surface when the single crystal pulling is finished is the final melt surface in the figure. 7 position.
[0021]
In silicon single crystal growth by the Czochralski method, quartz crucibles of 18, 22, and 28 inches with natural caliber as raw materials are used as quartz crucibles, and a devitrification accelerator containing barium has a concentration of 0 on the inner surface of the crucible. 44 mM / 1000 cm2Were applied uniformly and the growth rate of the devitrified layer was compared. Here, the concentration of the devitrification accelerator is the surface area of the inner surface of the crucible 1000 cm.2The element amount of the devitrification accelerator adhering to or contained in the hit is expressed in mM (mmol). FIG. 3 shows the results of comparing the devitrification layer growth rate for each quartz crucible of each diameter and for each part of the side wall portion 3, corner portion 4, and bottom portion 5 of the quartz crucible 1. It can be seen that the devitrification layer growth rate increases as the diameter of the quartz crucible increases. In addition, the devitrification layer growth rate at the bottom is the slowest in the quartz crucible of any diameter, and the devitrification layer growth rate in the corner is 18 inches in the quartz crucible of 22 inches and 28 inches. The growth rate of the devitrified layer on the side wall is the fastest. In particular, in a quartz crucible having a 28-inch diameter, a difference in the growth rate of the devitrified layer for each part appears remarkably.
[0022]
The temperature of each part of the quartz crucible during single crystal growth can be estimated by performing heat transfer calculation. FIG. 4 shows the result of heat transfer calculation for the temperature during crystal growth in each part of the quartz crucible when 18, 22, and 28-inch quartz crucibles are used. It is clear that the temperature of the quartz crucible is higher as the diameter is larger, and the temperature of the corner is the highest and the temperature of the bottom is the lowest by the quartz crucible part. By comparing FIG. 3 and FIG. 4, it is clear that the devitrification layer growth rate is strongly influenced by the temperature of the quartz crucible during single crystal growth, and the devitrification layer growth rate increases as the temperature increases.
[0023]
Next, we focused on the relationship between the growth rate of the devitrified layer and the occurrence of dislocations during single crystal pulling. A quartz crucible of various sizes from 18 inches to 28 inches in diameter was used as the quartz crucible, and a silicon single crystal ingot having a diameter of 300 mm was pulled up by a low speed pull of 0.5 mm / min. The barium concentration of the devitrification accelerator applied to the inner surface of the quartz crucible is 0.002 to 0.44 mM / 1000 cm.2In this range, the occurrence of dislocations in the pulling was investigated. The horizontal axis in FIG. 5 is the quartz crucible region, the vertical axis is the devitrification layer growth rate, and in the plot, ○ indicates that the single crystal pulling has been completed without causing dislocation, and ● indicates the dislocation during crystal pulling. Has occurred. As is clear from FIG. 5, it can be seen that dislocations are generated in the crystal when the devitrification layer growth rate exceeds 0.6 μm / hr regardless of the location in the quartz crucible. Dislocations are also generated in the crystal when the devitrification layer growth rate is zero.
[0024]
As described above, it is clear that when a silicon single crystal having a diameter of 300 mm is pulled at a low speed of 0.5 mm / min, the devitrification layer growth rate needs to be suppressed to 0.6 μm / hr or less. At the same time, when the growth rate of the devitrification layer is zero, the occurrence of dislocation cannot be suppressed as in the case where the devitrification accelerator is not used, and in reality, 0.05 μm / hr is considered if the surface coating uniformity is taken into consideration. The above is considered necessary. More preferably, the devitrification layer growth rate is 0.1 μm / min or more.
[0025]
On the other hand, when a silicon single crystal having a diameter of 200 mm or less is grown at a high pulling rate of more than 0.5 mm / min, the upper limit devitrification layer growth rate at which no dislocation occurs in the crystal is about 1.2 μm / hr. Thus, the appropriate range of the devitrification layer growth rate is expanded as compared with the case where the crystal having a diameter of 300 mm is pulled at a low speed.
[0026]
When dislocations occurred in the crystal during pulling in the single crystal growth with a devitrification layer growth rate exceeding 0.6 μm / hr, the remaining hot metal solidified in the quartz crucible after the pulling was investigated. It was found that many cristobalites (foreign matter in which silica was crystallized) having a length of about 20 μm as shown in the micrograph were observed. Although it is the same as the cristobalite foreign matter that causes dislocation in the pulling up without using the devitrification accelerator, the amount of the generated crystal is very large in the pulling up in which the devitrification layer growth rate exceeds the upper limit of the appropriate range. From this observation, it is clear that by growing a uniform crystal layer through the use of a devitrification accelerator, it is possible to prevent the growth and exfoliation of island-like cristobalite that is seen when the devitrification accelerator is not used. When the devitrification layer growth rate enters a region with a high growth rate that exceeds the appropriate range, many crystallized foreign substances are generated from the devitrified layer (crystal layer) that has grown, and these foreign substances float in the silicon melt. Thus, it is presumed that they are trapped at the crystal growth interface and cause dislocations.
[0027]
Next, a quartz crucible having a diameter of 28 inches is used, and a devitrification accelerator is added to the inner surface of the quartz crucible with a barium concentration of 0.009, 0.09, 0.44 mM / 1000 cm.2The film was uniformly coated on the surface and used for single crystal growth, and the devitrification layer growth rate was measured and compared from the observation of the quartz crucible after the single crystal growth. The results are shown in FIG. It is clear that the higher the concentration of the devitrification accelerator, the faster the devitrification layer growth rate, the devitrification layer growth rate varies depending on the quartz crucible site, the lower rate at the bottom and the higher rate at the corner. Here, devitrification accelerator concentration 0.44mM / 1000cm2In any part of the quartz crucible, the devitrification layer growth rate exceeds the appropriate range, and the devitrification accelerator concentration is 0.09 mM / 1000 cm.2Then, although an appropriate devitrification layer growth rate is achieved at the bottom, the devitrification layer growth rate exceeds the upper limit of the appropriate range at the corner and the side wall. For this reason, the devitrification accelerator concentration is 0.09, 0.44 mM / 1000 cm.2In either case, dislocation occurred in the crystal at the time when the contact point between the melt surface and the crucible surface was located on the side wall of the crucible in the initial stage of pulling. On the other hand, devitrification accelerator concentration 0.009mM / 1000cm2Then, although the devitrification layer growth rate is realized at the corner and the side wall, the devitrification layer does not grow at the bottom, so that the cristobalite crystallized locally as in the case where the devitrification accelerator is not applied. Foreign matter peeling occurred, and dislocations occurred in the crystal after the middle stage of crystal pulling.
[0028]
Therefore, the concentration of the devitrification accelerator adhering to (1) of the present invention varies depending on the site on the inner surface of the crucible, specifically, 0.009 mM at the side wall and corner of the inner surface of the quartz crucible. / 1000cm2Apply devitrification promoter at a concentration of 0.12 mM / 1000 cm at the bottom.2A devitrification accelerator was applied at a concentration of 5%, and when a 300 mm diameter silicon single crystal was pulled at a low speed of 0.5 mm / min or less using this quartz crucible, dislocation did not occur in the crystal, and the entire length was single crystal. Succeeded in raising as.
[0029]
When the concentration of the devitrification accelerator to be attached varies depending on the site on the inner surface of the crucible, the loss at the site where the temperature during single crystal growth is low and the growth rate of the devitrification layer is slow, as described in (2) of the present invention. By raising the concentration of the permeation accelerator higher than the concentration of the devitrification accelerator at the site where the temperature during single crystal growth is high and the devitrification layer growth rate is high, the single crystal is pulled up without causing dislocation. It becomes possible. The devitrification layer growth rate is relatively slow in the quartz crucible inner surface where the temperature during single crystal growth is low. Therefore, the devitrification layer growth rate can be increased by increasing the concentration of the devitrification accelerator. And the effect of preventing the occurrence of dislocation can be exhibited by attaching or containing a devitrification layer. Conversely, the portion of the inner surface of the quartz crucible where the temperature is high during single crystal growth has a relatively high devitrification layer growth rate, so devitrification can be achieved by lowering the concentration of the devitrification accelerator. The effect of preventing the occurrence of dislocation can be exhibited by slowing the layer growth rate so that the devitrification layer growth rate does not exceed the upper limit of the appropriate range.
[0030]
In normal silicon single crystal pulling, the temperature at the bottom of the inner surface of the crucible is relatively low, and the temperatures at the side walls and corners are relatively high. Therefore, as described in (3) of the present invention, By making the concentration of the permeation accelerator higher than the concentration of the devitrification accelerator on the inner surfaces of the sidewalls and corners, the devitrification layer growth rate can be kept within an appropriate range at any part of the inner surface of the crucible. Become.
[0031]
As described in the above (4) of the present invention, when a quartz crucible is used for silicon single crystal growth by the Czochralski method, the devitrification layer growth rate on the inner surface of the crucible is 0.6 μm / hr or less. If formed, it is possible to pull up the single crystal by preventing the occurrence of dislocations even under the pulling conditions where the prevention of dislocations is most difficult to prevent, that is, pulling up a 300 mm diameter silicon single crystal by slow pulling of 0.5 mm / min or less. . Of course, under this condition, even when pulling up a silicon single crystal having a diameter of 300 mm at a high speed of 0.5 mm / min or more, or pulling up a silicon single crystal having a diameter of 200 mm or less, the single crystal is pulled without causing dislocation. It is possible.
[0032]
Here, since the temperature during the crystal pulling is high for the side wall and the corner portion of the inner surface of the quartz crucible, if the concentration of the devitrification accelerator is too high, the growth rate of the devitrification layer becomes too high, and the devitrification layer ( Many crystallized foreign substances are generated from the crystal layer), and these foreign substances float with the silicon melt and are trapped at the crystal growth interface, causing dislocations. On the other hand, the bottom of the inner surface of the quartz crucible has a relatively low devitrification layer growth rate because the temperature during crystal pulling is low, while the bottom is covered with melt until the final stage of pulling. The contact time with the melt is long and the amount of erosion loss on the inner surface of the crucible is large. Therefore, if the concentration of the devitrification accelerator is too low, the devitrification layer is completely melted and lost by the end of the pulling, and the island-like cristobalite grows and peels as in the case where the devitrification accelerator is not applied. It can be estimated that dislocations will occur.
[0033]
When the concentration of the devitrification accelerator to be attached or contained differs depending on the site on the inner surface of the crucible, the concentration of each of the devitrification accelerator on the high concentration side and the low concentration side depends on the devitrification layer at any site on the inner surface of the crucible. What is necessary is just to determine so that a growth rate may fall in the appropriate range. In the silicon single crystal pulling by the normal Czochralski method, as described in the above (5) of the present invention, the concentration of the devitrification accelerator on the high concentration side is at least twice the concentration of the devitrification accelerator on the low concentration side. If each concentration is set so as to be the concentration, the devitrification layer growth rate on the inner surface of the crucible can be kept within an appropriate range at any part. More preferable results can be obtained if the ratio of the concentration of the devitrification accelerator on the high concentration side and the concentration of the devitrification accelerator on the low concentration side is 5 times or more.
[0034]
As the devitrification accelerator used in the present invention, a group 2a element composed of one or more of barium, magnesium, calcium, strontium, and beryllium, a group 3b element containing aluminum, or a compound thereof can be used.
[0035]
The devitrification accelerator is applied to and adhered to the inner surface of the quartz crucible, or the devitrification accelerator adhesion layer or the devitrification accelerator-containing layer is formed by forming a quartz layer containing the devitrification accelerator on the inner surface. Can be formed.
[0036]
As a method for applying the devitrification accelerator to the inner surface of the crucible, first, a devitrification accelerator solution such as an aqueous barium hydroxide solution adjusted to a plurality of concentrations is prepared. Next, a quartz crucible heated to about 200 to 300 ° C. is first sprayed with the devitrification accelerator solution having the thinnest concentration. Thereafter, the portion requiring the thinnest concentration is coated with a non-contaminating material manufactured with Teflon (R) or the like, and then a devitrification accelerator solution with another concentration is sprayed. The devitrification accelerator concentration of the coated part is maintained at the concentration of the devitrification accelerator applied first. For the uncoated part, the concentration of the devitrification accelerator applied first and the concentration of the devitrification accelerator applied next is the sum. Concentration. In this way, devitrification promoter adhesion layers having different concentrations can be formed for each part of the inner surface of the quartz crucible. Even when the adhesion concentration is separately applied to three or more conditions depending on the part, it can be formed by changing the covering part and performing the same method. It is possible to accurately adjust the devitrification accelerator concentration by repeating the above-described series of operations a plurality of times and repeating so-called overcoating. A method of adjusting the permeation accelerator concentration is practical in terms of cost.
[0037]
The adhesion amount of the devitrification accelerator solution when spraying the devitrification accelerator solution onto the inner surface of the quartz crucible can be controlled by the spraying time or the like. By adjusting the amount of the devitrification accelerator solution to be adhered per unit area of the quartz crucible inner surface and the concentration of the devitrification accelerator in the solution, the concentration of the devitrification accelerator adhering to the inner surface of the crucible is adjusted to the target concentration. can do.
[0038]
When manufacturing a quartz crucible, a mold that rotates in vacuum is prepared, and the shape of the inner surface of this mold forms the outer shape of a quartz crucible, and quartz mold is supplied to this mold to rotate the mold in vacuum. While heating by resistance heating, the quartz glass layer is formed by melting. In the present invention, when the devitrification accelerator-containing layer is formed on the inner surface of the crucible, quartz particles containing the devitrification accelerator are sprayed on the inner surface side of the quartz crucible during the production of the quartz crucible, Adjust the thickness to within 0.1 mm. At this time, the concentration of the devitrification accelerator contained in the sprayed quartz particles varies depending on the sprayed part, so that the concentration of the devitrification accelerator contained can be varied depending on the part of the inner surface of the crucible.
[0039]
【Example】
The present invention was applied when barium hydroxide was applied as a devitrification accelerator to the inner surface of a quartz crucible having a diameter of 28 inches made of natural quartz. In each of Example 1 and Example 2, two types of barium hydroxide aqueous solutions each having a concentration were prepared, and the first concentration barium hydroxide aqueous solution was sprayed onto a quartz crucible heated to about 200 to 300 ° C., and then in the crucible The crucible side walls and corners of the surface were covered with Teflon (R) and sprayed with a second concentration of barium hydroxide aqueous solution. An adhesion concentration corresponding to the concentration of the first concentration barium hydroxide aqueous solution is obtained at the side wall portion and the corner portion, and an adhesion concentration corresponding to the total concentration of the first and second concentration barium hydroxide aqueous solutions is obtained at the bottom portion. can get. The devitrification accelerator was applied by spraying the crucible while spraying. As a result, the barium hydroxide concentration at each site on the inner surface of the quartz crucible of each of Example 1 and Example 2 could be adjusted to the concentrations shown in Table 1.
[0040]
As described above, using a 28-inch quartz crucible to which a devitrification accelerator is attached, 170 kg of polycrystalline silicon is charged, dissolved in an Ar gas atmosphere at a vacuum of 20 mb, and then the seed crystal is brought into contact with the silicon solution. Through a dash and cone process, a crystal having a cylindrical portion with a diameter of 300 mm and a length of 700 mm was pulled at a pulling rate of 0.5 mm / min. As a result, dislocation did not occur in both Example 1 and Example 2, and the single crystal ingot was successfully pulled up. As a result of observing the quartz crucible after the completion of the pulling, the devitrification layer growth rate of each part for each example was as shown in Table 1, and the devitrification layer growth rate was within the appropriate range.
[0041]
[Table 1]
Figure 0004004783
[0042]
The silicon single crystal that had been pulled up was processed to produce a silicon wafer, and various quality evaluations were performed. As a result, the generation of oxidation-induced stacking faults (OSF) in the wafer was not observed, and the oxygen concentration and impurity concentration of the wafer were the same as those of a crystal pulled up by a quartz crucible without using a devitrification accelerator.
[0043]
When pulling up a similar silicon single crystal using a quartz crucible with a devitrification accelerator attached as in the above example, the single crystal ingot pulled up to that point was redissolved during the pulling and the single crystal was pulled up again. . The pulling speed was 0.5 mm / min. Since remelting was performed in the middle, the time required from the first melting to the completion of the single crystal pulling exceeded 120 hours, but the pulling could be completed with the single crystal without occurrence of dislocation.
[0044]
Conventionally, in pulling a silicon single crystal using a natural quartz crucible not coated with a devitrification accelerator, in order not to generate dislocation, the time required from the dissolution to the completion of the single crystal growth is limited to 60 hours. . Even when a devitrification accelerator is applied, if the devitrification layer is not formed on the inner surface of the crucible when it is uniformly applied to the inner surface of the quartz crucible, the required time is limited to 65 hours. It was. On the other hand, even in the same natural quartz crucible, it can be confirmed that the limit time required from the dissolution to the completion of single crystal growth is dramatically improved by varying the devitrification accelerator concentration depending on the inner surface of the crucible. It was.
[0045]
【The invention's effect】
The present invention relates to a quartz crucible for single crystal growth having a devitrification accelerator adhering layer or a devitrification accelerator-containing layer on the inner surface of the crucible, and the concentration of the devitrification accelerator adhering to or contained in the crucible inner surface By making it different depending on the part, it is possible to pull up as a full-length single crystal by preventing the occurrence of dislocation even in the case of a large diameter of 300 mm in diameter and low speed pulling as well as in the case of high diameter pulling up to 200 mm or less. Become.
[Brief description of the drawings]
FIG. 1 is a photomicrograph of a cross section near the inner surface of a quartz crucible after completion of pulling, and shows the state of formation of a devitrification layer.
FIG. 2 is a view showing a cross section of a quartz crucible.
FIG. 3 is a diagram showing the growth rate of a devitrified layer by crucible diameter and by crucible site when a devitrification accelerator is uniformly applied to the inner surface of a quartz crucible.
FIG. 4 is a diagram showing the temperature of a quartz crucible during pulling obtained by heat transfer calculation, by crucible diameter and by crucible part.
FIG. 5 is a diagram showing the relationship between the growth rate of a devitrification layer and the presence or absence of dislocation generation in a single crystal for each crucible region.
FIG. 6 is a photomicrograph showing crystallized foreign matters seen in the residual silicon hot water after completion of the pulling when the devitrification layer growth rate exceeds 0.6 μm / hr.
FIG. 7 is a graph showing the relationship between the devitrification accelerator application concentration, the quartz crucible site, and the devitrification layer growth rate when the devitrification accelerator is uniformly applied to a quartz crucible having a diameter of 28 inches.
[Explanation of symbols]
1 Quartz crucible
2 Inner surface
3 Side wall
4 Corner
5 Bottom
6 Initial melt surface
7 Final melt surface

Claims (5)

ルツボの内表面に失透促進剤付着層または失透促進剤含有層を有する単結晶成長用石英ルツボであって、付着または含有する失透促進剤の濃度を、ルツボ内表面の部位によって異ならせてなり、ルツボ内表面のうち、単結晶成長中の温度が低く若しくは失透層成長速度が遅くなる部位の失透促進剤の濃度を、単結晶成長中の温度が高く若しくは失透層成長速度が速くなる部位の失透促進剤の濃度よりも高くしてなることを特徴とする単結晶成長用石英ルツボ。
ここで、失透層成長速度とは、引き上げ終了後の石英ルツボ内表面に観察される失透層の厚さを溶解から引き上げ終了までの経過時間で割った値である。以下同様である。
A quartz crucible for single crystal growth having a devitrification accelerator adhering layer or a devitrification accelerator-containing layer on the inner surface of the crucible, and the concentration of the devitrification accelerator adhering to or contained varies depending on the site of the inner surface of the crucible. In the crucible inner surface, the concentration of the devitrification accelerator in the part where the temperature during the single crystal growth is low or the devitrification layer growth rate is low, the temperature during the single crystal growth is high or the devitrification layer growth rate A quartz crucible for single crystal growth, characterized in that the concentration is higher than the concentration of the devitrification accelerator in the region where the speed becomes faster .
Here, the devitrification layer growth rate is a value obtained by dividing the thickness of the devitrification layer observed on the inner surface of the quartz crucible after the completion of the pulling by the elapsed time from the dissolution to the end of the pulling. The same applies hereinafter.
ルツボの内表面に失透促進剤付着層または失透促進剤含有層を有する単結晶成長用石英ルツボであって、付着または含有する失透促進剤の濃度を、ルツボ内表面の部位によって異ならせてなり、ルツボ内表面のうち、底部内表面の失透促進剤の濃度を、側壁部およびコーナー部内表面の失透促進剤の濃度よりも高くしてなることを特徴とする単結晶成長用石英ルツボ。 A quartz crucible for single crystal growth having a devitrification accelerator adhering layer or a devitrification accelerator-containing layer on the inner surface of the crucible, and the concentration of the devitrification accelerator adhering to or contained varies depending on the site of the inner surface of the crucible. Te becomes, of the inner surface of the crucible, the concentration of the devitrification promoter on the bottom inside surface of the side wall portions and single crystal growth for quartz and characterized by being higher than the concentration of devitrification promoter of the corner portion surface Crucible. ルツボ内表面における前記失透促進剤の濃度は、当該石英ルツボをチョクラルスキー法によるシリコン単結晶成長に使用した場合において、ルツボ内表面の失透層成長速度が0.6μm/hr以下となるように形成されてなることを特徴とする請求項1又は2に記載の単結晶成長用石英ルツボ。When the quartz crucible is used for silicon single crystal growth by the Czochralski method, the devitrification layer growth rate on the inner surface of the crucible is 0.6 μm / hr or less. The quartz crucible for single crystal growth according to claim 1 or 2 , wherein the quartz crucible is formed as described above. 高濃度側の前記失透促進剤の濃度は、低濃度側の失透促進剤濃度の2倍以上の濃度であることを特徴とする請求項1乃至のいずれかに記載の単結晶成長用石英ルツボ。The concentration of the devitrification accelerator on the high concentration side is at least twice the concentration of the devitrification accelerator on the low concentration side, for single crystal growth according to any one of claims 1 to 3 . Quartz crucible. 失透促進剤として、バリウム、マグネシウム、カルシウム、ストロンチウム、ベリリウムのうちの1又は2以上からなる2a族元素、アルミニウムを含む3b族元素もしくはこれらの化合物を用いてなることを特徴とする請求項1乃至のいずれかに記載の単結晶成長用石英ルツボ。 2. A devitrification accelerator comprising a group 2a element composed of one or more of barium, magnesium, calcium, strontium, and beryllium, a group 3b element including aluminum, or a compound thereof. A quartz crucible for growing a single crystal according to any one of claims 1 to 4 .
JP2001359111A 2001-11-26 2001-11-26 Quartz crucible for single crystal growth Expired - Fee Related JP4004783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001359111A JP4004783B2 (en) 2001-11-26 2001-11-26 Quartz crucible for single crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001359111A JP4004783B2 (en) 2001-11-26 2001-11-26 Quartz crucible for single crystal growth

Publications (2)

Publication Number Publication Date
JP2003160393A JP2003160393A (en) 2003-06-03
JP4004783B2 true JP4004783B2 (en) 2007-11-07

Family

ID=19170177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001359111A Expired - Fee Related JP4004783B2 (en) 2001-11-26 2001-11-26 Quartz crucible for single crystal growth

Country Status (1)

Country Link
JP (1) JP4004783B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5509189B2 (en) 2011-12-26 2014-06-04 ジルトロニック アクチエンゲゼルシャフト Method for producing single crystal silicon
JP5509188B2 (en) * 2011-12-26 2014-06-04 ジルトロニック アクチエンゲゼルシャフト Method for producing single crystal silicon
JP5773496B2 (en) * 2012-03-30 2015-09-02 コバレントマテリアル株式会社 Quartz glass crucible
JP6773121B2 (en) 2016-09-23 2020-10-21 株式会社Sumco Quartz glass crucible and its manufacturing method and silicon single crystal manufacturing method using quartz glass crucible
JP6743753B2 (en) * 2017-04-27 2020-08-19 株式会社Sumco Silicon single crystal pulling method
SG11201910063VA (en) 2017-05-02 2019-11-28 Sumco Corp Quartz glass crucible and manufacturing method thereof
JP7074180B2 (en) 2018-02-23 2022-05-24 株式会社Sumco Quartz glass crucible and method for manufacturing silicon single crystal using it
CN114981489B (en) 2020-01-10 2024-01-02 胜高股份有限公司 Quartz glass crucible
JP2022180696A (en) * 2021-05-25 2022-12-07 株式会社Sumco Silica glass crucible, its manufacturing method, and silicon single crystal manufacturing method
JP7694149B2 (en) * 2021-05-25 2025-06-18 株式会社Sumco Quartz glass crucible and its manufacturing method, and silicon single crystal manufacturing method

Also Published As

Publication number Publication date
JP2003160393A (en) 2003-06-03

Similar Documents

Publication Publication Date Title
US6641663B2 (en) Silica crucible with inner layer crystallizer and method
KR100408906B1 (en) Methods for improving zero dislocation yield of single crystals
JPH09110590A (en) Surface-treated crucible for improved dislocation-free performance
JP2009298693A (en) Melting pot with silicon protective layer, method for applying the layer and the use thereof
JP4004783B2 (en) Quartz crucible for single crystal growth
US20100162947A1 (en) Silica glass crucible for pulling up silicon single crystal and method for manufacturing thereof
US6946030B2 (en) Method for the production of a silica glass crucible with crystalline regions from a porous silica glass green body
JP7024700B2 (en) Quartz glass crucible
JPH03261693A (en) Single crystal manufacturing method
JP4726138B2 (en) Quartz glass crucible
JP3016126B2 (en) Single crystal pulling method
JPH09208364A (en) Production of silicon single crystal
TWI659933B (en) Quartz glass crucible for single crystal silicon pulling and manufacturing method thereof
WO2000052235A1 (en) Method for producing silicon single crystal
JP4798714B2 (en) Silica glass crucible for pulling silicon single crystals
JPH01148783A (en) Quartz crucible for pulling up single crystal
WO2002014587A1 (en) Quartz crucible and method for producing single crystal using the same
JP4144060B2 (en) Method for growing silicon single crystal
JPH1149597A (en) Quartz crucible for pulling silicon single crystal
WO2012147231A1 (en) Method for coating quartz crucible for growing silicon crystal, and quartz crucible for growing silicon crystal
JPH11199370A (en) Quartz glass crucible and its production
JP4641760B2 (en) Silica glass crucible for pulling silicon single crystals
JP4931106B2 (en) Silica glass crucible
JP7400835B2 (en) Quartz glass crucible and its manufacturing method
WO2024043030A1 (en) Quartz glass crucible for single-crystal silicon pulling and method for producing single-crystal silicon using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees