[go: up one dir, main page]

JP4034042B2 - Shield processing structure of multi-core shielded wire - Google Patents

Shield processing structure of multi-core shielded wire Download PDF

Info

Publication number
JP4034042B2
JP4034042B2 JP2001128223A JP2001128223A JP4034042B2 JP 4034042 B2 JP4034042 B2 JP 4034042B2 JP 2001128223 A JP2001128223 A JP 2001128223A JP 2001128223 A JP2001128223 A JP 2001128223A JP 4034042 B2 JP4034042 B2 JP 4034042B2
Authority
JP
Japan
Prior art keywords
wire
electric wire
shielded electric
core
core shielded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001128223A
Other languages
Japanese (ja)
Other versions
JP2002325326A (en
Inventor
哲郎 井出
晃 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2001128223A priority Critical patent/JP4034042B2/en
Priority to US10/128,580 priority patent/US6657126B2/en
Priority to DE10218398A priority patent/DE10218398B4/en
Publication of JP2002325326A publication Critical patent/JP2002325326A/en
Application granted granted Critical
Publication of JP4034042B2 publication Critical patent/JP4034042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Terminals (AREA)
  • Cable Accessories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多芯シールド電線のシールド被覆部材と接地線とを接続する多芯シールド電線のシールド処理構造に関する。
【0002】
【従来の技術】
本出願人は、多芯シールド電線のシールド処理構造及び方法として、多芯シールド電線のシールド被覆部材を一対の樹脂部材を利用して接地線の導電線に超音波ホーンを用いて電気的に接続するものを提案した。以下、このシールド処理構造及び方法を説明する。
【0003】
図7に示すように、多芯シールド電線100は、芯線100aが絶縁内皮100bで覆われた複数のシールド芯線100cと、ドレーン線100dと、このドレーン線100d及び複数のシールド芯線100cの外周を覆う導電体の金属箔被覆部材100eと、この金属箔被覆部材100eのさらに外周を被う絶縁外皮100fとから構成されている。一対の樹脂部材101,102は、互いの接合面101a,102a同士を突き合わせた状態で多芯シールド電線100の外形断面形状に対応する孔が形成される凹部101b,102bをそれぞれ有する。又、超音波ホーン105は、下側支持台105aと、この真上に配置された超音波ホーン本体15bとから構成されている。
【0004】
次に、シールド処理手順を説明する。下方の樹脂部材102を超音波ホーン105の下側支持台105aに設置し、その上から多芯シールド電線100を載置し、その上に接地線103の一端側を載置し、更にその上から上方の樹脂部材101を被せる。このようにして一対の樹脂部材101,102の各凹部101b,102b内に多芯シールド電線100を配置し、且つ、この多芯シールド電線100と上方の樹脂部材101との間に接地線103の一端側を介在させる。
【0005】
この状態で一対の樹脂部材101,102間に圧縮力を作用させつつ超音波ホーン105で加振する。すると、多芯シールド電線100の絶縁外皮100fと接地線103の絶縁外皮103bが振動エネルギーによる発熱によって溶融飛散され、接地線103の導電線(図示せず)と多芯シールド電線100の金属箔被覆部材100eとが電気的に接触される。又、一対の樹脂部材101,102の接合面101a,102aの各接触部分や、一対の樹脂部材101,102の凹部101b,102bの内周面と多芯シールド電線100の絶縁外皮100fとの接触部分や、接地線103の絶縁樹脂103bと一対の樹脂部材101,102との接触部分が振動エネルギーによる発熱によって溶融し、この溶融された部分が超音波加振終了後に固化されることによって一対の樹脂部材101,102、多芯シールド電線100及び接地線103がそれぞれ互いに固定される。
【0006】
このシールド処理構造及び方法によれば、多芯シールド電線100や接地線103の絶縁外皮100f,103bの皮剥きを行う必要がなく、下方の樹脂部材102、多芯シールド電線100、接地線103、上方の樹脂部材101の順に組み付けて超音波加振を行えば良いので、工程数が少なく、且つ、複雑な手作業もなく、そのため自動化も可能なものである。
【0007】
【発明が解決しようとする課題】
しかしながら、上記超音波ホーン本体105bが発する超音波振動は、上方の樹脂部材101を介して多芯シールド電線100に伝達される。そして、この振動と発熱によって多芯シールド電線100の構成部品の内で強度的に弱い部品である金属箔被覆部材100eが破れたり、切れたりしてしまい、接地線103の導電線(図示せず)との適切な接触状態が得られないという問題がある。又、金属箔被覆部材100eが破れたり、切れたりすると、多芯シールド電線100の強度がそれだけ弱くなる。
【0008】
そこで、本発明は、前記した課題を解決すべくなされたものであり、接地線とシールド被覆部材との電気的接触を確実に得ることにより電気性能の向上を図ることができ、且つ、電線強度の低下が発生しない多芯シールド電線のシールド処理構造を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1の発明は、芯線が絶縁内皮で覆われた複数のシールド芯線とこの複数のシールド芯線の外周を覆う導電体の金属箔被覆部材とこの金属箔被覆部材のさらに外周を被う絶縁外皮とを有する多芯シールド電線と、互いの接合面同士を突き合わせた状態で前記多芯シールド電線の外形断面形状にほぼ対応する孔が形成される凹部をそれぞれ有する一対の樹脂部材と、接地線とを備え、
前記一対の樹脂部材間に前記多芯シールド電線を挟み、前記各凹部内に前記多芯シールド電線を配置し、且つ、前記多芯シールド電線と前記樹脂部材との間に前記接地線の一端側を介在させ、この状態で一対の樹脂部材間に圧縮力を作用させつつ超音波ホーンで超音波加振し、少なくとも前記絶縁外皮を溶融飛散されて前記接地線の導電線と前記金属箔被覆部材との接触部分が形成された多芯シールド電線のシールド処理構造であって、前記超音波ホーンの超音波を発生する超音波ホーン本体に接触する前記樹脂部材の接合面側に、前記樹脂部材の中央部で、前記金属箔被覆部材と前記接地線とが電気的に接触される箇所に対応する位置にくぼみ部を設けたことを特徴とする。
【0010】
この多芯シールド電線のシールド処理構造では、超音波ホーン本体の発する振動は、これに接触する樹脂部材を介して多芯シールド電線に伝達されるが、超音波ホーン本体とこれに接触する樹脂部材とはくぼみ部によって少ない面積でしか接触していないことから樹脂部材を介して多芯シールド電線のシールド被覆部材に加えられる振動が低減され、シールド被覆部材が超音波の振動と発熱によって破れたり、切れたりすることがない。
【0014】
また、この多芯シールド電線のシールド処理構造では、超音波ホーン本体から樹脂部材を介してシールド被覆部材と接地線との電気的接触箇所に最短距離で加えられる振動が作用しない。
【0015】
請求項2の発明は、芯線が絶縁内皮で覆われた複数のシールド芯線とこの複数のシールド芯線の外周を覆う導電体の金属箔被覆部材とこの金属箔被覆部材のさらに外周を被う絶縁外皮とを有する多芯シールド電線と、互いの接合面同士を突き合わせた状態で前記多芯シールド電線の外形断面形状にほぼ対応する孔が形成される凹部をそれぞれ有する一対の樹脂部材と、接地線とを備え、前記一対の樹脂部材間に前記多芯シールド電線を挟み、前記各凹部内に前記多芯シールド電線を配置し、且つ、前記多芯シールド電線と前記樹脂部材との間に前記接地線の一端側を介在させ、この状態で一対の樹脂部材間に圧縮力を作用させつつ超音波ホーンで超音波加振し、少なくとも前記絶縁外皮を溶融飛散されて前記接地線の導電線と前記金属箔被覆部材との接触部分が形成された多芯シールド電線のシールド処理構造であって、前記超音波ホーンの超音波を発生する超音波ホーン本体の前記樹脂部材への接合面側に、前記樹脂部材の中央部に対応し、前記金属箔被覆部材と前記接地線とが電気的に接触される位置にくぼみ部を設けたことを特徴とする多芯シールド電線のシールド処理方法
【0016】
この多芯シールド電線のシールド処理構造では、くぼみ部を超音波ホーン本体の樹脂部材への接合面側に設けたので、請求項1と同等の効果が得られる。
【0017】
【発明の実施の形態】
以下、本発明の一実施形態を図面に基づいて説明する。
【0018】
図1〜図6は本発明の一実施形態を示し、図1(A)は多芯シールド電線1の断面図、図1(B)は展開された金属箔被覆部材6の拡大断面図、図2(A)は一対の樹脂部材10,11の斜視図、図2(B)は上方の樹脂部材10の上方から見た斜視図、図3は超音波加振に際して各部材の配置関係を示す断面図、図4は超音波加振する直前の各部材のセット状態を示す断面図、図5は超音波加振により得られたシールド処理構造を示す断面図、図6はシールド処理構造が付加された多芯シールド電線1の斜視図である。
【0019】
シールド処理構造は、多芯シールド電線1の金属箔被覆部材6を一対の樹脂部材10,11を利用して接地線13の導電線13aに超音波ホーン15を用いて電気的に接続するものであり、以下詳細に説明する。
【0020】
図1(A)に示すように、多芯シールド電線1は、芯線2が絶縁内皮3で覆われた2本のシールド芯線4と、ドレーン線5と、2本のシールド芯線4及びドレーン線5の外周を覆う導電体のシールド被覆部材である金属箔被覆部材6と、この金属箔被覆部材6のさらに外周を被う絶縁外皮7とから構成されている。絶縁内皮3及び絶縁外皮7は合成樹脂製の絶縁体にて形成され、芯線2,ドレーン線5は、アルミ箔部材6と同様に導電体にて形成されている。又、金属箔被覆部材6は、図1(B)に示すように、ポリエステルシート6aとこれの一面に接着された例えばアルミニュームの金属箔部6bとから構成されており、金属箔部6aが外周面となるように円筒状に配置される。金属箔部6bの厚みDは、50マイクロメータ以上の厚肉に設けられている。
【0021】
図2(A)に示すように、一対の樹脂部材10,11は、それぞれ合成樹脂製のブロックであり、互いの接合面同士10a,11aを突き合わせた状態で多芯シールド電線1の外形断面形状にほぼ対応する孔が形成される凹部10b、11bがそれぞれ形成されている。凹部10b,11bは、詳細には多芯シールド電線1の外形の半径を半径とする半円弧状の溝である。又、各樹脂部材10,11には、凹部10b,11bの左右で、且つ、その周縁に沿って連続的に凸部10c,11cがそれぞれ設けられている。そして、一対の樹脂部材10,11の各凸部10c,11cは、各接合面10a,1aの互いに対向する位置に設けられている。又、上方の樹脂部材10は、図2(B)等に示すように、下記する超音波ホーン本体15bが接触される接合面10d側にくぼみ部10eが設けられている。このくぼみ部10eは、金属箔被覆部材6と接地線13とが電気的に接触される箇所に対応する上方位置に設けられている。
【0022】
又、樹脂部材10,11の物性としては、絶縁外皮7等より溶融しにくく、アクリル系樹脂、ABS(アクリロニトリル−ブタジエン−スチレン共重合体)系樹脂、PC(ポリカーボネート)系樹脂、PE(ポリエチレン)系樹脂、PEI(ポリエーテルイミド)系樹脂、PBT(ポリブチレンテレフタレート)系樹脂等であり、一般に絶縁外皮7等で使用される塩化ビニル等に較べて硬質である。導電性及び導電安全性の点からは、上記に掲げた全ての樹脂に実用性が求められ、外観性及び絶縁性を含めて判断した場合には、特にPEI(ポリエーテルイミド)系樹脂、PBT(ポリブチレンテレフタレート)系樹脂が適する。
【0023】
接地線13は、図3に示すように、導電線13aとこの外周を覆う絶縁外皮13bとから構成されている。
【0024】
超音波ホーン15は、図3に示すように、下方に配置される樹脂部材11を位置決めできる下側支持台15aと、この下側支持台15aの真上に配置され、下方に押圧力を作用させながら超音波振動を印加できる超音波ホーン本体15bとから構成されている。超音波ホーン本体15bの下面が上方の樹脂部材10と接触される接合面16である。
【0025】
次に、シールド処理手順を説明する。図3に示すように、下方の樹脂部材11を超音波ホーン15の下側支持台15aに設置し、その上から多芯シールド電線1の端部付近を載置し、その上に接地線13の一端側を載置し、更にその上から上方の樹脂部材10を被せる。このようにして一対の樹脂部材10,11の各凹部10b,11b内に多芯シールド電線1を配置し、且つ、この多芯シールド電線1と上方の樹脂部材11との間に接地線13の一端側を介在させる。
【0026】
次に、図4に示すように、超音波ホーン本体15bを降下させて一対の樹脂部材10,11間に圧縮力を作用させつつ超音波ホーン15で加振する。すると、多芯シールド電線1の絶縁外皮7と接地線13の絶縁外皮13bが振動エネルギーの内部発熱によって溶融飛散され、接地線13の導電線13aと多芯シールド電線1の金属箔被覆部材6とが電気的に接触される(図5参照)。又、一対の樹脂部材10,11の接合面10a,11aの各接触部分や、一対の樹脂部材10,11の凹部10b,11bの内周面と多芯シールド電線1の絶縁外皮7との接触部分や、接地線13の絶縁樹脂13bと一対の樹脂部材10,11との接触部分が振動エネルギーの内部発熱によって溶融し、この溶融された部分が超音波加振終了後に固化されることによって一対の樹脂部材10,11、多芯シールド電線1及び接地線13がそれぞれ互いに固定される(図5及び図6参照)。
【0027】
このシールド処理構造によれば、多芯シールド電線1や接地線13の絶縁外皮7,13bの皮剥きを行う必要がなく、下方の樹脂部材11、多芯シールド電線1、接地線13、上方の樹脂部材10の順に組み付けて超音波加振を行えば良いので、工程数が少なく、且つ、複雑な手作業もなく、自動化も可能である。
【0028】
又、上記動作過程にあって、超音波ホーン本体15bの発する振動は、これに接触する樹脂部材10を介して多芯シールド電線1に伝達されるが、超音波ホーン本体15bとこれに接触する樹脂部材10とはくぼみ部10eによって少ない面積でしか接触していないことから樹脂部材10を介して多芯シールド電線1の金属箔被覆部材6に加えられる振動が低減され、金属箔被覆部材6が超音波の振動と発熱によって破れたり、切れたりすることがない。従って、接地線13と金属箔被覆部材6との電気的接触を確実に得ることが可能となり電気性能の向上を図ることができる。又、金属箔被覆部材6が超音波の振動と発熱によって破れたり、切れたりすることがないため、電線強度が低下する事態を防止できる。
【0029】
又、上記実施形態では、くぼみ部10eは、樹脂部材10の接合面10d側に設けたが、超音波ホーン本体15bの接合面16側に設けても良く、又、樹脂部材10と超音波ホーン本体15bとの双方の接続面10d,16側に設けても同様の作用・効果が得られる。
【0030】
又、上記実施形態では、くぼみ部10eは、金属箔被覆部材6と接地線13とが電気的に接触される箇所に対応する位置に設けられたので、超音波ホーン本体15bから樹脂部材10を介してシールド被覆部材1と接地線13との電気的接触箇所に最短距離で加えられる振動が作用しないため、シールド被覆部材6と接地線13との電気的接触箇所への振動を有効に低減できる。
【0031】
又、上記実施形態では、金属箔部6bの厚みDが50マイクロメータ以上の厚肉に設けられているので、多少大きな振動と発熱とが金属箔被覆部材6に作用しても金属箔被覆部材6が破れたり、切れたりすることがない。従って、上記実施形態では、上記した超音波振動の低減と相まって、接地線13と金属箔被覆部材6との電気的接触を確実に得ることが可能となり電気性能の更なる向上を図ることができ、又、電線強度が低下する事態を確実に防止できる。
【0032】
又、上記動作過程にあって、超音波加振を行う前は、一対の樹脂部材10,11同士が凸部10c,11cを介して密着されており、この状態で超音波加振が開始されるとこの振動エネルギーが凸部10c,11cに集中することから一対の樹脂部材10,11同士が互いの接合面10a,11a付近で十分に溶融して強固に密着され、このような一対の樹脂部材10,11の凸部10c,11cへの振動エネルギーの集中によって接地線13や多芯シールド電線1への振動エネルギーが低く抑えられ、多芯シールド電線1の外側に配置された絶縁外皮7や接地線13の絶縁外皮13bが溶融して接地線13と金属箔被覆部材6とが電気的に接続される程度の振動エネルギーが伝達されるにとどまる。従って、過剰な振動エネルギーの伝達によって多芯シールド電線1の絶縁内皮3が溶融によって破れたり、切れたりすることがない。以上より、一対の樹脂部材10,11間の接続を強固にでき、しかも、接地線13や金属箔箔被覆部材6が芯線2に接触することによるショートや多芯シールド電線1の強度劣化を防止できる。
【0033】
又、上記実施形態では、各樹脂部材10,11に設けられた凸部10c,11cは、凹部10b,11bの左右で、且つ、その周縁に沿って連続的に設けられているので、多芯シールド電線1の軸方向のどの位置でも凸部10c,11cに振動エネルギーが集中するため、多芯シールド電線1の軸方向について多芯シールド電線1への振動エネルギーを均一に低減できる。
【0034】
又、上記実施形態では、凸部10c,11cは、一対の樹脂部材10,11の双方で、且つ、各接合面10a,11aの互いに対向する位置に設けられているので、一対の樹脂部材10,11を同一形状にできるため、樹脂部材10,111の製造コストの低減や樹脂部材10,11の取扱いが容易になる等の利点がある。
【0035】
又、上記実施形態にあって、接地線13の導電線13aとして錫メッキ電線等の低融点金属メッキ線を用いれば、振動エネルギーによって低融点金属メッキ線が一部溶融して金属箔被覆部材6と接触するため、多芯シールド電線1の金属箔被覆部材6と接地線13の導電線13aとの接触箇所の信頼性が向上する。
【0036】
尚、前記実施形態によれば、一対の樹脂部材10,11の接合面10a,11aの双方に凸部10c,11cを設けたが、いずれか一方の樹脂部材10,11の接合面10a,11aにのみ設けても良い。
【0037】
尚、前記実施形態によれば、接地線13を樹脂部材10と多芯シールド電線1との間に配置する際に、絶縁外皮13bを剥ぎ取らない状態で配置したが、絶縁外皮13bを剥ぎ取ったものを配置するようにしても良い。
【0038】
尚、前記実施形態によれば、シールド被覆部材はアルミニュームなどの金属箔被覆部材6にて構成されているが、導電体の編組線にて構成しても良い。
【0039】
尚、前記実施形態によれば、多芯シールド電線1にはドレーン線5が設けられているが、ドレーン線5が設けられていないものでも良い。但し、前記実施形態のようにドレーン線5を有するものであれば、このドレーン線5をアース接続することによってもシールドできるため、シールド対策のバリエーションがその分増えるという利点がある。
【0040】
尚、前記実施形態によれば、多芯シールド電線1は、2本のシールド芯線4を有するものについて説明したが、3本以上のシールド芯線4を有するものでも同様に本発明が適用できることはもちろんである。
【0041】
【発明の効果】
以上説明したように、請求項1の発明によれば、超音波ホーン本体の発する振動は、これに
接触する樹脂部材を介して多芯シールド電線に伝達されるが、超音波ホーン本体とこれに接触する樹脂部材とはくぼみ部によって少ない面積でしか接触していないことから樹脂部材を介して多芯シールド電線のシールド被覆部材に加えられる振動が低減され、シールド被覆部材が超音波の振動と発熱によって破れたり、切れたりすることがない。従って、接地線とシールド被覆部材との電気的接触を確実に得ることが可能となり電気性能の向上を図ることができ、且つ、電線強度の低下が発生しない。
【0043】
また、超音波ホーン本体から樹脂部材を介してシールド被覆部材と接地線との電気的接触箇所に最短距離で加えられる振動が作用しないため、シールド被覆部材と接地線との電気的接触箇所への振動を有効に低減できる。
【0044】
請求項2の発明によれば、超音波ホーン本体の樹脂部材への接合面側にくぼみを設けたことにより、請求項1の発明と同等の効果が得られる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示し、(A)は多芯シールド電線の断面図、(B)は展開された金属箔被覆部材の拡大断面図である。
【図2】本発明の一実施形態を示し、(A)は一対の樹脂部材の斜視図、(B)は上方の樹脂部材の上方から見た斜視図である。
【図3】本発明の一実施形態を示し、超音波加振に際して各部材の配置関係を示す断面図である。
【図4】本発明の一実施形態を示し、超音波加振する直前の各部材のセット状態を示す断面図である。
【図5】本発明の一実施形態を示し、超音波加振により得られたシールド処理構造を示す断面図である。
【図6】本発明の一実施形態を示し、シールド処理構造が付加された多芯シールド電線の斜視図である。
【図7】従来例のシールド処理構造の断面図である。
【符号の説明】
1 多芯シールド電線
2 芯線
3 絶縁内皮
4 シールド芯線
5 ドレーン線
6 金属箔被覆部材(シールド被覆部材)
7 絶縁外皮
10,11 樹脂部材
10a,11a 接合面
10b,11b 凹部
10c,11c 凸部
10d 接合面
10e くぼみ部
13 接地線
13a 導電線
13b 絶縁外皮
15 超音波ホーン
15b 超音波ホーン本体
16 接合面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shield processing structure for a multi-core shielded electric wire for connecting a shield covering member of a multi-core shielded electric wire and a ground wire.
[0002]
[Prior art]
The present applicant, as a shield processing structure and method for a multi-core shielded wire, electrically connects a shield coating member of the multi-core shielded wire to a conductive wire of a ground wire using an ultrasonic horn using a pair of resin members. Suggested what to do. Hereinafter, the shield processing structure and method will be described.
[0003]
As shown in FIG. 7, the multi-core shielded electric wire 100 covers a plurality of shield core wires 100c in which a core wire 100a is covered with an insulating endothelium 100b, a drain wire 100d, and the outer periphery of the drain wire 100d and the plurality of shield core wires 100c. The metal foil covering member 100e is made of a conductor, and an insulating skin 100f covering the outer periphery of the metal foil covering member 100e. The pair of resin members 101 and 102 have recesses 101b and 102b in which holes corresponding to the outer cross-sectional shape of the multi-core shielded electric wire 100 are formed in a state where the joint surfaces 101a and 102a face each other. The ultrasonic horn 105 is composed of a lower support base 105a and an ultrasonic horn main body 15b disposed immediately above the ultrasonic support horn 105a.
[0004]
Next, the shield processing procedure will be described. The lower resin member 102 is placed on the lower support base 105a of the ultrasonic horn 105, the multi-core shielded electric wire 100 is placed thereon, the one end side of the ground wire 103 is placed thereon, and further thereon The upper resin member 101 is covered. In this way, the multi-core shielded electric wire 100 is disposed in the recesses 101b and 102b of the pair of resin members 101 and 102, and the ground wire 103 is interposed between the multi-core shielded electric wire 100 and the upper resin member 101. One end is interposed.
[0005]
In this state, the ultrasonic horn 105 is vibrated while applying a compressive force between the pair of resin members 101 and 102. Then, the insulation sheath 100f of the multi-core shielded electric wire 100 and the insulation sheath 103b of the ground wire 103 are melted and scattered by heat generated by vibration energy, and the conductive wire (not shown) of the ground wire 103 and the metal foil coating of the multi-core shield wire 100 The member 100e is electrically contacted. Further, the contact portions of the joint surfaces 101a and 102a of the pair of resin members 101 and 102, the inner peripheral surfaces of the recesses 101b and 102b of the pair of resin members 101 and 102, and the insulating outer skin 100f of the multicore shielded electric wire 100 are contacted. The contact portion between the insulating resin 103b of the grounding wire 103 and the pair of resin members 101 and 102 is melted by heat generated by vibration energy, and the melted portion is solidified after the ultrasonic vibration is finished. The resin members 101 and 102, the multi-core shielded electric wire 100, and the ground wire 103 are fixed to each other.
[0006]
According to this shield processing structure and method, there is no need to peel off the insulation sheaths 100f and 103b of the multi-core shielded electric wire 100 and the ground wire 103, and the lower resin member 102, the multi-core shielded electric wire 100, the ground wire 103, Since ultrasonic vibrations may be performed by assembling the upper resin member 101 in this order, the number of processes is small, and there is no complicated manual work, so that automation is possible.
[0007]
[Problems to be solved by the invention]
However, the ultrasonic vibration generated by the ultrasonic horn main body 105 b is transmitted to the multi-core shielded electric wire 100 via the upper resin member 101. The vibration and heat generation cause the metal foil covering member 100e, which is a weak component among the components of the multi-core shielded electric wire 100, to be broken or cut, and a conductive wire (not shown) of the ground wire 103 is not shown. There is a problem that an appropriate contact state cannot be obtained. Further, when the metal foil covering member 100e is torn or cut, the strength of the multi-core shielded electric wire 100 is reduced accordingly.
[0008]
Therefore, the present invention has been made to solve the above-described problems, and it is possible to improve the electrical performance by reliably obtaining electrical contact between the ground wire and the shield covering member, and the wire strength. It aims at providing the shield processing structure of the multi-core shielded electric wire which does not generate | occur | produce a fall.
[0009]
[Means for Solving the Problems]
According to a first aspect of the present invention, there are provided a plurality of shield core wires whose core wires are covered with insulating endothelium, a metal foil covering member of a conductor covering the outer periphery of the plurality of shield core wires, and an insulating outer sheath covering the outer periphery of the metal foil covering member. A pair of resin members each having a recess in which a hole substantially corresponding to the outer cross-sectional shape of the multi-core shielded electric wire is formed in a state where the joint surfaces of the multi-core shielded wires are butted together, and a grounding wire With
The multi-core shielded electric wire is sandwiched between the pair of resin members, the multi-core shielded electric wire is disposed in each of the recesses, and one end side of the ground wire is between the multi-core shielded electric wire and the resin member In this state, ultrasonic vibration is applied with an ultrasonic horn while applying a compressive force between the pair of resin members, and at least the insulating outer shell is melted and scattered, so that the conductive wire of the ground wire and the metal foil covering member And a contact processing side of the resin member that contacts an ultrasonic horn main body that generates ultrasonic waves of the ultrasonic horn. In the central portion, a recess portion is provided at a position corresponding to a location where the metal foil covering member and the ground wire are in electrical contact .
[0010]
In the shield processing structure of the multi-core shielded electric wire, the vibration generated by the ultrasonic horn main body is transmitted to the multi-core shielded electric wire via the resin member in contact with the ultrasonic horn main body. The vibration applied to the shield coating member of the multi-core shielded electric wire through the resin member is reduced because it is in contact with only a small area by the indented portion, and the shield coating member is broken by ultrasonic vibration and heat generation, It will not run out.
[0014]
Further, in the shield processing structure of the multi-core shielded electric wire, the vibration applied at the shortest distance does not act on the electrical contact portion between the shield covering member and the ground wire via the resin member from the ultrasonic horn body.
[0015]
According to a second aspect of the present invention, there are provided a plurality of shield core wires whose core wires are covered with an insulating endothelium, a metal foil covering member of a conductor covering the outer periphery of the plurality of shield core wires, and an insulating sheath covering the outer periphery of the metal foil covering member. A pair of resin members each having a recess in which a hole substantially corresponding to the outer cross-sectional shape of the multi-core shielded electric wire is formed in a state where the joint surfaces of the multi-core shielded wires are butted together, and a grounding wire The multi-core shielded electric wire is sandwiched between the pair of resin members, the multi-core shielded electric wire is disposed in each of the recesses, and the ground wire is disposed between the multi-core shielded electric wire and the resin member. In this state, ultrasonic vibration is applied with an ultrasonic horn while applying a compressive force between the pair of resin members, and at least the insulating outer shell is melted and scattered, so that the conductive wire of the grounding wire and the metal Foil coating A shielded structure of a multi-core shielded electric wire in which a contact portion with a material is formed, the ultrasonic horn main body that generates ultrasonic waves of the ultrasonic horn, on the bonding surface side to the resin member, A shield processing method for a multi-core shielded electric wire, wherein a hollow portion is provided at a position corresponding to a central portion where the metal foil covering member and the ground wire are in electrical contact.
[0016]
In the shield processing structure of the multi-core shielded electric wire, since the indented portion is provided on the surface of the ultrasonic horn main body that is joined to the resin member, the effect equivalent to that of the first aspect can be obtained.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0018]
1 to 6 show an embodiment of the present invention, FIG. 1 (A) is a cross-sectional view of a multi-core shielded electric wire 1, FIG. 1 (B) is an enlarged cross-sectional view of a developed metal foil covering member 6, and FIG. 2 (A) is a perspective view of the pair of resin members 10 and 11, FIG. 2 (B) is a perspective view of the upper resin member 10 as viewed from above, and FIG. 3 shows an arrangement relationship of the members during ultrasonic vibration. 4 is a cross-sectional view showing a set state of each member immediately before ultrasonic vibration, FIG. 5 is a cross-sectional view showing a shield processing structure obtained by ultrasonic vibration, and FIG. 6 is added with a shield processing structure. It is a perspective view of the made multi-core shielded electric wire 1.
[0019]
In the shield processing structure, the metal foil covering member 6 of the multi-core shielded electric wire 1 is electrically connected to the conductive wire 13a of the ground wire 13 using the ultrasonic horn 15 using the pair of resin members 10 and 11. There will be described in detail below.
[0020]
As shown in FIG. 1A, a multi-core shielded electric wire 1 includes two shield core wires 4 in which a core wire 2 is covered with an insulating endothelium 3, a drain wire 5, two shield core wires 4 and a drain wire 5. The metal foil covering member 6 is a conductor shield covering member that covers the outer periphery of the metal foil, and an insulating skin 7 that covers the outer periphery of the metal foil covering member 6. The insulating inner skin 3 and the insulating outer skin 7 are formed of an insulating material made of synthetic resin, and the core wire 2 and the drain wire 5 are formed of an electric conductor in the same manner as the aluminum foil member 6. Further, as shown in FIG. 1B, the metal foil covering member 6 is composed of a polyester sheet 6a and, for example, an aluminum metal foil portion 6b bonded to one surface of the polyester sheet 6a. It arrange | positions in a cylindrical shape so that it may become an outer peripheral surface. The metal foil 6b has a thickness D of 50 micrometers or more.
[0021]
As shown in FIG. 2A, the pair of resin members 10 and 11 are blocks made of synthetic resin, respectively, and the outer cross-sectional shape of the multi-core shielded electric wire 1 in a state where the joint surfaces 10a and 11a are abutted with each other. Recesses 10b and 11b are formed in which holes substantially corresponding to are formed. The recesses 10b and 11b are semicircular arc-shaped grooves whose radius is the outer radius of the multi-core shielded electric wire 1 in detail. The resin members 10 and 11 are respectively provided with convex portions 10c and 11c on the left and right sides of the concave portions 10b and 11b and continuously along the periphery thereof. And each convex part 10c, 11c of a pair of resin members 10 and 11 is provided in the position which each joint surface 10a, 1a opposes mutually. Further, as shown in FIG. 2B or the like, the upper resin member 10 is provided with a recessed portion 10e on the side of the joint surface 10d with which the ultrasonic horn main body 15b described below is brought into contact. The indented portion 10e is provided at an upper position corresponding to a location where the metal foil covering member 6 and the ground wire 13 are in electrical contact.
[0022]
Further, the physical properties of the resin members 10 and 11 are harder to melt than the insulating outer shell 7 and the like, and are acrylic resin, ABS (acrylonitrile-butadiene-styrene copolymer) resin, PC (polycarbonate) resin, PE (polyethylene). Resin, PEI (polyetherimide) resin, PBT (polybutylene terephthalate) resin, and the like, which are harder than vinyl chloride or the like generally used in the insulation sheath 7 or the like. From the viewpoint of electrical conductivity and electrical safety, practicality is required for all of the resins listed above, and in particular, when including appearance and insulation, PEI (polyetherimide) resin, PBT (Polybutylene terephthalate) resin is suitable.
[0023]
As shown in FIG. 3, the ground wire 13 is composed of a conductive wire 13a and an insulating sheath 13b covering the outer periphery.
[0024]
As shown in FIG. 3, the ultrasonic horn 15 is disposed directly above the lower support base 15a capable of positioning the resin member 11 disposed below, and exerts a pressing force downward. And an ultrasonic horn main body 15b to which ultrasonic vibration can be applied. The lower surface of the ultrasonic horn main body 15 b is a bonding surface 16 that comes into contact with the upper resin member 10.
[0025]
Next, the shield processing procedure will be described. As shown in FIG. 3, the lower resin member 11 is placed on the lower support 15 a of the ultrasonic horn 15, and the vicinity of the end of the multi-core shielded electric wire 1 is placed thereon, and the ground wire 13 is placed thereon. Is placed on one end side, and the upper resin member 10 is covered from above. In this way, the multi-core shielded electric wire 1 is disposed in the recesses 10b, 11b of the pair of resin members 10, 11, and the ground wire 13 is interposed between the multi-core shielded electric wire 1 and the upper resin member 11. One end is interposed.
[0026]
Next, as shown in FIG. 4, the ultrasonic horn body 15 b is lowered and the ultrasonic horn 15 is vibrated while applying a compressive force between the pair of resin members 10 and 11. Then, the insulation sheath 7 of the multi-core shielded wire 1 and the insulation sheath 13b of the ground wire 13 are melted and scattered by internal heat generation of vibration energy, and the conductive wire 13a of the ground wire 13 and the metal foil covering member 6 of the multi-core shield wire 1 Are electrically contacted (see FIG. 5). Further, the contact portions of the joint surfaces 10 a and 11 a of the pair of resin members 10 and 11, the inner peripheral surfaces of the recesses 10 b and 11 b of the pair of resin members 10 and 11, and the insulating sheath 7 of the multicore shielded electric wire 1. The contact portion between the insulating resin 13b of the grounding wire 13 and the pair of resin members 10 and 11 is melted by internal heat generation of vibration energy, and the melted portions are solidified after the ultrasonic vibration is finished. The resin members 10 and 11, the multi-core shielded electric wire 1 and the ground wire 13 are fixed to each other (see FIGS. 5 and 6).
[0027]
According to this shield processing structure, it is not necessary to peel off the insulation sheaths 7 and 13b of the multi-core shielded electric wire 1 and the ground wire 13, and the lower resin member 11, the multi-core shielded electric wire 1, the ground wire 13, and the upper Since the ultrasonic vibration may be performed by assembling the resin members 10 in this order, the number of processes is small, and there is no complicated manual work, and automation is possible.
[0028]
Further, in the above operation process, the vibration generated by the ultrasonic horn main body 15b is transmitted to the multi-core shielded electric wire 1 through the resin member 10 in contact with the ultrasonic horn main body 15b, but comes into contact with the ultrasonic horn main body 15b. Since the resin member 10 is in contact with the recessed portion 10e only in a small area, vibration applied to the metal foil covering member 6 of the multi-core shielded electric wire 1 through the resin member 10 is reduced, and the metal foil covering member 6 is It is not torn or cut by ultrasonic vibration and heat generation. Therefore, it is possible to reliably obtain electrical contact between the ground wire 13 and the metal foil covering member 6 and to improve electrical performance. In addition, since the metal foil covering member 6 is not torn or cut off due to ultrasonic vibration and heat generation, it is possible to prevent a situation in which the wire strength is reduced.
[0029]
Moreover, in the said embodiment, although the hollow part 10e was provided in the joint surface 10d side of the resin member 10, you may provide in the joint surface 16 side of the ultrasonic horn main body 15b, and the resin member 10 and ultrasonic horn. Even if it is provided on both the connection surfaces 10d, 16 side with the main body 15b, the same operation and effect can be obtained.
[0030]
Moreover, in the said embodiment, since the hollow part 10e was provided in the position corresponding to the location where the metal foil coating member 6 and the ground wire 13 are electrically contacted, the resin member 10 is removed from the ultrasonic horn main body 15b. Therefore, the vibration applied to the shield contact member 1 and the ground wire 13 at the shortest distance does not act, so that the vibration of the shield cover member 6 and the ground wire 13 to the electrical contact portion can be effectively reduced. .
[0031]
Moreover, in the said embodiment, since the thickness D of the metal foil part 6b is provided in thickness 50 micrometers or more, even if a somewhat big vibration and heat_generation | fever act on the metal foil coating member 6, a metal foil coating member 6 is not torn or cut. Therefore, in the above embodiment, coupled with the reduction of the ultrasonic vibration described above, it is possible to reliably obtain the electrical contact between the ground wire 13 and the metal foil covering member 6 and further improve the electrical performance. Moreover, it is possible to reliably prevent a situation where the wire strength is lowered.
[0032]
Further, in the above operation process, before the ultrasonic vibration is performed, the pair of resin members 10 and 11 are in close contact with each other via the convex portions 10c and 11c, and the ultrasonic vibration is started in this state. Then, since this vibration energy is concentrated on the convex portions 10c and 11c, the pair of resin members 10 and 11 are sufficiently melted and closely adhered to each other in the vicinity of the joint surfaces 10a and 11a. Due to the concentration of vibration energy on the convex portions 10c and 11c of the members 10 and 11, the vibration energy to the ground wire 13 and the multi-core shielded electric wire 1 is suppressed to a low level, and the insulation sheath 7 disposed outside the multi-core shielded electric wire 1 Only the vibration energy to the extent that the insulating sheath 13b of the ground wire 13 is melted and the ground wire 13 and the metal foil covering member 6 are electrically connected is transmitted. Therefore, the insulating endothelium 3 of the multi-core shielded electric wire 1 is not broken or cut by melting due to the transmission of excessive vibration energy. As described above, the connection between the pair of resin members 10 and 11 can be strengthened, and the short circuit and the strength deterioration of the multi-core shielded electric wire 1 due to the ground wire 13 or the metal foil foil covering member 6 coming into contact with the core wire 2 can be prevented. it can.
[0033]
Moreover, in the said embodiment, since the convex parts 10c and 11c provided in each resin member 10 and 11 are continuously provided in the right and left of the recessed parts 10b and 11b and along the periphery, it is multi-core. Since vibration energy concentrates on the convex portions 10c and 11c at any position in the axial direction of the shielded electric wire 1, vibration energy to the multi-core shielded electric wire 1 can be reduced uniformly in the axial direction of the multi-core shielded electric wire 1.
[0034]
Moreover, in the said embodiment, since the convex parts 10c and 11c are provided in the position where both joint surface 10a, 11a mutually opposes both of a pair of resin members 10 and 11, a pair of resin member 10 is provided. , 11 can have the same shape, there are advantages such as a reduction in manufacturing cost of the resin members 10, 111 and easy handling of the resin members 10, 11.
[0035]
Further, in the above embodiment, if a low melting point metal plating wire such as a tin plating electric wire is used as the conductive wire 13a of the grounding wire 13, the low melting point metal plating wire is partially melted by vibration energy, and the metal foil covering member 6 is used. Therefore, the reliability of the contact location between the metal foil covering member 6 of the multi-core shielded electric wire 1 and the conductive wire 13a of the ground wire 13 is improved.
[0036]
In addition, according to the said embodiment, although convex part 10c, 11c was provided in both joining surface 10a, 11a of a pair of resin members 10, 11, joining surface 10a, 11a of any one resin member 10,11 is provided. It may be provided only in
[0037]
In addition, according to the said embodiment, when arrange | positioning the grounding wire 13 between the resin member 10 and the multi-core shielded electric wire 1, it arrange | positioned in the state which does not peel off the insulation outer skin 13b, However, it peels off the insulation outer skin 13b. You may make it arrange a thing.
[0038]
In addition, according to the said embodiment, although the shield coating | coated member is comprised by the metal foil coating | coated members 6, such as aluminum, you may comprise by the braided wire of an electrically conductive material.
[0039]
In addition, according to the said embodiment, although the drain wire 5 is provided in the multi-core shielded electric wire 1, the thing in which the drain wire 5 is not provided may be sufficient. However, if the drain line 5 is provided as in the above-described embodiment, the drain line 5 can be shielded by being connected to the ground, so that there is an advantage that variations in shielding measures are increased accordingly.
[0040]
In addition, according to the said embodiment, although the multi-core shielded electric wire 1 demonstrated what has the two shield core wires 4, it cannot be overemphasized that this invention can be applied similarly to what has the three or more shield core wires 4. FIG. It is.
[0041]
【The invention's effect】
As described above, according to the invention of claim 1, the vibration generated by the ultrasonic horn main body is transmitted to the multi-core shielded electric wire via the resin member in contact with the ultrasonic horn main body. Since the contact with the resin member is only in a small area due to the recess, the vibration applied to the shield coating member of the multi-core shielded wire through the resin member is reduced, and the shield coating member generates ultrasonic vibration and heat generation. Will not tear or break. Therefore, it is possible to reliably obtain electrical contact between the ground wire and the shield covering member, and it is possible to improve the electrical performance, and the electric wire strength does not decrease.
[0043]
In addition, since the vibration applied at the shortest distance from the ultrasonic horn body through the resin member to the electrical contact location between the shield coating member and the ground wire does not act, the electrical contact location between the shield coating member and the ground wire is not affected. Vibration can be effectively reduced.
[0044]
According to the second aspect of the present invention, an effect equivalent to that of the first aspect of the invention can be obtained by providing the depression on the side of the joining surface of the ultrasonic horn body to the resin member.
[Brief description of the drawings]
FIG. 1 shows an embodiment of the present invention, in which (A) is a cross-sectional view of a multi-core shielded electric wire, and (B) is an enlarged cross-sectional view of a developed metal foil covering member.
2A and 2B show an embodiment of the present invention, in which FIG. 2A is a perspective view of a pair of resin members, and FIG. 2B is a perspective view of the upper resin member as viewed from above.
FIG. 3 is a cross-sectional view illustrating an embodiment of the present invention and illustrating an arrangement relationship of each member during ultrasonic vibration.
FIG. 4 is a cross-sectional view showing a set state of each member immediately before ultrasonic vibration according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a shield processing structure obtained by ultrasonic vibration according to an embodiment of the present invention.
FIG. 6 is a perspective view of a multi-core shielded electric wire to which a shield processing structure is added according to an embodiment of the present invention.
FIG. 7 is a cross-sectional view of a shield processing structure of a conventional example.
[Explanation of symbols]
1 Multi-core shielded wire 2 Core wire 3 Insulating endothelium 4 Shield core wire 5 Drain wire 6 Metal foil coating member (shield coating member)
7 Insulating skin 10, 11 Resin member 10a, 11a Joint surface 10b, 11b Recess 10c, 11c Convex portion 10d Joint surface 10e Recessed portion 13 Ground wire 13a Conductive wire 13b Insulating skin 15 Ultrasonic horn 15b Ultrasonic horn body 16 Joint surface

Claims (2)

芯線が絶縁内皮で覆われた複数のシールド芯線とこの複数のシールド芯線の外周を覆う導電体の金属箔被覆部材とこの金属箔被覆部材のさらに外周を被う絶縁外皮とを有する多芯シールド電線と、互いの接合面同士を突き合わせた状態で前記多芯シールド電線の外形断面形状にほぼ対応する孔が形成される凹部をそれぞれ有する一対の樹脂部材と、接地線とを備え、
前記一対の樹脂部材間に前記多芯シールド電線を挟み、前記各凹部内に前記多芯シールド電線を配置し、且つ、前記多芯シールド電線と前記樹脂部材との間に前記接地線の一端側を介在させ、この状態で一対の樹脂部材間に圧縮力を作用させつつ超音波ホーンで超音波加振し、少なくとも前記絶縁外皮を溶融飛散されて前記接地線の導電線と前記金属箔被覆部材との接触部分が形成された多芯シールド電線のシールド処理構造であって、
前記超音波ホーンの超音波を発生する超音波ホーン本体に接触する前記樹脂部材の接合面側に、前記樹脂部材の中央部で、前記金属箔被覆部材と前記接地線とが電気的に接触される箇所に対応する位置にくぼみ部を設けたことを特徴とする多芯シールド電線のシールド処理構造。
A multi-core shielded electric wire having a plurality of shield core wires whose core wires are covered with insulating endothelium, a metal foil covering member of a conductor covering the outer periphery of the plurality of shield core wires, and an insulating sheath covering the outer periphery of the metal foil covering member And a pair of resin members each having a recess in which a hole substantially corresponding to the outer cross-sectional shape of the multi-core shielded electric wire in a state in which the joint surfaces are butted together, and a grounding wire,
The multi-core shielded electric wire is sandwiched between the pair of resin members, the multi-core shielded electric wire is disposed in each of the recesses, and one end side of the ground wire is between the multi-core shielded electric wire and the resin member In this state, ultrasonic vibration is applied with an ultrasonic horn while applying a compressive force between the pair of resin members, and at least the insulating outer shell is melted and scattered, so that the conductive wire of the ground wire and the metal foil covering member A shield processing structure of a multi-core shielded wire in which a contact portion is formed,
The metal foil covering member and the ground wire are electrically contacted at the center of the resin member on the bonding surface side of the resin member that contacts the ultrasonic horn body that generates ultrasonic waves of the ultrasonic horn. A shield processing structure for a multi-core shielded electric wire, characterized in that a recess is provided at a position corresponding to the location of the multi-core shielded wire.
芯線が絶縁内皮で覆われた複数のシールド芯線とこの複数のシールド芯線の外周を覆う導電体の金属箔被覆部材とこの金属箔被覆部材のさらに外周を被う絶縁外皮とを有する多芯シールド電線と、互いの接合面同士を突き合わせた状態で前記多芯シールド電線の外形断面形状にほぼ対応する孔が形成される凹部をそれぞれ有する一対の樹脂部材と、接地線とを備え、
前記一対の樹脂部材間に前記多芯シールド電線を挟み、前記各凹部内に前記多芯シールド電線を配置し、且つ、前記多芯シールド電線と前記樹脂部材との間に前記接地線の一端側を介在させ、この状態で一対の樹脂部材間に圧縮力を作用させつつ超音波ホーンで超音波加振し、少なくとも前記絶縁外皮を溶融飛散されて前記接地線の導電線と前記金属箔被覆部材との接触部分が形成された多芯シールド電線のシールド処理構造であって、
前記超音波ホーンの超音波を発生する超音波ホーン本体の前記樹脂部材への接合面側に、前記樹脂部材の中央部に対応し、前記金属箔被覆部材と前記接地線とが電気的に接触される位置にくぼみ部を設けたことを特徴とする多芯シールド電線のシールド処理方法
A multi-core shielded electric wire having a plurality of shield core wires whose core wires are covered with insulating endothelium, a metal foil covering member of a conductor covering the outer periphery of the plurality of shield core wires, and an insulating sheath covering the outer periphery of the metal foil covering member And a pair of resin members each having a recess in which a hole substantially corresponding to the outer cross-sectional shape of the multi-core shielded electric wire in a state in which the joint surfaces are butted together, and a grounding wire,
The multi-core shielded electric wire is sandwiched between the pair of resin members, the multi-core shielded electric wire is disposed in each of the recesses, and one end side of the ground wire is between the multi-core shielded electric wire and the resin member In this state, ultrasonic vibration is applied with an ultrasonic horn while applying a compressive force between the pair of resin members, and at least the insulating outer shell is melted and scattered, so that the conductive wire of the ground wire and the metal foil covering member A shield processing structure of a multi-core shielded wire in which a contact portion is formed,
Corresponding to the center of the resin member on the side of the ultrasonic horn main body that generates ultrasonic waves of the ultrasonic horn, corresponding to the center of the resin member, the metal foil covering member and the ground wire are in electrical contact A method for shielding a multi-core shielded electric wire, wherein a recessed portion is provided at a position to be shielded.
JP2001128223A 2001-04-25 2001-04-25 Shield processing structure of multi-core shielded wire Expired - Fee Related JP4034042B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001128223A JP4034042B2 (en) 2001-04-25 2001-04-25 Shield processing structure of multi-core shielded wire
US10/128,580 US6657126B2 (en) 2001-04-25 2002-04-24 Wire branch processing for shielded wire
DE10218398A DE10218398B4 (en) 2001-04-25 2002-04-24 Method of making a branch connection on a shielded conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128223A JP4034042B2 (en) 2001-04-25 2001-04-25 Shield processing structure of multi-core shielded wire

Publications (2)

Publication Number Publication Date
JP2002325326A JP2002325326A (en) 2002-11-08
JP4034042B2 true JP4034042B2 (en) 2008-01-16

Family

ID=18976959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128223A Expired - Fee Related JP4034042B2 (en) 2001-04-25 2001-04-25 Shield processing structure of multi-core shielded wire

Country Status (1)

Country Link
JP (1) JP4034042B2 (en)

Also Published As

Publication number Publication date
JP2002325326A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP3946457B2 (en) Flat shielded wire shield processing structure
US6657126B2 (en) Wire branch processing for shielded wire
JP3472699B2 (en) Connection method of insulated wire
US6831230B2 (en) Shield processing structure for flat shielded cable and method of shield processing thereof
JP3435052B2 (en) Insulated wire connection structure
JPH11250952A (en) Insulated wire connection structure
US20020062979A1 (en) Flat shield harness and method for manufacturing the same
JPH09320652A (en) Insulated wire joint structure
JP4021157B2 (en) Shield processing method for multi-core shielded wire
JP3131384B2 (en) Insulated wire joint structure
JP3435036B2 (en) Connection structure and processing method of shielded electric wire
JPH1174004A (en) Connection structure and processing method of shielded electric wire
JPH11250953A (en) Insulated wire connection structure
JP2003163038A (en) Shield processing structure of flat shielded electric wire and shield processing method thereof
JP4034042B2 (en) Shield processing structure of multi-core shielded wire
JP4034043B2 (en) Shield processing structure of multi-core shielded wire and shield processing method thereof
JP2002325328A (en) Shield treatment structure of multi-core shielded wire and shield treatment method
JP4091348B2 (en) Shield processing structure of flat shielded electric wire and shield processing method thereof
JP4560185B2 (en) Conductor thin film sheet with electric wire and method for producing conductor thin film sheet with electric wire
JP3978316B2 (en) Branch wire processing structure for shielded wire
JP4855572B2 (en) Flat shield harness and method for manufacturing flat shield harness
JP2024004903A (en) How to join electric wires with terminals
JP2002050443A (en) How to connect wires
JP3698260B2 (en) Flat shielded wire shield processing structure
JP3323335B2 (en) Waterproofing method of insulated wire and waterproof structure of insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4034042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees