[go: up one dir, main page]

JP4140238B2 - Semiconductor module bonding structure - Google Patents

Semiconductor module bonding structure Download PDF

Info

Publication number
JP4140238B2
JP4140238B2 JP2001394883A JP2001394883A JP4140238B2 JP 4140238 B2 JP4140238 B2 JP 4140238B2 JP 2001394883 A JP2001394883 A JP 2001394883A JP 2001394883 A JP2001394883 A JP 2001394883A JP 4140238 B2 JP4140238 B2 JP 4140238B2
Authority
JP
Japan
Prior art keywords
electrode
electrode plate
semiconductor module
transistor element
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001394883A
Other languages
Japanese (ja)
Other versions
JP2003197859A (en
Inventor
敏之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001394883A priority Critical patent/JP4140238B2/en
Publication of JP2003197859A publication Critical patent/JP2003197859A/en
Application granted granted Critical
Publication of JP4140238B2 publication Critical patent/JP4140238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/18Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of semiconductor or other solid state devices
    • H01L25/03Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10D, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
    • H01L25/074Stacked arrangements of non-apertured devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/3718Molybdenum [Mo] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes
    • H01L2225/04All the devices being of a type provided for in the same main group of the same subclass of class H10, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same main group of the same subclass of class H10
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06555Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking
    • H01L2225/06562Geometry of the stack, e.g. form of the devices, geometry to facilitate stacking at least one device in the stack being rotated or offset
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体モジュールの接続構造に関し、詳しくは絶縁基板上に導電性部材を介して実装された第1の半導体素子に第2の半導体素子を積層して両素子を並列接続してなる半導体モジュールの接合構造に関する。
【0002】
【従来の技術】
この種の半導体モジュールとしては、モジュールの横方向の面積を縮小するため、絶縁基板上に実装されたトランジスタ素子の上方に導電性樹脂を介してダイオード素子を積層したものが提案されている(特開2000−164800号公報など)。このモジュールでは、トランジスタ素子の下面にはコレクタ電極が形成され、トランジスタ素子の上面にはエミッタ電極とゲート電極とが形成されている。そして、ダイオード素子の下面にはアノード電極が形成され、ダイオード素子の上面にはカソード電極が形成されている。このため、トランジスタ素子の下面(コレクタ電極)に接触する絶縁基板上の金属パターンとダイオード素子の上面(カソード電極)と外部電極とをアルミワイヤにより接続すると共に、トランジスタ素子の上面(エミッタ電極)とダイオード素子の下面(アノード電極)との間に介在する導電性樹脂と外部電極とをアルミワイヤにより接続すれば、トランジスタ素子とダイオード素子とを逆並列接続することができ、例えば、これを複数個用いて構成されるインバータ回路の小型化を実現することができる。
【0003】
【発明が解決しようとする課題】
しかしながら、これらの素子に大きな電流が流れる場合、例えば、これらの素子が自動車の走行モータを駆動するインバータ回路を構成する場合では、電気抵抗を抑制するため、接続するワイヤの本数を多くしなければならず、部品数が多くなるという問題があった。また、通常、これらの素子は封止用のゲルに覆われるから、従来のアルミワイヤによる接続においては素子に発生する熱は絶縁基板の下部の取り付けられる放熱板に頼らなければならない。このため、素子の駆動条件によっては、半導体モジュールの十分な放熱が確保できなくなるという問題があった。
【0004】
本発明の半導体モジュールは、こうした問題を解決し、モジュールの小型化を図りつつより簡易に半導体素子を並列接続した半導体モジュールを提供することを目的の一つとする。また、本発明の半導体モジュールは、モジュールの小型化を図りつつ素子の放熱性をより向上させた半導体モジュールを提供することを目的の一つとする。
【0005】
【課題を解決するための手段およびその作用・効果】
本発明の半導体モジュールは、上述の目的の少なくとも一部を達成するために以下の手段を採った。
【0006】
本発明の半導体モジュールは、
絶縁基板上に導電性部材を介して実装されたトランジスタ素子にダイオード素子を積層して両素子を並列接続してなる半導体モジュールの接合構造であって、
前記トランジスタ素子の上面側のエミッタ電極と前記ダイオード素子の下面側のアノード電極との間に介在すると共に外部へ延伸した第1の電極板と、
前記ダイオード素子の上面側のカソード電極と、前記トランジスタ素子の下面に形成されたコレクタ電極に接触している前記導電性部材とに接続されると共に前記第1の電極板と直角をなす方向へ延伸した第2の電極板と
を備え、
前記トランジスタ子は、前記第1の電極板に接続されるエミッタ電極と前記第2の電極板に接続されるコレクタ電極とは別にゲート電極を有し、
前記ゲート電極は、相互に直角をなす方向に延伸する前記第1の電極板と前記第2の電極板とが前記積層方向で重ならない位置の前記半導体素子の上面に設けられる。
また、
絶縁基板上に導電性部材を介して実装されたダイオード素子にトランジスタ素子を積層して両素子を並列接続してなる半導体モジュールの接合構造であって、
前記ダイオード素子の上面側のカソード電極と前記トランジスタ素子の下面側のコレクタ電極との間に介在すると共に外部へ延伸した第1の電極板と、
前記トランジスタ素子の上面側のエミッタ電極と、前記ダイオード素子の下面に形成されたアノード電極に接触している前記導電性部材とに接続されると共に前記第1の電極板と直角をなす方向へ延伸した第2の電極板と
を備え、
前記トランジスタ素子は、前記第1の電極板に接続されるコレクタ電極と前記第2の電極板に接続されるエミッタ電極とは別にゲート電極を有し、
前記ゲート電極は、相互に直角をなす方向に延伸する前記第1の電極板と前記第2の電極板とが前記積層方向で重ならない位置の前記半導体素子の上面に設けられる。
【0007】
この本発明の半導体モジュールでは、絶縁基板上に導電性部材を介して実装された第1の半導体素子の上面側の電極とこの第1の半導体素子に積層した第2の半導体素子の下面側の電極との間を介在すると共に外部へ延伸した第1の電極板と、第2の半導体素子の上面と導電性部材とに接続されると共に第1の電極板とは異なる方向へ延伸した第2の電極板とを備える。これにより、第1の半導体素子と第2の半導体素子との積層によるモジュール全体の小型化を図りつつ、より簡易に第1の半導体素子と第2の半導体素子とを並列接続することができる。第1の半導体素子をトランジスタ、第2の半導体素子をダイオードとしてもよく、第1の半導体素子をダイオード、第2の半導体素子をトランジスタとしてもよい。
【0009】
また、本発明の半導体モジュールにおいて、前記第1の電極板および前記第2の電極板は、金属材料により形成されてなるものとすることもできる。こうすれば、第1の電極板および第2の電極板を放熱板として機能させることができ、半導体モジュールの放熱性をより向上させることができる。
【0010】
更に、本発明の半導体モジュールにおいて、前記トランジスタ素子と前記ダイオード素子とを逆並列接続してなるものとすることもできる。
【0011】
【発明の実施の形態】
次に、本発明の実施の形態について実施例を用いて説明する。図1は、本発明の一実施例である半導体モジュール20の構成の概略を示す構成図であり、図2は、図1に例示する半導体モジュール20のA−A断面を示す断面図である。実施例の半導体モジュール20は、図1および図2に示すように、絶縁基板22上に導電板24を介して実装されたトランジスタ素子26とトランジスタ素子26の上方に配置されたダイオード素子28との間に介在する帯状の第1の電極板30と、ダイオード素子28の上面と導電板24とに掛け渡すように接合された帯状の第2の電極板32とを備えている。具体的には、第1の電極板30は、トランジスタ素子26の上面に形成されたエミッタ電極42とダイオード素子28の下面に形成されたアノード電極46とを電気的に接続しており、第2の電極板32は、トランジスタ素子26の下面に形成されたコレクタ電極40に接触している導電板24とダイオード素子28の上面に形成されたカソード電極48とを電気的に接続している。この第1の電極板30と第2の電極板32とは、互いに接触しないように略直角の方向に延伸しており、その延伸端はトランジスタ素子26,ダイオード素子28に電力を入出力する図示しない外部電極に接続されている。また、トランジスタ素子26の上面にエミッタ電極42と共に形成されたゲート電極44は図示しない金属ワイヤを介して外部電極と接続されている。こうして構成された実施例の半導体モジュール20は、例えば、図3に示すように6つの半導体モジュール20で構成されたインバータ装置などに用いることができる。なお、実施例では、絶縁基板22上に導電板24を配置しその上にトランジスタ素子26を実装するものとしたが、絶縁基板22に金属パターンを形成しその上にトランジスタ素子26を実装するものとしても構わない。
【0012】
トランジスタ素子26は、例えば、IGBT(Insulated Gate Bipolar Transistor)やパワーMOS(Metal Oxide Semiconductor)、パワートランジスタなどのトランジスタが該当する。
【0013】
絶縁基板22の下部には、図示しないが、熱伝導性の高い材料(例えば、CuやCuMo合金などの金属やAlSiCなどの複合材料など)により形成された放熱板と、放熱板の下部に取り付けられ冷却媒体(例えば、水や空気など)との熱交換によりトランジスタ素子26やダイオード素子28からの熱を放熱可能な流路が形成された冷却板とを備えている。
【0014】
第1の電極板30と第2の電極板32は、熱伝導性の高い材料(例えば、Mo,Alなどの金属)により形成されている。したがって、トランジスタ素子26,ダイオード素子28の動作に伴う熱は、前述の絶縁基板22の下部に取り付けられた放熱板,冷却板によって放熱される他、第1の電極板30と第2の電極板32とによっても放熱することができる。
【0015】
以上説明した実施例の半導体モジュール20によれば、トランジスタ素子26の上面(エミッタ電極42)とダイオード素子28の下面(アノード電極46)とに介在する帯状の第1の電極板30と、ダイオード素子28の上面(カソード電極48)とトランジスタ素子26の下面(コレクタ電極40)に接触している導電板24とに接続される帯状の第2の電極板32とを備えるから、ワイヤボンディングの必要がなく、トランジスタ素子26とダイオード素子28とをより簡易に逆並列接続することができる。しかも、第1の電極板30と第2の電極板32とを熱伝導性の高い材料により形成したから、絶縁基板22の下部に設けられる放熱板(冷却板)による放熱のみならず、第1の電極板30と第2の電極板32とによりトランジスタ素子26,ダイオード素子28からの熱を放熱することができ、実施例の半導体モジュール20の放熱性をより向上させることができる。
【0016】
実施例の半導体モジュール20では、第1の電極板30と第2の電極板32とを略直角方向に延伸させた帯状の電極として形成するものとしたが、両電極板の短絡を防止できる方向であれば、必ずしも略直角方向に延伸しないものであってもよい。
【0017】
実施例の半導体モジュール20では、トランジスタ素子26の下面にコレクタ電極40を形成すると共に上面にエミッタ電極42を形成し、ダイオード素子28の下面にアノード電極46を形成すると共に上面にカソード電極48を形成するものとしたが、トランジスタ素子の下面にエミッタ電極を形成すると共に上面にコレクタ電極を形成し、ダイオード素子の下面にカソード電極を形成すると共に上面にアノード電極を形成するものとしても構わない。このとき、第1の電極板は、実施例の半導体モジュール20の第2の電極板32に対応し、第2の電極板は、実施例の半導体モジュール20の第1の電極板30に対応する。
【0018】
実施例の半導体モジュール20では、絶縁基板22上にトランジスタ素子26を実装すると共にトランジスタ素子26の上方にダイオード素子28を配置するものとしたが、絶縁基板上にダイオード素子を実装すると共にダイオード素子の上方にトランジスタ素子を配置するものとしても構わない。図4は、変形例の半導体モジュール120の断面構成の概略を示す断面図である。なお、この変形例の半導体モジュール120の構成のうち実施例の半導体モジュール20の構成と同一構成については100を加えて符号を付し、その詳細な説明は重複するから省略する。変形例の半導体モジュール120は、図示するように、絶縁基板122上に導電板124を介して実装されたダイオード素子128とダイオード素子128の上方に配置されたトランジスタ素子126との間に介在する帯状の第1の電極板130と、トランジスタ素子126の上面と導電板124とを掛け渡すように接続された帯状の第2の電極132とを備えている。具体的には、第1の電極板130は、ダイオード素子128の上面に形成されたカソード電極148とトランジスタ素子126の下面に形成されたコレクタ電極140とを電気的に接続すると共に図示しない外部電極と接続されている。また、第2の電極板132は、ダイオード素子128の下面に形成されたアノード電極146に接触する導電板124とトランジスタ素子126の上面に形成されたエミッタ電極142とを電気的に接続すると共に図示しない外部電極と接続されている。したがって、変形例の半導体モジュール120によっても、実施例の半導体モジュール20と同様に、トランジスタ素子126とダイオード素子128とを逆並列接続することができる。なお、一般的に発熱量が多いトランジスタ素子を絶縁基板上に実装されたダイオード素子の上方に配置することは放熱性を悪化させることになるが、第1の導電板130,第2の導電板132を放熱板として機能させることにより、トランジスタ素子を絶縁基板上に実装するものと同様に良好な放熱性を維持することができる。
【0019】
変形例の半導体モジュール120では、トランジスタ素子126の下面にコレクタ電極140を形成すると共に上面にエミッタ電極142を形成し、ダイオード素子128の下面にアノード電極146を形成すると共に上面にカソード電極148を形成するものとしたが、トランジスタ素子の下面にエミッタ電極を形成すると共に上面にコレクタ電極を形成し、ダイオード素子の下面にカソード電極を形成すると共に上面にアノード電極を形成するものとしても構わない。このとき、第1の電極板は、変形例の半導体モジュール120の第2の電極板132に対応し、第2の電極板は、変形例の半導体モジュール120の第1の電極板130に対応することになる。
【0020】
実施例の半導体モジュール20やその変形例の半導体モジュール120では、トランジスタ素子26,126とダイオード素子28,128との逆並列接続に適用するものとしたが、その他の半導体素子の並列接続に適用することも可能である。
【0021】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明のこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】 本発明の一実施例である半導体モジュール20の構成の概略を示す構成図である。
【図2】 図1に例示する半導体モジュール20のA−A断面を示す断面図である。
【図3】 実施例の半導体モジュール20により構成されるインバータ装置を例示する図である。
【図4】 変形例の半導体モジュール120の断面を示す断面図である。
【符号の説明】
20,120 半導体モジュール、22,122 絶縁基板、24,124 導電板、26,126 トランジスタ素子、28,128 ダイオード素子、30,130 第1電極板、32,132 第2電極板、40,140 コレクタ電極、42,142 エミッタ電極、44,144 ゲート電極、46,146アノード電極、48,148 カソード電極。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor module connection structure, and more specifically, a semiconductor in which a second semiconductor element is stacked on a first semiconductor element mounted on an insulating substrate via a conductive member, and both elements are connected in parallel. The present invention relates to a module joining structure.
[0002]
[Prior art]
As this type of semiconductor module, in order to reduce the area of the module in the lateral direction, a module in which a diode element is stacked via a conductive resin above a transistor element mounted on an insulating substrate has been proposed (special feature). Kai 2000-164800). In this module, a collector electrode is formed on the lower surface of the transistor element, and an emitter electrode and a gate electrode are formed on the upper surface of the transistor element. An anode electrode is formed on the lower surface of the diode element, and a cathode electrode is formed on the upper surface of the diode element. Therefore, the metal pattern on the insulating substrate that contacts the lower surface (collector electrode) of the transistor element, the upper surface (cathode electrode) of the diode element, and the external electrode are connected by an aluminum wire, and the upper surface (emitter electrode) of the transistor element If the conductive resin interposed between the lower surface (anode electrode) of the diode element and the external electrode are connected by an aluminum wire, the transistor element and the diode element can be connected in reverse parallel. It is possible to reduce the size of the inverter circuit configured by using the inverter circuit.
[0003]
[Problems to be solved by the invention]
However, when a large current flows through these elements, for example, when these elements constitute an inverter circuit that drives an automobile travel motor, the number of wires to be connected must be increased in order to suppress electrical resistance. There was a problem that the number of parts increased. In addition, since these elements are usually covered with a sealing gel, the heat generated in the elements must be relied on a heat sink attached to the lower part of the insulating substrate in connection with the conventional aluminum wire. For this reason, there was a problem that sufficient heat dissipation of the semiconductor module could not be secured depending on the driving conditions of the element.
[0004]
One object of the semiconductor module of the present invention is to solve such problems and provide a semiconductor module in which semiconductor elements are connected in parallel more easily while reducing the size of the module. Another object of the semiconductor module of the present invention is to provide a semiconductor module in which the heat dissipation of the element is further improved while downsizing the module.
[0005]
[Means for solving the problems and their functions and effects]
The semiconductor module of the present invention employs the following means in order to achieve at least a part of the above object.
[0006]
The semiconductor module of the present invention is
A semiconductor module bonding structure in which a diode element is stacked on a transistor element mounted on an insulating substrate via a conductive member, and both elements are connected in parallel.
A first electrode plate interposed between the emitter electrode on the upper surface side of the transistor element and the anode electrode on the lower surface side of the diode element and extending outward;
Connected to the cathode electrode on the upper surface side of the diode element and the conductive member in contact with the collector electrode formed on the lower surface of the transistor element, and extends in a direction perpendicular to the first electrode plate The second electrode plate,
The transistor element has a separate gate electrode and the collector electrode connected to the second electrode plate and the emitter electrode connected to the first electrode plate,
The gate electrode, Ru provided on the upper surface of the semiconductor element of the position where the first electrode plate extending in a direction at right angles to each other and said second electrode plate do not overlap each other in the stacking direction.
Also,
A semiconductor module junction structure in which a transistor element is stacked on a diode element mounted on an insulating substrate via a conductive member, and both elements are connected in parallel.
A first electrode plate interposed between the cathode electrode on the upper surface side of the diode element and the collector electrode on the lower surface side of the transistor element and extended outward;
Connected to the emitter electrode on the upper surface side of the transistor element and the conductive member in contact with the anode electrode formed on the lower surface of the diode element, and extends in a direction perpendicular to the first electrode plate The second electrode plate
With
The transistor element has a gate electrode separately from a collector electrode connected to the first electrode plate and an emitter electrode connected to the second electrode plate,
The gate electrode is provided on the upper surface of the semiconductor element at a position where the first electrode plate and the second electrode plate extending in a direction perpendicular to each other do not overlap in the stacking direction.
[0007]
In the semiconductor module of the present invention, the electrode on the upper surface side of the first semiconductor element mounted on the insulating substrate via the conductive member and the lower surface side of the second semiconductor element laminated on the first semiconductor element. A first electrode plate interposed between the electrodes and extended to the outside; a second electrode plate connected to the upper surface of the second semiconductor element and the conductive member and extended in a different direction from the first electrode plate; Electrode plate. Accordingly, the first semiconductor element and the second semiconductor element can be more easily connected in parallel while reducing the size of the entire module by stacking the first semiconductor element and the second semiconductor element. The first semiconductor element may be a transistor, the second semiconductor element may be a diode, the first semiconductor element may be a diode, and the second semiconductor element may be a transistor.
[0009]
In the semiconductor module of the present invention, the first electrode plate and before Symbol second electrode plate may also be composed are formed of a metal material. If it carries out like this, a 1st electrode plate and a 2nd electrode plate can be functioned as a heat sink, and the heat dissipation of a semiconductor module can be improved more.
[0010]
Further, in the semiconductor module of the present invention can also be assumed that previous SL formed by antiparallel connected to the transistor element and said diode element.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described using examples. FIG. 1 is a block diagram showing an outline of the configuration of a semiconductor module 20 according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an AA cross section of the semiconductor module 20 illustrated in FIG. As shown in FIGS. 1 and 2, the semiconductor module 20 of the embodiment includes a transistor element 26 mounted on an insulating substrate 22 via a conductive plate 24 and a diode element 28 disposed above the transistor element 26. A strip-shaped first electrode plate 30 interposed therebetween, and a strip-shaped second electrode plate 32 joined so as to span the upper surface of the diode element 28 and the conductive plate 24 are provided. Specifically, the first electrode plate 30 electrically connects the emitter electrode 42 formed on the upper surface of the transistor element 26 and the anode electrode 46 formed on the lower surface of the diode element 28. The electrode plate 32 electrically connects the conductive plate 24 in contact with the collector electrode 40 formed on the lower surface of the transistor element 26 and the cathode electrode 48 formed on the upper surface of the diode element 28. The first electrode plate 30 and the second electrode plate 32 extend in a substantially perpendicular direction so as not to contact each other, and the extended ends thereof input and output power to the transistor element 26 and the diode element 28. Not connected to external electrode. A gate electrode 44 formed on the upper surface of the transistor element 26 together with the emitter electrode 42 is connected to an external electrode via a metal wire (not shown). The semiconductor module 20 of the embodiment configured in this way can be used for an inverter device including six semiconductor modules 20 as shown in FIG. 3, for example. In the embodiment, the conductive plate 24 is disposed on the insulating substrate 22 and the transistor element 26 is mounted thereon. However, the metal pattern is formed on the insulating substrate 22 and the transistor element 26 is mounted thereon. It does not matter.
[0012]
The transistor element 26 corresponds to a transistor such as an IGBT (Insulated Gate Bipolar Transistor), a power MOS (Metal Oxide Semiconductor), or a power transistor.
[0013]
Although not shown, a heat sink made of a material having high thermal conductivity (for example, a metal such as Cu or CuMo alloy or a composite material such as AlSiC) is attached to the lower portion of the insulating substrate 22 and attached to the lower portion of the heat sink. And a cooling plate in which a flow path capable of radiating heat from the transistor element 26 and the diode element 28 is formed by heat exchange with a cooling medium (for example, water or air).
[0014]
The first electrode plate 30 and the second electrode plate 32 are formed of a material having high thermal conductivity (for example, a metal such as Mo or Al). Therefore, the heat accompanying the operation of the transistor element 26 and the diode element 28 is dissipated by the heat radiating plate and the cooling plate attached to the lower portion of the insulating substrate 22, and the first electrode plate 30 and the second electrode plate. 32 can also dissipate heat.
[0015]
According to the semiconductor module 20 of the embodiment described above, the band-shaped first electrode plate 30 interposed between the upper surface (emitter electrode 42) of the transistor element 26 and the lower surface (anode electrode 46) of the diode element 28, the diode element 28 is provided with a belt-like second electrode plate 32 connected to the upper surface (cathode electrode 48) 28 and the conductive plate 24 in contact with the lower surface (collector electrode 40) of the transistor element 26. Thus, the transistor element 26 and the diode element 28 can be connected in reverse parallel more easily. In addition, since the first electrode plate 30 and the second electrode plate 32 are formed of a material having high thermal conductivity, not only the heat radiation by the heat radiation plate (cooling plate) provided under the insulating substrate 22 but also the first The electrode plate 30 and the second electrode plate 32 can radiate heat from the transistor element 26 and the diode element 28, and the heat dissipation of the semiconductor module 20 of the embodiment can be further improved.
[0016]
In the semiconductor module 20 of the embodiment, the first electrode plate 30 and the second electrode plate 32 are formed as belt-like electrodes extending in a substantially right angle direction, but a direction in which a short circuit between both electrode plates can be prevented. If it is, it may not necessarily extend in a substantially perpendicular direction.
[0017]
In the semiconductor module 20 of the embodiment, the collector electrode 40 is formed on the lower surface of the transistor element 26, the emitter electrode 42 is formed on the upper surface, the anode electrode 46 is formed on the lower surface of the diode element 28, and the cathode electrode 48 is formed on the upper surface. However, the emitter electrode may be formed on the lower surface of the transistor element, the collector electrode may be formed on the upper surface, the cathode electrode may be formed on the lower surface of the diode element, and the anode electrode may be formed on the upper surface. At this time, the first electrode plate corresponds to the second electrode plate 32 of the semiconductor module 20 of the embodiment, and the second electrode plate corresponds to the first electrode plate 30 of the semiconductor module 20 of the embodiment. .
[0018]
In the semiconductor module 20 of the embodiment, the transistor element 26 is mounted on the insulating substrate 22 and the diode element 28 is disposed above the transistor element 26. However, the diode element is mounted on the insulating substrate and the diode element 28 A transistor element may be disposed above. FIG. 4 is a cross-sectional view illustrating an outline of a cross-sectional configuration of a semiconductor module 120 according to a modification. In addition, about the structure same as the structure of the semiconductor module 20 of an Example among the structures of the semiconductor module 120 of this modification, 100 is attached | subjected and a code | symbol is attached | subjected and the detailed description is abbreviate | omitted. As shown in the figure, the semiconductor module 120 according to the modified example has a belt-like shape interposed between a diode element 128 mounted on an insulating substrate 122 via a conductive plate 124 and a transistor element 126 disposed above the diode element 128. The first electrode plate 130 and a strip-shaped second electrode 132 connected so as to bridge the upper surface of the transistor element 126 and the conductive plate 124 are provided. Specifically, the first electrode plate 130 electrically connects the cathode electrode 148 formed on the upper surface of the diode element 128 and the collector electrode 140 formed on the lower surface of the transistor element 126, as well as an external electrode (not shown). Connected with. The second electrode plate 132 electrically connects the conductive plate 124 in contact with the anode electrode 146 formed on the lower surface of the diode element 128 and the emitter electrode 142 formed on the upper surface of the transistor element 126 and is shown in the figure. Not connected with external electrode. Therefore, also by the semiconductor module 120 of the modified example, the transistor element 126 and the diode element 128 can be connected in reverse parallel as in the semiconductor module 20 of the embodiment. In general, disposing a transistor element that generates a large amount of heat above a diode element mounted on an insulating substrate deteriorates heat dissipation, but the first conductive plate 130 and the second conductive plate By causing 132 to function as a heat sink, good heat dissipation can be maintained as in the case where the transistor element is mounted on an insulating substrate.
[0019]
In the semiconductor module 120 of the modified example, the collector electrode 140 is formed on the lower surface of the transistor element 126, the emitter electrode 142 is formed on the upper surface, the anode electrode 146 is formed on the lower surface of the diode element 128, and the cathode electrode 148 is formed on the upper surface. However, the emitter electrode may be formed on the lower surface of the transistor element, the collector electrode may be formed on the upper surface, the cathode electrode may be formed on the lower surface of the diode element, and the anode electrode may be formed on the upper surface. At this time, the first electrode plate corresponds to the second electrode plate 132 of the semiconductor module 120 of the modified example, and the second electrode plate corresponds to the first electrode plate 130 of the semiconductor module 120 of the modified example. It will be.
[0020]
In the semiconductor module 20 of the embodiment and the semiconductor module 120 of the modified example thereof, the transistor elements 26 and 126 and the diode elements 28 and 128 are applied to the antiparallel connection. However, the semiconductor module 20 is applied to the parallel connection of other semiconductor elements. It is also possible.
[0021]
The embodiments of the present invention have been described using the embodiments. However, the present invention is not limited to these embodiments and can be implemented in various forms without departing from the gist of the present invention. Of course you get.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an outline of a configuration of a semiconductor module 20 according to an embodiment of the present invention.
2 is a cross-sectional view showing an AA cross section of the semiconductor module 20 illustrated in FIG. 1; FIG.
FIG. 3 is a diagram illustrating an inverter device including the semiconductor module 20 according to the embodiment.
FIG. 4 is a cross-sectional view showing a cross section of a modified semiconductor module 120;
[Explanation of symbols]
20, 120 Semiconductor module, 22, 122 Insulating substrate, 24, 124 Conductive plate, 26, 126 Transistor element, 28, 128 Diode element, 30, 130 First electrode plate, 32, 132 Second electrode plate, 40, 140 Collector Electrode, 42, 142 Emitter electrode, 44, 144 Gate electrode, 46, 146 Anode electrode, 48, 148 Cathode electrode.

Claims (4)

絶縁基板上に導電性部材を介して実装されたトランジスタ素子にダイオード素子を積層して両素子を並列接続してなる半導体モジュールの接合構造であって、
前記トランジスタ素子の上面側のエミッタ電極と前記ダイオード素子の下面側のアノード電極との間に介在すると共に外部へ延伸した第1の電極板と、
前記ダイオード素子の上面側のカソード電極と、前記トランジスタ素子の下面に形成されたコレクタ電極に接触している前記導電性部材とに接続されると共に前記第1の電極板と直角をなす方向へ延伸した第2の電極板と
を備え、
前記トランジスタ子は、前記第1の電極板に接続されるエミッタ電極と前記第2の電極板に接続されるコレクタ電極とは別にゲート電極を有し、
前記ゲート電極は、相互に直角をなす方向に延伸する前記第1の電極板と前記第2の電極板とが前記積層方向で重ならない位置の前記半導体素子の上面に設けられることを特徴とする半導体モジュールの接合構造。
A semiconductor module bonding structure in which a diode element is stacked on a transistor element mounted on an insulating substrate via a conductive member, and both elements are connected in parallel.
A first electrode plate interposed between the emitter electrode on the upper surface side of the transistor element and the anode electrode on the lower surface side of the diode element and extending outward;
Connected to the cathode electrode on the upper surface side of the diode element and the conductive member in contact with the collector electrode formed on the lower surface of the transistor element, and extends in a direction perpendicular to the first electrode plate The second electrode plate,
The transistor element has a separate gate electrode and the collector electrode connected to the second electrode plate and the emitter electrode connected to the first electrode plate,
The gate electrode is provided on an upper surface of the semiconductor element at a position where the first electrode plate and the second electrode plate extending in a direction perpendicular to each other do not overlap in the stacking direction. Bonding structure for semiconductor modules.
絶縁基板上に導電性部材を介して実装されたダイオード素子にトランジスタ素子を積層して両素子を並列接続してなる半導体モジュールの接合構造であって、
前記ダイオード素子の上面側のカソード電極と前記トランジスタ素子の下面側のコレクタ電極との間に介在すると共に外部へ延伸した第1の電極板と、
前記トランジスタ素子の上面側のエミッタ電極と、前記ダイオード素子の下面に形成されたアノード電極に接触している前記導電性部材とに接続されると共に前記第1の電極板と直角をなす方向へ延伸した第2の電極板と
を備え、
前記トランジスタ素子は、前記第1の電極板に接続されるコレクタ電極と前記第2の電極板に接続されるエミッタ電極とは別にゲート電極を有し、
前記ゲート電極は、相互に直角をなす方向に延伸する前記第1の電極板と前記第2の電極板とが前記積層方向で重ならない位置の前記半導体素子の上面に設けられることを特徴とする半導体モジュールの接合構造。
A semiconductor module junction structure in which a transistor element is stacked on a diode element mounted on an insulating substrate via a conductive member, and both elements are connected in parallel.
A first electrode plate interposed between the cathode electrode on the upper surface side of the diode element and the collector electrode on the lower surface side of the transistor element and extended outward;
Connected to the emitter electrode on the upper surface side of the transistor element and the conductive member in contact with the anode electrode formed on the lower surface of the diode element, and extends in a direction perpendicular to the first electrode plate The second electrode plate
With
The transistor element has a gate electrode separately from a collector electrode connected to the first electrode plate and an emitter electrode connected to the second electrode plate,
The gate electrode is provided on an upper surface of the semiconductor element at a position where the first electrode plate and the second electrode plate extending in a direction perpendicular to each other do not overlap in the stacking direction. Semiconductor module joint structure.
請求項1または2記載の半導体モジュールの接合構造であって、
前記第1の電極板および前記第2の電極板は、金属材料により形成されてなる半導体モジュールの接合構造。
It is a junction structure of a semiconductor module according to claim 1 or 2,
It said first electrode plate and before Symbol second electrode plate, the bonding structure of a semiconductor module formed by forming a metal material.
請求項1ないし3のいずれか1に記載の半導体モジュールの接合構造であって
記トランジスタ素子と前記ダイオード素子とを逆並列接続してなる半導体モジュールの接合構造。
A junction structure for a semiconductor module according to any one of claims 1 to 3 ,
Junction structure of a semiconductor module formed by reverse parallel connection of the front Symbol transistor element and the diode element.
JP2001394883A 2001-12-26 2001-12-26 Semiconductor module bonding structure Expired - Fee Related JP4140238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001394883A JP4140238B2 (en) 2001-12-26 2001-12-26 Semiconductor module bonding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001394883A JP4140238B2 (en) 2001-12-26 2001-12-26 Semiconductor module bonding structure

Publications (2)

Publication Number Publication Date
JP2003197859A JP2003197859A (en) 2003-07-11
JP4140238B2 true JP4140238B2 (en) 2008-08-27

Family

ID=27601480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001394883A Expired - Fee Related JP4140238B2 (en) 2001-12-26 2001-12-26 Semiconductor module bonding structure

Country Status (1)

Country Link
JP (1) JP4140238B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4164409B2 (en) * 2003-06-13 2008-10-15 三菱電機株式会社 Semiconductor power module
CN100413060C (en) 2003-09-04 2008-08-20 松下电器产业株式会社 Semiconductor device
JP2005302951A (en) 2004-04-09 2005-10-27 Toshiba Corp Power semiconductor device package
US7202105B2 (en) * 2004-06-28 2007-04-10 Semiconductor Components Industries, L.L.C. Multi-chip semiconductor connector assembly method
JP4566678B2 (en) 2004-10-04 2010-10-20 日立オートモティブシステムズ株式会社 Power module
JP2009043820A (en) 2007-08-07 2009-02-26 Rohm Co Ltd High efficiency module
JP5171199B2 (en) * 2007-10-15 2013-03-27 ローム株式会社 Power module
JP5277806B2 (en) * 2008-09-08 2013-08-28 株式会社デンソー Semiconductor device
US8963338B2 (en) * 2011-03-02 2015-02-24 International Rectifier Corporation III-nitride transistor stacked with diode in a package
US8546849B2 (en) 2011-05-04 2013-10-01 International Rectifier Corporation High voltage cascoded III-nitride rectifier package utilizing clips on package surface
US8853706B2 (en) 2011-05-04 2014-10-07 International Rectifier Corporation High voltage cascoded III-nitride rectifier package with stamped leadframe
US8853707B2 (en) 2011-05-04 2014-10-07 International Rectifier Corporation High voltage cascoded III-nitride rectifier package with etched leadframe
DE102013207507B3 (en) 2013-04-25 2014-07-24 Conti Temic Microelectronic Gmbh Power module, power converter and drive arrangement with a power module
WO2016150391A1 (en) * 2015-03-23 2016-09-29 广东美的制冷设备有限公司 Smart power module and manufacturing method therefor
US11037917B1 (en) * 2019-12-11 2021-06-15 Littelfuse, Inc. Semiconductor device module and method of assembly

Also Published As

Publication number Publication date
JP2003197859A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
EP3107120B1 (en) Power semiconductor module
JP5627499B2 (en) Semiconductor device provided with semiconductor module
JP4192396B2 (en) Semiconductor switching module and semiconductor device using the same
JP4140238B2 (en) Semiconductor module bonding structure
WO2014002442A1 (en) Semiconductor device and semiconductor device connection structure
JP2000164800A (en) Semiconductor module
JP6077773B2 (en) Power module semiconductor device
JP4885046B2 (en) Power semiconductor module
EP3522213B1 (en) Semiconductor device
US20210407875A1 (en) Semiconductor device
JP7124474B2 (en) semiconductor equipment
CN116325135A (en) Semiconductor package, semiconductor device, and power conversion device
JP4531087B2 (en) Power semiconductor device
US20240079383A1 (en) Semiconductor device
US11996344B2 (en) Semiconductor device
JP3673776B2 (en) Semiconductor module and power conversion device
JP2011211017A (en) Semiconductor module and semiconductor device including the same
JP4096741B2 (en) Semiconductor device
US20250069967A1 (en) Semiconductor device
JP2013125889A (en) Semiconductor device
JP5402778B2 (en) Semiconductor device provided with semiconductor module
JPWO2018047485A1 (en) Power module and inverter device
JP2021141221A (en) Semiconductor module
JPWO2005018001A1 (en) Semiconductor device
JP4120581B2 (en) Power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees